Amplifying drought stress and high precipitation variability impair dryland wheat production.These problems can potentially be minimized by using plastic mulch(PM)or straw mulch(SM).Therefore,wheat grain yield,soil wa...Amplifying drought stress and high precipitation variability impair dryland wheat production.These problems can potentially be minimized by using plastic mulch(PM)or straw mulch(SM).Therefore,wheat grain yield,soil water storage,soil temperature and water-use productivity of PM and SM treatments were compared with no mulch(CK)treatment on dryland wheat over a period of eight seasons.Compared to the CK treatment,PM and SM treatments on average significantly increased grain yield by 12.6 and 10.5%,respectively.Compared to the CK treatment,SM treatment significantly decreased soil daily temperature by 0.57,0.60 and 0.48℃ for the whole seasons,growing periods and summer fallow periods,respectively.In contrast,compared to the CK treatment,PM treatment increased soil daily temperature by 0.44,0.51 and 0.27℃ for the whole seasons,growing periods and summer fallow periods,respectively.Lower soil temperature under SM allowed greater soil water storage than under PM.Soil water storage pre-seeding was 17%greater under the SM than under the PM treatment.Soil water storage post-harvest was similar for the PM and SM treatments,but evapotranspiration was 4.5%higher in the SM than in the PM treatment.Consequently,water-use productivity was 6.6%greater under PM than under the SM treatment.Therefore,PM treatment increased dryland wheat yield and water-use productivity,while straw mulch increased soil water storage.展开更多
Water is the key factor limiting dryland wheat grain yield.Mulching affects crop yield and yield components by affecting soil moisture.Further research is needed to determine the relationships between yield components...Water is the key factor limiting dryland wheat grain yield.Mulching affects crop yield and yield components by affecting soil moisture.Further research is needed to determine the relationships between yield components and soil moisture with yield,and to identify the most important factor affecting grain yield under various mulching measures.A long-term 9-yearifeld experiment in the Loess Plateau of Northwest China was carried out with three treatments:no mulch (CK),plastic mulch (M_(P)) and straw mulch (M_(S)).Yield factors and soil moisture were measured,and the relationships between them were explored by correlation analysis,structural equation modeling and significance analysis.The results showed that compared with CK,the average grain yields of M_(P) and M_(S) increased by 13.0and 10.6%,respectively.The average annual grain yield of the M_(P) treatment was 134 kg ha^(–1) higher than the M_(S) treatment.There were no significant differences in yield components among the three treatments (P<0.05).Soil water storage of the M_(S) treatment was greater than the M_(P) treatment,although the differences were not statistically signifiant.Soil water storage during the summer fallow period (SWSSF) and soil water storage before sowing (SWSS) of M_(S) were significantly higher than in CK,which increased by 38.5 and 13.6%,respectively.The relationship between M_(P) and CK was not statistically significant for SWSSF,but the SWSS in M_(P) was significantly higher than in CK.In terms of soil water storage after harvest (SWSH) and water consumption in the growth period(ET),there were no signi?cant differences among the three treatments.Based on the three analysis methods,we found that spike number and ET were positively correlated with grain yield.However,the relative importance of spike number to yield was the greatest in the M_(P )and M_(S) treatments,while that of ET was the greatest in CK.Suifcient SWSSF could indirectly increase spike number and ET in the three treatments.Based on these results,mulch can improve yield and soil water storage.The most important factor affecting the grain yield of dryland wheat was spike number under mulching,and ET with CK.These findings may help us to understand the main factors influencing dryland wheat grain yield under mulching conditions compared to CK.展开更多
A field experiment was conducted to study water use efficiency and agronomic traits in rice cultivated in flooded soil and non-flooded soils with and without straw mulching. The total amount of water used by rice unde...A field experiment was conducted to study water use efficiency and agronomic traits in rice cultivated in flooded soil and non-flooded soils with and without straw mulching. The total amount of water used by rice under flooded cultivation (FC) was 2.42 and 3.31 times as much as that by rice under the non-flooded cultivation with and without straw mulching, respectively. The average water seepage was 13 560 m^3/ha under the flooded cultivation, 4 750 m^3/ha under the non-flooded cultivation without straw mulching (ZM) and 4 680 m^3/ha under non-flooded cultivation with straw mulching (SM). The evapotranspiration in the SM treatment was only 38.2% and 63.6% of the FC treatment and ZM treatment, respectively. Compared with the ZM treatment, straw mulching significantly increased leaf area per plant, main root length, gross root length and root dry weight per plant of rice. The highest grain yield under the SM treatment (6 747 kg/ha) was close to the rice cultivated in flooded soil (6 811.5 kg / ha). However, the yield under the ZM treatment (4 716 kg/ha) was much lower than that under the FS treatment and SM treatment. The order of water use efficiency and irrigation water use efficiency were both as follows: SM〉 ZM〉 FC.展开更多
