The mixed-dimensional van der Waals (vdW) heterostructure is a promising building block for strained electronics and optoelectronics because it avoids the bond fracture and atomic reconstruction under strain. We pro...The mixed-dimensional van der Waals (vdW) heterostructure is a promising building block for strained electronics and optoelectronics because it avoids the bond fracture and atomic reconstruction under strain. We propose a novel mixed-dimensional vdW heterostructure between two-dimensional graphene and a one-dimensional ZnO nanowire for high-performance photosensing. By utilizing the piezoelectric properties of ZnO, strain modulation was accomplished in the mixed-dimensional vdW heterostructure to optimize the device performance. By combining the ultrahigh electrons transfer speed in graphene and the extremely long life time of holes in ZnO, an outstanding responsivity of 1.87 ×10^5 A/W was achieved. Under a tensile strain of only 0.44% on the ZnO nanowire, the responsivity was enhanced by 26%. A competitive model was proposed, in which the performance enhancement is due to the efficient promotion of the injection of photogenerated electrons from the ZnO into the graphene caused by the strain-induced positive piezopotential. Our study provides a strain-engineering strategy for controlling the behavior of the photocarriers in the mixed-dimensional vdW heterostructure, which can be also applied to other similar systems in the future.展开更多
Semiconducting piezoelectricα-In_(2)Se_(3) and 3R MoS_(2) have attracted tremendous attention due to their unique electronic properties.Artificial van der Waals(vdWs)hetero-structures constructed withα-In_(2)Se_(3)a...Semiconducting piezoelectricα-In_(2)Se_(3) and 3R MoS_(2) have attracted tremendous attention due to their unique electronic properties.Artificial van der Waals(vdWs)hetero-structures constructed withα-In_(2)Se_(3)and 3R MoS_(2)flakes have shown promising applications in optoelectronics and photocatal-ysis.Here,we present the first flexibleα-In_(2)Se_(3)/3R MoS_(2)vdWs p-n heterojunction devices for photodetection from the visible to near infrared region.These heterojunction devices exhibit an ultrahigh photoresponsivity of 2.9×10^(3)A W^(−1) and a substantial specific detectivity of 6.2×10^(10) Jones under a compressive strain of−0.26%.The photocurrent can be increased by 64%under a tensile strain of+0.35%,due to the heterojunction energy band modulation by piezoelectric polarization charges at the hetero-junction interface.This work demonstrates a feasible approach to enhancement of α-In_(2)Se_(3)/3R MoS_(2) photoelectric response through an appropriate mechanical stimulus.展开更多
We investigate the mechanism for the improvement of p-type doping efficiency in Mg-Al0.14Ga0.86N/GaN super- lattices (SLs). It is shown that the hole concentration of SLs increases by nearly an order of magnitude, f...We investigate the mechanism for the improvement of p-type doping efficiency in Mg-Al0.14Ga0.86N/GaN super- lattices (SLs). It is shown that the hole concentration of SLs increases by nearly an order of magnitude, from 1.1 × 1017 to 9.3×1017 cm-3, when an AlN interlayer is inserted to modulate the strains. SchrSdinger-Poisson self-consistent calculations suggest that such an increase could be attributed to the reduction of donor-like defects caused by the strain modulation induced by the AlN interlayer. Additionally, the donor-acceptor pair emission exhibits a remarkable decrease in intensity of the cathodoluminescence spectrumlfor SLs with an A1N interlayer. This supports the theoretical calculations and indicates that the strain modulation of SLs could be beneficial to the donor-like defect suppression as well as the p-type doping efficiency improvement.展开更多
