The structural performance of perforated steel columns(PSCs)is significantly more complex than the one of solid web I-shaped elements under the diversity of blast loading scenarios.The damage criterion of PSCs is not ...The structural performance of perforated steel columns(PSCs)is significantly more complex than the one of solid web I-shaped elements under the diversity of blast loading scenarios.The damage criterion of PSCs is not only related to initial deformation response during the blast but also the residual axial load capacity and it can be considered as a reliable index after the blast effects.Therefore,the PSCs damages will be studied in two stages;direct and post blast effects.In the present study,the dynamic response of PSCs was numerically evaluated under different levels of blast threats using LS-DYNA software.Extensive explicit finite element(FE)analyses are carried out to investigate the effect of various parameters,such as web opening shapes,boundary conditions and strengthening details on the damage index and toughness of the PSCs compared to the parent steel sections.The results of the comparative study show that the damage and toughness decrease when the support condition changes from pinned to fixed ends through the two stages of loadings.PSCs give high toughness compared to its parent sections during blast shock stage while,a remarkable decrease in toughness is observed during the application of axial gravity after blast shock.Furthermore,the web opening shapes have slight effects on the global dynamic behavior of PSCs,particularly in terms of residual capacity.On the contrary,the retrofitting strategy using both closed holes at end and vertical stiffeners have an effective enhancement to get higher toughness in case of the extreme blasts.展开更多
To enable rapid recovery of a steel bridge column after an earthquake,a novel tubular-section steel bridge column equipped with low-yield-point(LYP)steel tubular plates in the root replaceable pier is proposed.For the...To enable rapid recovery of a steel bridge column after an earthquake,a novel tubular-section steel bridge column equipped with low-yield-point(LYP)steel tubular plates in the root replaceable pier is proposed.For the purpose of discussing the seismic behavior of the novel steel bridge column,quasi-static tests and finite element simulation analyses of the specimens were carried out.The effects of parameters such as the axial compression ratio,eccentricity,and thickness and material strength of the tubular plate in the energy-dissipating zone are discussed.Experimental results from seven specimens that were subjected to four failure modes are presented.The damage to the quasi-static specimens is localized to the replaceable energy-dissipating pier.The seismic behavior of the novel steel bridge columns is significantly influenced by the axial compression ratio and eccentricity of specimens.Numerical results show that the high stress area of the specimens is mainly concentrated in the connection zone between the LYP steel tubular plate and the bottom steel plate,which is consistent with the position of the quasi-static specimen when it was prone to fracture.Finally,a calculation formula is proposed to facilitate the capacity prediction of this new steel tubular bridge column under repeated loading.展开更多
During the modernization or rehabilitation activity,the demolished structural waste causes large soil pollution and unavailability of natural aggregate is the big concern for the construction industry.Therefore,this m...During the modernization or rehabilitation activity,the demolished structural waste causes large soil pollution and unavailability of natural aggregate is the big concern for the construction industry.Therefore,this manuscript deals with the Composite Steel Circular Column(CSCC)with Recycled Aggregate concrete(RAC)as infill is partly used,with the replacement of 25%and 50%in M30 grade of Concrete.And internal reinforcement steel is fully replaced by rolled steel tubes(circular and square)with varied thickness,ISA-unequal angle.Around 14 specimens are cast and examined under axial load for analysis of the deflection characteristics,the load-bearing capacity along with its buckling behavior.The experimental values are estimated through LVDT(linear variable differential transducer)at 3-phase.The curve of load-deflection is drawn with the load pattern.From the date interpretation,it is found column made of 50%-RAC has more than 25%-RAC.展开更多
Experimental investigation into impact-resistant behavior of reactive powder concrete (RPC)-filled steel tubular columns was conducted,and dynamic response of the columns under axial impact loading was studied by mean...Experimental investigation into impact-resistant behavior of reactive powder concrete (RPC)-filled steel tubular columns was conducted,and dynamic response of the columns under axial impact loading was studied by means of numerical simulation method.Increase coefficient of load carrying capacity and ratio of load carrying capacity between steel tube and RPC core of col-umns were obtained.展开更多