A long-term field experiment (started at 2003) was conducted to determine the effects of different dce cultivation methods on growth characteristics and grain yield of late-season rice under double-rice cropping sys...A long-term field experiment (started at 2003) was conducted to determine the effects of different dce cultivation methods on growth characteristics and grain yield of late-season rice under double-rice cropping system in seasonal drought region of southeast China (Yujiang County, Jiangxi Province). The rice cultivation methods included no-tillage and flooded rice cultivation (N-F), no-tillage and non-flooded rice cultivation with straw mulching (N-SM), and no-tillage and non-flooded rice cultivation without straw mulching (N-ZM). There was no significant difference in rice grain yield between the N-SM and N-F treatments. However, the rice grain yields in the N-SM and N-F treatments were significantly higher than that in the N-ZM treatment. The late-season rice plants in the N-SM treatment had significantly higher numbers of effective panicles and total grains per hill compared with those in the N-ZM treatment. The above-ground dry matter of late-season rice was similar between the N-SM and N-F treatments. Compared with the N-F treatment, the N-ZM and N-SM treatments significantly decreased the leaf area at the heading stage. Moreover, the N-SM treatment could significantly increase total root length and root tip number at the grain-filling stage compared with the N-ZM treatment.展开更多
To reveal the influencing effect of the long-term straw mulching on the soil moisture, this paper employed the field experiment data in 2010 of a typical area of Taihang Mountains plain, observed the soil moisture dyn...To reveal the influencing effect of the long-term straw mulching on the soil moisture, this paper employed the field experiment data in 2010 of a typical area of Taihang Mountains plain, observed the soil moisture dynamic regularities under different mulching patterns by virtue of depressimeter and neutron probe, analyzed the characteristics of soil water content and storage in different depths and seasons under the long-term straw mulching. The results showed that the long-term straw mulching can keep the soil moisture conservation of the deep, while decreased the shallow.(1) The long-term straw mulching can changed the type of soil water movement. If no straw mulching, the type is mainly evaporation-infiltration. And with straw mantle the type would change into infiltration. The number of zero flux plane would be reduced or absent.(2) The long-term straw mulching can increase the soil water reserves of the whole soil profile with the depth between 0 cm and 220 cm. But the soil water content of the layer from 30 cm to 80 cm decreased and the soil water content of the layer from 80 cm to 220 cm increased instead., The effect of soil moisture conservation on winter wheat is not obvious;(3) With no straw mulching, the depth of infiltration recharge by rainfall or irrigation is shallower than 80 cm. In a straw mulching, the influence depth is can extend to 120 cm;(4) With no straw mulching, there is a deep layer on the depth of 220 cm between March and June, while this layer will disappear with a long-term straw mulching.展开更多
Medicago ruthenica (L.) Trautv., a wild grass species, is commonly grown as a forage crop in arid and semi-arid areas of China. Herein, we explored mulch patterns and planting methods for optimizing M. ruthenica seed ...Medicago ruthenica (L.) Trautv., a wild grass species, is commonly grown as a forage crop in arid and semi-arid areas of China. Herein, we explored mulch patterns and planting methods for optimizing M. ruthenica seed production in the loess plateau of the Gansu Province, China from 2017 to 2019. The experiments comprised of six treatments including (1) flat ground without mulch (F0, control);(2) flat ground with a transparent white 0.008 mm thick plastic film mulch (FP);(3) flat ground with 4500 kg/hm2 straw mulch (FS);(4) furrow with 10 cm ridges (R0);(5) furrow with plastic film mulch (RP);and (6) furrow with straw mulch (RS). Results showed that the harvested seed yield of M. ruthenica was the highest under RP treatment, followed by FP and FS treatments. Soil moisture content from mid-May to mid-August in 2017 was the highest under RP and FP treatments, followed by RS and FS treatments. In 2018, soil moisture content was the highest under RS and FS treatments. In 2017 and 2018, soil temperature was the highest under FP and RP treatments, followed by F0 and R0 treatments. Total and available nitrogen, phosphorus, and potassium contents were the highest under RS and FS treatments, followed by RP and FP treatments. Comprehensive analysis result showed that surface mulch improved soil microenvironment and increased seed yield of M. ruthenica. Straw mulch also effectively recycled excess crop straw, thereby encouraging the sustainable development of agriculture in this area. In conclusion, FS treatment was considered the best mode for M. ruthenica seed production in this area.