Organic semiconductors are inherently soft,making it possible to increase their mobilities by strains.Such a unique feature can be exploited directly in flexible electronics for improved device performance.The 2,7-dio...Organic semiconductors are inherently soft,making it possible to increase their mobilities by strains.Such a unique feature can be exploited directly in flexible electronics for improved device performance.The 2,7-dioctyl[1]benzothieno[3,2-b][1]-benzothiophene derivative,C8-BTBT is one of the best small-molecule hole transport materials.Here,we demonstrated its band structure modulation under strains by combining the non-equilibrium molecular dynamics simulations and first-principles calculations.We found that the C8-BTBT lattice undergoes a transition from monoclinic to triclinic crystal system at the temperature below 160 K.Both shear and uniaxial strains were applied to the low-temperature triclinic phase of C8-BTBT,and polymorphism was identified in the shear process.The band width enhancement is up to 8%under 2%of compressive strain along the x direction,and 14%under 4%of tensile strain along the y direction.The band structure modulation of C8-BTBT can be well related to its herringbone packing motifs,where the edge to face and edge to edge pairs constitute two-dimensional charge transport pathways and their electronic overlaps determine the band widths along the two directions respectively.These findings pave the way for utilizing strains towards improved performance of organic semiconductors on flexible substrates,for example,by bending the substrates.展开更多
Electroabsorption modulators(EAMs) with negative chirp and very low insertion loss are numerically designed with asymmetric intra-step-barrier coupled double strained quantum wells(AICD-SQWs) based on InGaAlAs mat...Electroabsorption modulators(EAMs) with negative chirp and very low insertion loss are numerically designed with asymmetric intra-step-barrier coupled double strained quantum wells(AICD-SQWs) based on InGaAlAs material.For this purpose,the electroabsorption coefficient is calculated over a range of wells layer strain from compressive(CS) to tensile(TS).The chirp parameter and insertion loss for TE input light polarization are evaluated from the calculated electroabsorption spectra,and their Kramers-Kronig transformed refractive index changes.The results of the numerical simulation show that the best range of left and right wells strain for EAMs based on AICD-SQWs with negative chirp and very low insertion loss are from 0.032%to 0.05%(TS) and-0.52% to-0.50%(CS),respectively.展开更多
基金Acknowledgements This work was supported by the National Basic Research Program of China (No. 2013CB932602), the National Key Research and Development Program of China (No. 2016YFA0202701), the Program of Introducing Talents of Discipline to Universities (No. B14003), National Natural Science Foundation of China (Nos. 51672026, 51602020, 51527802, and 51232001), China Postdoctoral Science Foundation (Nos. 2015M580981 and 2016T90033), Beijing Municipal Science & Technology Commission, and the State Key Laboratory for Advanced Metals and Materials (No. 2016Z-06), and the Fundamental Research Funds for the Central Universities (Nos. FRF-TP-15-075A1, FRF-BR-15-036A, and FRF-AS-15-002).
文摘The mixed-dimensional van der Waals (vdW) heterostructure is a promising building block for strained electronics and optoelectronics because it avoids the bond fracture and atomic reconstruction under strain. We propose a novel mixed-dimensional vdW heterostructure between two-dimensional graphene and a one-dimensional ZnO nanowire for high-performance photosensing. By utilizing the piezoelectric properties of ZnO, strain modulation was accomplished in the mixed-dimensional vdW heterostructure to optimize the device performance. By combining the ultrahigh electrons transfer speed in graphene and the extremely long life time of holes in ZnO, an outstanding responsivity of 1.87 ×10^5 A/W was achieved. Under a tensile strain of only 0.44% on the ZnO nanowire, the responsivity was enhanced by 26%. A competitive model was proposed, in which the performance enhancement is due to the efficient promotion of the injection of photogenerated electrons from the ZnO into the graphene caused by the strain-induced positive piezopotential. Our study provides a strain-engineering strategy for controlling the behavior of the photocarriers in the mixed-dimensional vdW heterostructure, which can be also applied to other similar systems in the future.
基金MOE AcRF Tier2(2018-T2-2-005),MOE AcRF Tier1(2018-T1-005-001)A^(*)STAR AME IRG Grant SERC A1983c0027,Singapore.