The seismic behavior of planar frames with concrete-filled T-section columns to steel beam was experimentally and numerically studied. A finite element analysis (FEA) model was developed to investigate the engineeri...The seismic behavior of planar frames with concrete-filled T-section columns to steel beam was experimentally and numerically studied. A finite element analysis (FEA) model was developed to investigate the engineering properties of the planar frames. Two 1:2.5 reduced-scale specimens of T-section concrete-filled steel tubular column and steel beam of single-story and single-bay plane frames were designed and fabricated based on the design principles of strong-column, weak-beam and stronger-joint. One three-dimensional entity model of the investigated frame structure was built using a large-scale nonlinear finite-element analysis software ABAQUS. Experimental results show that the axial compression ratio has no effect on the failure mode of the structure, while with the increase of axial compression ratio and the dissipated energy ability increasing, the structural ductility decreased. The results from both experiments and simulations agree with each other, which verifies the validity and accuracy of the developed finite element model. Furthermore, the developed finite element model helps to reflect the detailed stress status of the investigated frame at different time and different positions.展开更多
Eight concrete-filled steel tubular(CFT) columns were tested subjected to cyclic loading under constant axial load. Experimental parameters included axial compression ratio, loading sequences, and strength of concrete...Eight concrete-filled steel tubular(CFT) columns were tested subjected to cyclic loading under constant axial load. Experimental parameters included axial compression ratio, loading sequences, and strength of concrete and steel. The seismic performance of CFT columns and failure modes were analyzed. The test results show that different axial load ratios and loading sequences have effects on the load carrying capacity, ductility and energy dissipation capacity of CFT columns, as well as the failure modes of the CFT columns. The failure pattern can be categorized into two types: local buckling failure of steel tube in compression zone, and low cycle fatigue tearing rupture failure of steel tube. The seismic behavior was evaluated through the energy index obtained from each cycle.展开更多
This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. Th...This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. The method of 3D-VLE was developed to analyze the effects of concrete creep behavior on CFT structures. After the evaluation of the parameters in the proposed creep model, experimental measurements of two prestressed reinforced concrete beams were used to investigate the creep phenomenon of three CFT columns under long-term axial and eccentric load was investigated. The experimentally obtained time-dependent creep behaviour accorded well with the cu~'es obtained from the proposed method. Many factors (such as ratio of long-term load to strength, slenderness ratio, steel ratio, and eccentricity ratio) were considered to obtain the regularity of influence of concrete creep on CFT structures. The analytical results can be consulted in the engineering practice and design.展开更多
A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipat...A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements - the CFST columns and SP deep beams - to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.展开更多
A kind of concrete-filled lattice rectangular steel tube(CFLRST)column was put forward.The numerical simulation was modeled to analyze the mechanical characteristic of CFLRST column.By comparing the load-deformation c...A kind of concrete-filled lattice rectangular steel tube(CFLRST)column was put forward.The numerical simulation was modeled to analyze the mechanical characteristic of CFLRST column.By comparing the load-deformation curves from the test results,the rationality and reliability of the finite element model has been confirmed,moreover,the change of the section stiffness and stress in the forcing process and the ultimate bearing capacity of the column were analyzed.Based on the model,the comparison of ultimate bearing capacity and ductility between CFLRST column and reinforced concrete(RC)column were also analyzed.The results of the finite element analysis show that the loading process of CFLRST column consists of elastic stage,yield stage and failure stage.The failure modes are mainly strength failure and failure of elastoplastic instability.CFLRST column has higher bearing capacities in comparison with reinforced concrete columns with the same steel ratio.In addition,the stiffness degeneration of CFLRST column is slower than RC column and CFLRST column has good ductility.展开更多