展开更多
Aiming to lack the function of soil covering in the developed orchard straw mulching machine(OSM),a kind of bilateral counter-throwing soil-covering device was developed to eliminate the orchard fire risk caused by th...Aiming to lack the function of soil covering in the developed orchard straw mulching machine(OSM),a kind of bilateral counter-throwing soil-covering device was developed to eliminate the orchard fire risk caused by the straw layer.The soil-covering device was suspended at the rear of the OSM.Its core component was a pair of throwing wheels installed on both sides of a frame.Hydraulic motors drove the throwing wheels to take soil on-site and cover the straw layer.The adjustment range of the space between the throwing wheels on both sides was 1.4-2.1 m.Based on the analysis of soil-covering quantity,soil-covering width,thickness uniformity of soil layer,and power consumption,the key parameters such as the radius,the number of the vane,and the minimum rotation speed of the throwing wheels were determined.It was proved that the thickness uniformity of the soil layer by bilateral counter-throwing was better than by unilateral,and bottom throwing was better than top throwing.The blade of the soil cutter consisted of a straight blade and a curved blade,and the sliding-cutting angle was 14°-40°.The field test results showed the soil-covering device had good performance with a width of 1.4-2.2 m,a thickness of the soil-covering layer(TSL)of 23.2-40.7 mm,a standard deviation(SD)of 1.4-2.9 mm,width uniformity of 100%,and leakage rate of zero.The established model,between the thickness of soil-covering layer and trenching depth,throwing angle,and rotation speed of the throwing wheels,has a determination coefficient of 0.9757 and can be used to guide the operating parameters.The soil cutter reduced the power consumption and impact load of the throwing wheels by 64.77%and 60.88%,respectively.This work provides a type of new equipment for the mechanization technology of straw mulching in arid and semi-arid orchards.展开更多
Background Weed infestation in cotton has been reported to offer severe competition and cause yield reduction to a large extent.Weeding via cultural practices is time consuming,tedious,and expensive due to long durati...Background Weed infestation in cotton has been reported to offer severe competition and cause yield reduction to a large extent.Weeding via cultural practices is time consuming,tedious,and expensive due to long duration of cotton crop and regular monsoon rains during cotton production in India.Chemical weed control has been successfully utilized in cotton in the recent past.However,continuous use of similar herbicides leads to resistance in weeds against herbicides.And when sprayed to the field,herbicides not only suppress weeds but leave undesirable residues in the soil that are hazardous to the environment.Therefore,a study was performed at cotton research area at Chaudhary Charan Singh Haryana Agricultural University,Hisar,Haryana during two consecutive kharif seasons(2020 and 2021)to determine the most suitable and sustainable weed management strategy through the integration of chemical and cultural methods.Results Mulching with rice straw of 7.5 t ha^(-1)resulted in significantly higher cotton seed yield(3189 and 3084 kg ha^(-1))and better weed control in comparison to no mulch treatments(2990 and 2904 kg ha^(-1))in 2020 and 2021,respectively.Among various weed management levels,the significantly lowest cotton seed yield was recorded in untreated control(1841 and 1757 kg·ha^(-1)during 2020 and 2021,respectively)in comparison to other treatments while all other treatments were statistically at par with each other during both years of crop experimentation.Conclusion Mulching with rice straw of 7.5 t·ha^(-1)along with a pre-emergence application of pendimethalin(active ingredient)at 1.5 kg·ha^(-1)fb(followed by)one hoeings at 45 days after sowing(DAS)and fb glyphosate 2 kg·ha^(-1)(Shielded spray)at 90 DAS is a viable option for effective control of grassy and broadleaved weeds in Bt cotton in north-west India.展开更多
基金supported by the National Key R&D Program of China(2021YFD1900703)the National Natural Science Foundation of China(31272250).
