The flow field near a spur dike such as down flow and horseshoe vortex system(HVS)are susceptible to the topographic changes in the local scouring process,resulting in variation of the sediment transport with time.In ...The flow field near a spur dike such as down flow and horseshoe vortex system(HVS)are susceptible to the topographic changes in the local scouring process,resulting in variation of the sediment transport with time.In this study,large eddy simulations with fixed-bed at different scouring stages were conducted to investigate the changes in flow field.The results imply that the bed deformation leads to an increase in flow rate per unit area,which represent the capability of sediment transportation by water,in the scour hole.Moreover,the intensity of turbulent kinetic energy and bimodal motion near the sand bed induced by the HVS were also varied.However,the peak moments between the two sediment transport mechanisms were different.Hence,understanding the complex feedback mechanism between topography and flow field is essential for the local scour problem.展开更多
The flow field around a spur dike has three-dimensional characteristics. In order to analyze the influence of the flow field on pollutant transport, based on a compressive volume of fluid (VOF) scheme, the three-dim...The flow field around a spur dike has three-dimensional characteristics. In order to analyze the influence of the flow field on pollutant transport, based on a compressive volume of fluid (VOF) scheme, the three-dimensional transient compressive pollutant transport model (CPTM) and the cubic equation (CE) bounded differencing scheme were developed. For the calibration and validation of CPTM, laboratory experiments were carried out in a flume with a non-submerged spur dike. The spur dike was angled at 60°, 90°, and 120° from the upstream direction. The simulation results agreed with the experimental results. The simulations and experiments showed that the distribution of pollutant concentration was determined by circumfluence and the main flow. Concentration decay in the circumfluenee zone was slower than that in the main flow. Downstream of the spur dike, the concentration fluctuation became intensive with the increase of spur dike angle.展开更多
Widely applied in maintaining estuarial waterway depth, the spur dike has played an important role in currents and sediment exchange between channel and shoal and sediment back-silting in the channel. Through establis...Widely applied in maintaining estuarial waterway depth, the spur dike has played an important role in currents and sediment exchange between channel and shoal and sediment back-silting in the channel. Through establishing a generalized physical model at a bifurcated estuary and conducting current tests under the joint action of runoff and tide, the influence of the spur dike length on current exchange between channel and shoal is analyzed. Results show that when the spur dike length reaches a certain value, the direction of the flow velocity shear front between the channel and shoal will change. The longer the spur dike, the larger the transverse fluctuating velocity at the peak of flood in the channel shoal exchange area, while the transport of the transverse hydrodynamics is obvious in the process of flood. There is an optimum length of spur dike when the shear stress in the channel and the longitudinal velocity in flood and ebb reach the maximum, and the flow velocity will decrease when the spur dike length is smaller or larger than the optimum. For a certain length of spur dike, the larger the channel shoal elevation difference, the larger the peak longitudinal flow velocity in the middle of the navigation channel in flood and ebb. However, the transverse flow velocity will first decrease and then increase. The transverse transportation is obvious when the channel shoal elevation difference increases.展开更多