Taizhou Yangtze River Bridge is the first three-pylon two-span suspension bridge in the world. The middle pylon adopts deep water caisson foundation. The superstructure of the middle pylon employs herringbone shape al...Taizhou Yangtze River Bridge is the first three-pylon two-span suspension bridge in the world. The middle pylon adopts deep water caisson foundation. The superstructure of the middle pylon employs herringbone shape along the bridge, and portal shape in the transverse direction for the first time in China. In this paper, the basic construction procedure, equipment, construction steps, the key construction technologies and methods of steel pylon are introduced.展开更多
In order to study the dynamic response of concrete-filled steel tube(CFST) columns against blast loads,a simplified model is established utilizing the equivalent single-degree-of-freedom(SDOF) method,which considers t...In order to study the dynamic response of concrete-filled steel tube(CFST) columns against blast loads,a simplified model is established utilizing the equivalent single-degree-of-freedom(SDOF) method,which considers the non-uniform distribution of blast loads on real column and the axial load-bending moment(P-M) interaction of CFST columns.Results of the SDOF analysis compare well with the experimental data reported in open literature and the values from finite element modeling(FEM) using the program LS-DYNA.Further comparisons between the results of SDOF and FEM analysis show that the proposed model is effective to predict the dynamic response of CFST columns with different blast conditions and column details.Also,it is found that the maximum responses of the columns are overestimated when ignoring the non-uniformity of blast loads,and that neglecting the effect of P-M interaction underestimates the maximum response of the columns with large axial load ratio against close range blast.The proposed SDOF model can be used in the design of the blast-loaded CFST columns.展开更多
This article presents an experimental and numerical investigation on the strength and performance of intermediate length rack column sections with C-stitches under axial compression. The test program consisted of 10 a...This article presents an experimental and numerical investigation on the strength and performance of intermediate length rack column sections with C-stitches under axial compression. The test program consisted of 10 axial concentric compression tests on columns with and without C-stitches under pin end conditions for two different geometric lengths. Finite element (FE) models were developed using commercial FE package ABAQUS considering material and geometric nonlinearities as well as initial geometric imperfections. The elastic buckling properties of the section were calculated using readily available linear elastic buckling analysis tools based on Generalized Beam Theory (GBT) and Finite Strip Method (FSM). Obtained FE results were compared with those obtained experimentally, and once verified the developed FE modeling technique was used to carry out a parametric study to examine changes in structural response due to variations in length, depth and spacing of C-stitches. Observed influences of C-stitches on the behavior and resistance of the considered columns were carefully analyzed, and key design aspects are presented herein.展开更多
As a typical compression member,the concrete-filled steel tube has been widely used in civil engineering structures.However,little research on recycled self-compacting concrete flled circular steel tubular(RSCCFCST)co...As a typical compression member,the concrete-filled steel tube has been widely used in civil engineering structures.However,little research on recycled self-compacting concrete flled circular steel tubular(RSCCFCST)columns subjected to eccentric load was reported.In this study,21 specimens were designed and experimental studies on the stress-strain relationship of were carried out to study the mechanical behaviors.Recycled coarse aggregate replacement ratio,concrete strength grade,length to diameter ratio and eccentric distance of specimens were considered as the main experimental parameters to carry out eccentric compression tests.The corresponding stress-strain relationship curves were used to analyze the influence of concerned parameters on ecentric load-bearing capacity of RSCCFCST columns.The experimental results show that the strain of the eccentric compression stress-strain curves increase with the increase of recycled coarse aggregate replacement ratio and concrete strength grade.With increase of eccentric distance,the ductility of specimens increases while the bearing capacity decreases.Moreover,a phenomenological model of RSCCFCST columns is proposed,which exhibits versatile ability to capture the process during loading.The present study is expected to further understanding the behaviors and to provide guidance of RSCCFCST columns in design and engineering applications.展开更多