文摘Semiconducting piezoelectricα-In_(2)Se_(3) and 3R MoS_(2) have attracted tremendous attention due to their unique electronic properties.Artificial van der Waals(vdWs)hetero-structures constructed withα-In_(2)Se_(3)and 3R MoS_(2)flakes have shown promising applications in optoelectronics and photocatal-ysis.Here,we present the first flexibleα-In_(2)Se_(3)/3R MoS_(2)vdWs p-n heterojunction devices for photodetection from the visible to near infrared region.These heterojunction devices exhibit an ultrahigh photoresponsivity of 2.9×10^(3)A W^(−1) and a substantial specific detectivity of 6.2×10^(10) Jones under a compressive strain of−0.26%.The photocurrent can be increased by 64%under a tensile strain of+0.35%,due to the heterojunction energy band modulation by piezoelectric polarization charges at the hetero-junction interface.This work demonstrates a feasible approach to enhancement of α-In_(2)Se_(3)/3R MoS_(2) photoelectric response through an appropriate mechanical stimulus.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61076012,61076013,and 51102003)the National High Technology Research and Development Program of China (Grant No. 2007AA03Z403)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No. 20100001120014)the National Basic Research Program of China (Grant No. 2012CB619304)
文摘We investigate the mechanism for the improvement of p-type doping efficiency in Mg-Al0.14Ga0.86N/GaN super- lattices (SLs). It is shown that the hole concentration of SLs increases by nearly an order of magnitude, from 1.1 × 1017 to 9.3×1017 cm-3, when an AlN interlayer is inserted to modulate the strains. SchrSdinger-Poisson self-consistent calculations suggest that such an increase could be attributed to the reduction of donor-like defects caused by the strain modulation induced by the AlN interlayer. Additionally, the donor-acceptor pair emission exhibits a remarkable decrease in intensity of the cathodoluminescence spectrumlfor SLs with an A1N interlayer. This supports the theoretical calculations and indicates that the strain modulation of SLs could be beneficial to the donor-like defect suppression as well as the p-type doping efficiency improvement.
基金supported by the National Natural Science Foundation of China(21273124,21290190,21290191 and 91333202)the Innovative Research Groups of the National Science Foundation of China(21421064)the National Basic Research Program of China(2013CB933503 and 2015CB655002)
文摘Organic semiconductors are inherently soft,making it possible to increase their mobilities by strains.Such a unique feature can be exploited directly in flexible electronics for improved device performance.The 2,7-dioctyl[1]benzothieno[3,2-b][1]-benzothiophene derivative,C8-BTBT is one of the best small-molecule hole transport materials.Here,we demonstrated its band structure modulation under strains by combining the non-equilibrium molecular dynamics simulations and first-principles calculations.We found that the C8-BTBT lattice undergoes a transition from monoclinic to triclinic crystal system at the temperature below 160 K.Both shear and uniaxial strains were applied to the low-temperature triclinic phase of C8-BTBT,and polymorphism was identified in the shear process.The band width enhancement is up to 8%under 2%of compressive strain along the x direction,and 14%under 4%of tensile strain along the y direction.The band structure modulation of C8-BTBT can be well related to its herringbone packing motifs,where the edge to face and edge to edge pairs constitute two-dimensional charge transport pathways and their electronic overlaps determine the band widths along the two directions respectively.These findings pave the way for utilizing strains towards improved performance of organic semiconductors on flexible substrates,for example,by bending the substrates.
文摘Electroabsorption modulators(EAMs) with negative chirp and very low insertion loss are numerically designed with asymmetric intra-step-barrier coupled double strained quantum wells(AICD-SQWs) based on InGaAlAs material.For this purpose,the electroabsorption coefficient is calculated over a range of wells layer strain from compressive(CS) to tensile(TS).The chirp parameter and insertion loss for TE input light polarization are evaluated from the calculated electroabsorption spectra,and their Kramers-Kronig transformed refractive index changes.The results of the numerical simulation show that the best range of left and right wells strain for EAMs based on AICD-SQWs with negative chirp and very low insertion loss are from 0.032%to 0.05%(TS) and-0.52% to-0.50%(CS),respectively.