The application of ultra-high performance concrete(UHPC)as a covering layer for steel bridge decks has gained widespread popularity.By employing a connection without a shear connector between the steel plate and UHPC,...The application of ultra-high performance concrete(UHPC)as a covering layer for steel bridge decks has gained widespread popularity.By employing a connection without a shear connector between the steel plate and UHPC,namely,the sandblasted interface and the epoxy adhesive with sprinkled basalt aggregate interface,the installation cannot only be simplified but also the stress concentration resulting from the welded shear connectors can be eliminated.This study develops constitutive models for these two interfaces without shear connectors,based on the interfacial pull-off and push-out tests.For validation,three-point bending tests on the steel-UHPC composite plates are conducted.The results indicated that the proposed bilinear traction-separation model for the sandblasted interface and the trapezoidal traction-separation model for the epoxy adhesive with sprinkled basalt aggregate interface can generally calibrate the interfacial behavior.However,the utilization of the experimentally determined pure shear strength underestimates the load-carrying capacity of the composite plates in the case of three-point bending tests.By recalling the Mohr-Coulomb criterion,this underestimation is attributed to the enhancement of the interface shear strength by the presence of normal stress.展开更多
薄壁薄板结构是超高性能混凝土(UHPC)一个重要应用,而厚度减小会影响到钢纤维的取向和分布,并直接影响力学性能,如抗弯性能等。对5~50 mm UHPC薄板的抗弯性能进行研究,并通过三维视频显微镜和图像法研究由厚度引起的纤维分布取向变化,...薄壁薄板结构是超高性能混凝土(UHPC)一个重要应用,而厚度减小会影响到钢纤维的取向和分布,并直接影响力学性能,如抗弯性能等。对5~50 mm UHPC薄板的抗弯性能进行研究,并通过三维视频显微镜和图像法研究由厚度引起的纤维分布取向变化,发现板厚大于20 mm后所能承受的破坏荷载快速增加,但抗弯强度随板厚减小而增加,纤维取向性(沿长度方向)也逐渐增强,尤其是对厚度为5~10 mm的薄板。抗弯强度变化主要取决于钢纤维取向性和厚度因子,而后者对超薄板影响较大。展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52108168&52208398).
文摘The application of ultra-high performance concrete(UHPC)as a covering layer for steel bridge decks has gained widespread popularity.By employing a connection without a shear connector between the steel plate and UHPC,namely,the sandblasted interface and the epoxy adhesive with sprinkled basalt aggregate interface,the installation cannot only be simplified but also the stress concentration resulting from the welded shear connectors can be eliminated.This study develops constitutive models for these two interfaces without shear connectors,based on the interfacial pull-off and push-out tests.For validation,three-point bending tests on the steel-UHPC composite plates are conducted.The results indicated that the proposed bilinear traction-separation model for the sandblasted interface and the trapezoidal traction-separation model for the epoxy adhesive with sprinkled basalt aggregate interface can generally calibrate the interfacial behavior.However,the utilization of the experimentally determined pure shear strength underestimates the load-carrying capacity of the composite plates in the case of three-point bending tests.By recalling the Mohr-Coulomb criterion,this underestimation is attributed to the enhancement of the interface shear strength by the presence of normal stress.
文摘薄壁薄板结构是超高性能混凝土(UHPC)一个重要应用,而厚度减小会影响到钢纤维的取向和分布,并直接影响力学性能,如抗弯性能等。对5~50 mm UHPC薄板的抗弯性能进行研究,并通过三维视频显微镜和图像法研究由厚度引起的纤维分布取向变化,发现板厚大于20 mm后所能承受的破坏荷载快速增加,但抗弯强度随板厚减小而增加,纤维取向性(沿长度方向)也逐渐增强,尤其是对厚度为5~10 mm的薄板。抗弯强度变化主要取决于钢纤维取向性和厚度因子,而后者对超薄板影响较大。