It is believed that steels are still the most important materials for automobile in the foreseeable future because of the advantages in performance, cost, tolerance, fabrication, and recycling, etc. Over decades, a va...It is believed that steels are still the most important materials for automobile in the foreseeable future because of the advantages in performance, cost, tolerance, fabrication, and recycling, etc. Over decades, a variety of steels are developed and widely used in the car body, from low carbon steel to IF steel, BH steel,展开更多
文摘The structural performance of perforated steel columns(PSCs)is significantly more complex than the one of solid web I-shaped elements under the diversity of blast loading scenarios.The damage criterion of PSCs is not only related to initial deformation response during the blast but also the residual axial load capacity and it can be considered as a reliable index after the blast effects.Therefore,the PSCs damages will be studied in two stages;direct and post blast effects.In the present study,the dynamic response of PSCs was numerically evaluated under different levels of blast threats using LS-DYNA software.Extensive explicit finite element(FE)analyses are carried out to investigate the effect of various parameters,such as web opening shapes,boundary conditions and strengthening details on the damage index and toughness of the PSCs compared to the parent steel sections.The results of the comparative study show that the damage and toughness decrease when the support condition changes from pinned to fixed ends through the two stages of loadings.PSCs give high toughness compared to its parent sections during blast shock stage while,a remarkable decrease in toughness is observed during the application of axial gravity after blast shock.Furthermore,the web opening shapes have slight effects on the global dynamic behavior of PSCs,particularly in terms of residual capacity.On the contrary,the retrofitting strategy using both closed holes at end and vertical stiffeners have an effective enhancement to get higher toughness in case of the extreme blasts.
基金National Natural Science Foundation of China under Grant No.51778248Natural Science Foundation of Fujian Province under Grant No.2018J01075+1 种基金Education and Science Project for Young and Middle-aged Teacher of Fujian Province under Grant No.JAT200825Research Trained Fund for Outstanding Young Researcher in Higher Education Institutions of Fujian Province。
文摘To enable rapid recovery of a steel bridge column after an earthquake,a novel tubular-section steel bridge column equipped with low-yield-point(LYP)steel tubular plates in the root replaceable pier is proposed.For the purpose of discussing the seismic behavior of the novel steel bridge column,quasi-static tests and finite element simulation analyses of the specimens were carried out.The effects of parameters such as the axial compression ratio,eccentricity,and thickness and material strength of the tubular plate in the energy-dissipating zone are discussed.Experimental results from seven specimens that were subjected to four failure modes are presented.The damage to the quasi-static specimens is localized to the replaceable energy-dissipating pier.The seismic behavior of the novel steel bridge columns is significantly influenced by the axial compression ratio and eccentricity of specimens.Numerical results show that the high stress area of the specimens is mainly concentrated in the connection zone between the LYP steel tubular plate and the bottom steel plate,which is consistent with the position of the quasi-static specimen when it was prone to fracture.Finally,a calculation formula is proposed to facilitate the capacity prediction of this new steel tubular bridge column under repeated loading.
文摘During the modernization or rehabilitation activity,the demolished structural waste causes large soil pollution and unavailability of natural aggregate is the big concern for the construction industry.Therefore,this manuscript deals with the Composite Steel Circular Column(CSCC)with Recycled Aggregate concrete(RAC)as infill is partly used,with the replacement of 25%and 50%in M30 grade of Concrete.And internal reinforcement steel is fully replaced by rolled steel tubes(circular and square)with varied thickness,ISA-unequal angle.Around 14 specimens are cast and examined under axial load for analysis of the deflection characteristics,the load-bearing capacity along with its buckling behavior.The experimental values are estimated through LVDT(linear variable differential transducer)at 3-phase.The curve of load-deflection is drawn with the load pattern.From the date interpretation,it is found column made of 50%-RAC has more than 25%-RAC.
基金Supported by National Natural Science Foundation of China(No.50778174).
文摘Experimental investigation into impact-resistant behavior of reactive powder concrete (RPC)-filled steel tubular columns was conducted,and dynamic response of the columns under axial impact loading was studied by means of numerical simulation method.Increase coefficient of load carrying capacity and ratio of load carrying capacity between steel tube and RPC core of col-umns were obtained.