Spur dike is one of the river training structures. This work presented a numerical simulation of flow field and three-dimensional velocity around a T-shaped spur dike located in bend using SSIIM model. The main object...Spur dike is one of the river training structures. This work presented a numerical simulation of flow field and three-dimensional velocity around a T-shaped spur dike located in bend using SSIIM model. The main objective of this work is to investigate the three-dimensional velocities and streamlines at transverse and longitudinal sections and plan views around the T-shaped spur dike in different submergence ratios(0, 5%, 15%, 25% and 50%). It is concluded that by increasing the submergence ratio from 5% to 50%, the maximum of scour is reduced; the maximum of longitudinal velocity increases by 7.7% and occurs at the water surface in spur dike axis. Near the bed, the maximum of vertical velocity occurs at the end of spur wing. By analyzing the streamlines at transverse sections, the followings were deduced for different submergence ratios: different dimensions and different positions of vortices around the spur dike.展开更多
In the present research,by using a numerical model,some analyses were performed on flows around a T-shape spur dike and a support structure located at its upstream under different wing to length ratios of T-shape spur...In the present research,by using a numerical model,some analyses were performed on flows around a T-shape spur dike and a support structure located at its upstream under different wing to length ratios of T-shape spur dike in the order of 0.25,0.50,0.75 and 1.00.In order to verify numerical model,physical model data were used in presence of a single T shape spur dike.Results from numerical model are desirably in agreement with those of physical one because the regression between both data is 0.86 up to 0.92.In this research,all hydraulic parameters of flows,streamlines and dimensions of flow separation zones were studied in order to select the most practical model.Increased W/L results in 7%–12%increase in the length of flow separation zone and in 2%increase in the width of this zone compared to W/L=0.25.展开更多
为了探究北江丁坝群对鱼类栖息地的影响,以北江干流英德段为研究区域,采用非结构化网格有限体积法(FVCOM),计算了不同流量条件下鲫鱼栖息地加权可利用面积(WUA),得到鱼类最适生态流量值。基于鱼类最适生态流量值开展了丁坝群对流速、水...为了探究北江丁坝群对鱼类栖息地的影响,以北江干流英德段为研究区域,采用非结构化网格有限体积法(FVCOM),计算了不同流量条件下鲫鱼栖息地加权可利用面积(WUA),得到鱼类最适生态流量值。基于鱼类最适生态流量值开展了丁坝群对流速、水深、鱼类栖息地适宜性指数和水力生境多样性变化的影响。结果表明:当上游为最适生态流量350 m 3/s时,丁坝群使得WUA由7.142 km 2降低至5.692 km 2;丁坝群会显著改变河道中心和近岸的流速,导致流速适宜度指数下降,进而降低整个研究区域的栖息地适宜度指数;丁坝群的水位壅高作用有限,最大壅高水深为0.38 m,对水深适宜度指数分布影响较小;在丁坝群作用下,栖息地可接受性高的面积占比由52.151%降至32.271%,降低了鱼类栖息地质量;丁坝群造成水力生境多样性辛普森指数由0.547降至0.529,使得研究区域内的水力生境多样性略微减少。研究成果可为北江鱼类栖息地保护和生态恢复提供参考。展开更多
基金supported by Shenzhen Science and Technology Program(Grant No.JCYJ20220818102012024)Hong Kong Research Grants Council(Grant Nos.T21–602/16-R and RGC R5037–18)。
文摘The flow field near a spur dike such as down flow and horseshoe vortex system(HVS)are susceptible to the topographic changes in the local scouring process,resulting in variation of the sediment transport with time.In this study,large eddy simulations with fixed-bed at different scouring stages were conducted to investigate the changes in flow field.The results imply that the bed deformation leads to an increase in flow rate per unit area,which represent the capability of sediment transportation by water,in the scour hole.Moreover,the intensity of turbulent kinetic energy and bimodal motion near the sand bed induced by the HVS were also varied.However,the peak moments between the two sediment transport mechanisms were different.Hence,understanding the complex feedback mechanism between topography and flow field is essential for the local scour problem.
基金supported by the Eleventh Five-year Scientific and Technical Plan (Grant No. 2006BAK01B02-03)the Course Foundation of Nanjing University of Technology (Grant No. 39714004)
文摘The flow field around a spur dike has three-dimensional characteristics. In order to analyze the influence of the flow field on pollutant transport, based on a compressive volume of fluid (VOF) scheme, the three-dimensional transient compressive pollutant transport model (CPTM) and the cubic equation (CE) bounded differencing scheme were developed. For the calibration and validation of CPTM, laboratory experiments were carried out in a flume with a non-submerged spur dike. The spur dike was angled at 60°, 90°, and 120° from the upstream direction. The simulation results agreed with the experimental results. The simulations and experiments showed that the distribution of pollutant concentration was determined by circumfluence and the main flow. Concentration decay in the circumfluenee zone was slower than that in the main flow. Downstream of the spur dike, the concentration fluctuation became intensive with the increase of spur dike angle.