文摘Amplifying drought stress and high precipitation variability impair dryland wheat production.These problems can potentially be minimized by using plastic mulch(PM)or straw mulch(SM).Therefore,wheat grain yield,soil water storage,soil temperature and water-use productivity of PM and SM treatments were compared with no mulch(CK)treatment on dryland wheat over a period of eight seasons.Compared to the CK treatment,PM and SM treatments on average significantly increased grain yield by 12.6 and 10.5%,respectively.Compared to the CK treatment,SM treatment significantly decreased soil daily temperature by 0.57,0.60 and 0.48℃ for the whole seasons,growing periods and summer fallow periods,respectively.In contrast,compared to the CK treatment,PM treatment increased soil daily temperature by 0.44,0.51 and 0.27℃ for the whole seasons,growing periods and summer fallow periods,respectively.Lower soil temperature under SM allowed greater soil water storage than under PM.Soil water storage pre-seeding was 17%greater under the SM than under the PM treatment.Soil water storage post-harvest was similar for the PM and SM treatments,but evapotranspiration was 4.5%higher in the SM than in the PM treatment.Consequently,water-use productivity was 6.6%greater under PM than under the SM treatment.Therefore,PM treatment increased dryland wheat yield and water-use productivity,while straw mulch increased soil water storage.
基金supported financially by the National Key Research and Development Program of China(2021YFD1900703)the National Natural Science Foundation of China(31272250)。
文摘Water is the key factor limiting dryland wheat grain yield.Mulching affects crop yield and yield components by affecting soil moisture.Further research is needed to determine the relationships between yield components and soil moisture with yield,and to identify the most important factor affecting grain yield under various mulching measures.A long-term 9-yearifeld experiment in the Loess Plateau of Northwest China was carried out with three treatments:no mulch (CK),plastic mulch (M_(P)) and straw mulch (M_(S)).Yield factors and soil moisture were measured,and the relationships between them were explored by correlation analysis,structural equation modeling and significance analysis.The results showed that compared with CK,the average grain yields of M_(P) and M_(S) increased by 13.0and 10.6%,respectively.The average annual grain yield of the M_(P) treatment was 134 kg ha^(–1) higher than the M_(S) treatment.There were no significant differences in yield components among the three treatments (P<0.05).Soil water storage of the M_(S) treatment was greater than the M_(P) treatment,although the differences were not statistically signifiant.Soil water storage during the summer fallow period (SWSSF) and soil water storage before sowing (SWSS) of M_(S) were significantly higher than in CK,which increased by 38.5 and 13.6%,respectively.The relationship between M_(P) and CK was not statistically significant for SWSSF,but the SWSS in M_(P) was significantly higher than in CK.In terms of soil water storage after harvest (SWSH) and water consumption in the growth period(ET),there were no signi?cant differences among the three treatments.Based on the three analysis methods,we found that spike number and ET were positively correlated with grain yield.However,the relative importance of spike number to yield was the greatest in the M_(P )and M_(S) treatments,while that of ET was the greatest in CK.Suifcient SWSSF could indirectly increase spike number and ET in the three treatments.Based on these results,mulch can improve yield and soil water storage.The most important factor affecting the grain yield of dryland wheat was spike number under mulching,and ET with CK.These findings may help us to understand the main factors influencing dryland wheat grain yield under mulching conditions compared to CK.
文摘A field experiment was conducted to study water use efficiency and agronomic traits in rice cultivated in flooded soil and non-flooded soils with and without straw mulching. The total amount of water used by rice under flooded cultivation (FC) was 2.42 and 3.31 times as much as that by rice under the non-flooded cultivation with and without straw mulching, respectively. The average water seepage was 13 560 m^3/ha under the flooded cultivation, 4 750 m^3/ha under the non-flooded cultivation without straw mulching (ZM) and 4 680 m^3/ha under non-flooded cultivation with straw mulching (SM). The evapotranspiration in the SM treatment was only 38.2% and 63.6% of the FC treatment and ZM treatment, respectively. Compared with the ZM treatment, straw mulching significantly increased leaf area per plant, main root length, gross root length and root dry weight per plant of rice. The highest grain yield under the SM treatment (6 747 kg/ha) was close to the rice cultivated in flooded soil (6 811.5 kg / ha). However, the yield under the ZM treatment (4 716 kg/ha) was much lower than that under the FS treatment and SM treatment. The order of water use efficiency and irrigation water use efficiency were both as follows: SM〉 ZM〉 FC.
基金the National High-Tech Research and Development Program of China(Grant No.2002AA2Z4331)for generous financial support
文摘A long-term field experiment (started at 2003) was conducted to determine the effects of different dce cultivation methods on growth characteristics and grain yield of late-season rice under double-rice cropping system in seasonal drought region of southeast China (Yujiang County, Jiangxi Province). The rice cultivation methods included no-tillage and flooded rice cultivation (N-F), no-tillage and non-flooded rice cultivation with straw mulching (N-SM), and no-tillage and non-flooded rice cultivation without straw mulching (N-ZM). There was no significant difference in rice grain yield between the N-SM and N-F treatments. However, the rice grain yields in the N-SM and N-F treatments were significantly higher than that in the N-ZM treatment. The late-season rice plants in the N-SM treatment had significantly higher numbers of effective panicles and total grains per hill compared with those in the N-ZM treatment. The above-ground dry matter of late-season rice was similar between the N-SM and N-F treatments. Compared with the N-F treatment, the N-ZM and N-SM treatments significantly decreased the leaf area at the heading stage. Moreover, the N-SM treatment could significantly increase total root length and root tip number at the grain-filling stage compared with the N-ZM treatment.