基金Projects(51378077,51478047,51778066)supported by the National Natural Science Foundation of ChinaProject(D20151304)supported by Science and Technology Research Project of Education Department of Hubei Province,ChinaProject(2017CFA070)supported by Hubei Provincial Natural Science Foundation,China
文摘The seismic behavior of planar frames with concrete-filled T-section columns to steel beam was experimentally and numerically studied. A finite element analysis (FEA) model was developed to investigate the engineering properties of the planar frames. Two 1:2.5 reduced-scale specimens of T-section concrete-filled steel tubular column and steel beam of single-story and single-bay plane frames were designed and fabricated based on the design principles of strong-column, weak-beam and stronger-joint. One three-dimensional entity model of the investigated frame structure was built using a large-scale nonlinear finite-element analysis software ABAQUS. Experimental results show that the axial compression ratio has no effect on the failure mode of the structure, while with the increase of axial compression ratio and the dissipated energy ability increasing, the structural ductility decreased. The results from both experiments and simulations agree with each other, which verifies the validity and accuracy of the developed finite element model. Furthermore, the developed finite element model helps to reflect the detailed stress status of the investigated frame at different time and different positions.
基金Projects(51178174,51308201)supported by the National Natural Science Foundation of China
文摘Eight concrete-filled steel tubular(CFT) columns were tested subjected to cyclic loading under constant axial load. Experimental parameters included axial compression ratio, loading sequences, and strength of concrete and steel. The seismic performance of CFT columns and failure modes were analyzed. The test results show that different axial load ratios and loading sequences have effects on the load carrying capacity, ductility and energy dissipation capacity of CFT columns, as well as the failure modes of the CFT columns. The failure pattern can be categorized into two types: local buckling failure of steel tube in compression zone, and low cycle fatigue tearing rupture failure of steel tube. The seismic behavior was evaluated through the energy index obtained from each cycle.
文摘This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. The method of 3D-VLE was developed to analyze the effects of concrete creep behavior on CFT structures. After the evaluation of the parameters in the proposed creep model, experimental measurements of two prestressed reinforced concrete beams were used to investigate the creep phenomenon of three CFT columns under long-term axial and eccentric load was investigated. The experimentally obtained time-dependent creep behaviour accorded well with the cu~'es obtained from the proposed method. Many factors (such as ratio of long-term load to strength, slenderness ratio, steel ratio, and eccentricity ratio) were considered to obtain the regularity of influence of concrete creep on CFT structures. The analytical results can be consulted in the engineering practice and design.
基金National Natural Science Foundation of China under Grant No.51148009National Natural Science Foundation of China under Grant No.50978005Project High-level Personnel in Beijing under Grant No.PHR20100502
文摘A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements - the CFST columns and SP deep beams - to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.
基金This work was financially supported by the Fundamental Research Funds for the Central Universities(JUSRP11819),National Natural Science Foundation of China through Grant 51378240,2015 Jiangsu provincial building energy saving and construction industry science and technology project,2016 Jiangsu provincial construction industry modernization base project.
文摘A kind of concrete-filled lattice rectangular steel tube(CFLRST)column was put forward.The numerical simulation was modeled to analyze the mechanical characteristic of CFLRST column.By comparing the load-deformation curves from the test results,the rationality and reliability of the finite element model has been confirmed,moreover,the change of the section stiffness and stress in the forcing process and the ultimate bearing capacity of the column were analyzed.Based on the model,the comparison of ultimate bearing capacity and ductility between CFLRST column and reinforced concrete(RC)column were also analyzed.The results of the finite element analysis show that the loading process of CFLRST column consists of elastic stage,yield stage and failure stage.The failure modes are mainly strength failure and failure of elastoplastic instability.CFLRST column has higher bearing capacities in comparison with reinforced concrete columns with the same steel ratio.In addition,the stiffness degeneration of CFLRST column is slower than RC column and CFLRST column has good ductility.