基金financially supported by the National Natural Science Foundation of China(Grant No.51479122)the National Key Research and Development Program of China(Grant No.2017YFC0405400)
文摘Widely applied in maintaining estuarial waterway depth, the spur dike has played an important role in currents and sediment exchange between channel and shoal and sediment back-silting in the channel. Through establishing a generalized physical model at a bifurcated estuary and conducting current tests under the joint action of runoff and tide, the influence of the spur dike length on current exchange between channel and shoal is analyzed. Results show that when the spur dike length reaches a certain value, the direction of the flow velocity shear front between the channel and shoal will change. The longer the spur dike, the larger the transverse fluctuating velocity at the peak of flood in the channel shoal exchange area, while the transport of the transverse hydrodynamics is obvious in the process of flood. There is an optimum length of spur dike when the shear stress in the channel and the longitudinal velocity in flood and ebb reach the maximum, and the flow velocity will decrease when the spur dike length is smaller or larger than the optimum. For a certain length of spur dike, the larger the channel shoal elevation difference, the larger the peak longitudinal flow velocity in the middle of the navigation channel in flood and ebb. However, the transverse flow velocity will first decrease and then increase. The transverse transportation is obvious when the channel shoal elevation difference increases.
文摘Spur dike is one of the river training structures. This work presented a numerical simulation of flow field and three-dimensional velocity around a T-shaped spur dike located in bend using SSIIM model. The main objective of this work is to investigate the three-dimensional velocities and streamlines at transverse and longitudinal sections and plan views around the T-shaped spur dike in different submergence ratios(0, 5%, 15%, 25% and 50%). It is concluded that by increasing the submergence ratio from 5% to 50%, the maximum of scour is reduced; the maximum of longitudinal velocity increases by 7.7% and occurs at the water surface in spur dike axis. Near the bed, the maximum of vertical velocity occurs at the end of spur wing. By analyzing the streamlines at transverse sections, the followings were deduced for different submergence ratios: different dimensions and different positions of vortices around the spur dike.
文摘In the present research,by using a numerical model,some analyses were performed on flows around a T-shape spur dike and a support structure located at its upstream under different wing to length ratios of T-shape spur dike in the order of 0.25,0.50,0.75 and 1.00.In order to verify numerical model,physical model data were used in presence of a single T shape spur dike.Results from numerical model are desirably in agreement with those of physical one because the regression between both data is 0.86 up to 0.92.In this research,all hydraulic parameters of flows,streamlines and dimensions of flow separation zones were studied in order to select the most practical model.Increased W/L results in 7%–12%increase in the length of flow separation zone and in 2%increase in the width of this zone compared to W/L=0.25.
文摘为了探究北江丁坝群对鱼类栖息地的影响,以北江干流英德段为研究区域,采用非结构化网格有限体积法(FVCOM),计算了不同流量条件下鲫鱼栖息地加权可利用面积(WUA),得到鱼类最适生态流量值。基于鱼类最适生态流量值开展了丁坝群对流速、水深、鱼类栖息地适宜性指数和水力生境多样性变化的影响。结果表明:当上游为最适生态流量350 m 3/s时,丁坝群使得WUA由7.142 km 2降低至5.692 km 2;丁坝群会显著改变河道中心和近岸的流速,导致流速适宜度指数下降,进而降低整个研究区域的栖息地适宜度指数;丁坝群的水位壅高作用有限,最大壅高水深为0.38 m,对水深适宜度指数分布影响较小;在丁坝群作用下,栖息地可接受性高的面积占比由52.151%降至32.271%,降低了鱼类栖息地质量;丁坝群造成水力生境多样性辛普森指数由0.547降至0.529,使得研究区域内的水力生境多样性略微减少。研究成果可为北江鱼类栖息地保护和生态恢复提供参考。