基金National Science and Technology Support Program of China ( No. 2009BAG15B02) Key Pro-grams for Science and Technology Development of Chinese Transportation Industry( No. 2008-353-332-180)
文摘Taizhou Yangtze River Bridge is the first three-pylon two-span suspension bridge in the world. The middle pylon adopts deep water caisson foundation. The superstructure of the middle pylon employs herringbone shape along the bridge, and portal shape in the transverse direction for the first time in China. In this paper, the basic construction procedure, equipment, construction steps, the key construction technologies and methods of steel pylon are introduced.
基金Project(KJZH14220)supported by the Achievement Transfer Program of Institutions of Higher Education in Chongqing,China
文摘In order to study the dynamic response of concrete-filled steel tube(CFST) columns against blast loads,a simplified model is established utilizing the equivalent single-degree-of-freedom(SDOF) method,which considers the non-uniform distribution of blast loads on real column and the axial load-bending moment(P-M) interaction of CFST columns.Results of the SDOF analysis compare well with the experimental data reported in open literature and the values from finite element modeling(FEM) using the program LS-DYNA.Further comparisons between the results of SDOF and FEM analysis show that the proposed model is effective to predict the dynamic response of CFST columns with different blast conditions and column details.Also,it is found that the maximum responses of the columns are overestimated when ignoring the non-uniformity of blast loads,and that neglecting the effect of P-M interaction underestimates the maximum response of the columns with large axial load ratio against close range blast.The proposed SDOF model can be used in the design of the blast-loaded CFST columns.
文摘This article presents an experimental and numerical investigation on the strength and performance of intermediate length rack column sections with C-stitches under axial compression. The test program consisted of 10 axial concentric compression tests on columns with and without C-stitches under pin end conditions for two different geometric lengths. Finite element (FE) models were developed using commercial FE package ABAQUS considering material and geometric nonlinearities as well as initial geometric imperfections. The elastic buckling properties of the section were calculated using readily available linear elastic buckling analysis tools based on Generalized Beam Theory (GBT) and Finite Strip Method (FSM). Obtained FE results were compared with those obtained experimentally, and once verified the developed FE modeling technique was used to carry out a parametric study to examine changes in structural response due to variations in length, depth and spacing of C-stitches. Observed influences of C-stitches on the behavior and resistance of the considered columns were carefully analyzed, and key design aspects are presented herein.
基金Supported by the National Natural Science Foundation of China(Grant Nos.51578001,51608003,and 51878002)Natural Science Foundation granted by Department of Education,Anhui Province(No.KJ2015ZD10)+2 种基金Key Research and Development Plan of Anhui Province(No.1704a0802131)the Outstanding Young Talent Support Program of Anhui Province(No.gxyqZD2016072)This work was also supported by the Graduate Innovation Research Foundation granted by Anhui University of Technology(Nos.2016097,2016094).
文摘As a typical compression member,the concrete-filled steel tube has been widely used in civil engineering structures.However,little research on recycled self-compacting concrete flled circular steel tubular(RSCCFCST)columns subjected to eccentric load was reported.In this study,21 specimens were designed and experimental studies on the stress-strain relationship of were carried out to study the mechanical behaviors.Recycled coarse aggregate replacement ratio,concrete strength grade,length to diameter ratio and eccentric distance of specimens were considered as the main experimental parameters to carry out eccentric compression tests.The corresponding stress-strain relationship curves were used to analyze the influence of concerned parameters on ecentric load-bearing capacity of RSCCFCST columns.The experimental results show that the strain of the eccentric compression stress-strain curves increase with the increase of recycled coarse aggregate replacement ratio and concrete strength grade.With increase of eccentric distance,the ductility of specimens increases while the bearing capacity decreases.Moreover,a phenomenological model of RSCCFCST columns is proposed,which exhibits versatile ability to capture the process during loading.The present study is expected to further understanding the behaviors and to provide guidance of RSCCFCST columns in design and engineering applications.
文摘It is believed that steels are still the most important materials for automobile in the foreseeable future because of the advantages in performance, cost, tolerance, fabrication, and recycling, etc. Over decades, a variety of steels are developed and widely used in the car body, from low carbon steel to IF steel, BH steel,