基金supported by National Fund Science and Technology Project(41672249 and 41602271)China Geological Survey Project(DD20160190)Shallow Geothermal Energy Development and Geothermal Reservoir Injection(SK201501)
文摘To reveal the influencing effect of the long-term straw mulching on the soil moisture, this paper employed the field experiment data in 2010 of a typical area of Taihang Mountains plain, observed the soil moisture dynamic regularities under different mulching patterns by virtue of depressimeter and neutron probe, analyzed the characteristics of soil water content and storage in different depths and seasons under the long-term straw mulching. The results showed that the long-term straw mulching can keep the soil moisture conservation of the deep, while decreased the shallow.(1) The long-term straw mulching can changed the type of soil water movement. If no straw mulching, the type is mainly evaporation-infiltration. And with straw mantle the type would change into infiltration. The number of zero flux plane would be reduced or absent.(2) The long-term straw mulching can increase the soil water reserves of the whole soil profile with the depth between 0 cm and 220 cm. But the soil water content of the layer from 30 cm to 80 cm decreased and the soil water content of the layer from 80 cm to 220 cm increased instead., The effect of soil moisture conservation on winter wheat is not obvious;(3) With no straw mulching, the depth of infiltration recharge by rainfall or irrigation is shallower than 80 cm. In a straw mulching, the influence depth is can extend to 120 cm;(4) With no straw mulching, there is a deep layer on the depth of 220 cm between March and June, while this layer will disappear with a long-term straw mulching.
基金the earmarked fund for China Agriculture Research System(CARS)(CARS-34).
文摘Medicago ruthenica (L.) Trautv., a wild grass species, is commonly grown as a forage crop in arid and semi-arid areas of China. Herein, we explored mulch patterns and planting methods for optimizing M. ruthenica seed production in the loess plateau of the Gansu Province, China from 2017 to 2019. The experiments comprised of six treatments including (1) flat ground without mulch (F0, control);(2) flat ground with a transparent white 0.008 mm thick plastic film mulch (FP);(3) flat ground with 4500 kg/hm2 straw mulch (FS);(4) furrow with 10 cm ridges (R0);(5) furrow with plastic film mulch (RP);and (6) furrow with straw mulch (RS). Results showed that the harvested seed yield of M. ruthenica was the highest under RP treatment, followed by FP and FS treatments. Soil moisture content from mid-May to mid-August in 2017 was the highest under RP and FP treatments, followed by RS and FS treatments. In 2018, soil moisture content was the highest under RS and FS treatments. In 2017 and 2018, soil temperature was the highest under FP and RP treatments, followed by F0 and R0 treatments. Total and available nitrogen, phosphorus, and potassium contents were the highest under RS and FS treatments, followed by RP and FP treatments. Comprehensive analysis result showed that surface mulch improved soil microenvironment and increased seed yield of M. ruthenica. Straw mulch also effectively recycled excess crop straw, thereby encouraging the sustainable development of agriculture in this area. In conclusion, FS treatment was considered the best mode for M. ruthenica seed production in this area.
基金support provided by the Science and Technology Major Project of Shaanxi Agricultural Synergy Innovation and Extension Alliance(Grant No.LMZD201703)Shaanxi Province Key R&D Program Project(Grant No.2022NY-204,2023-ZDLSF-62).
文摘Aiming to lack the function of soil covering in the developed orchard straw mulching machine(OSM),a kind of bilateral counter-throwing soil-covering device was developed to eliminate the orchard fire risk caused by the straw layer.The soil-covering device was suspended at the rear of the OSM.Its core component was a pair of throwing wheels installed on both sides of a frame.Hydraulic motors drove the throwing wheels to take soil on-site and cover the straw layer.The adjustment range of the space between the throwing wheels on both sides was 1.4-2.1 m.Based on the analysis of soil-covering quantity,soil-covering width,thickness uniformity of soil layer,and power consumption,the key parameters such as the radius,the number of the vane,and the minimum rotation speed of the throwing wheels were determined.It was proved that the thickness uniformity of the soil layer by bilateral counter-throwing was better than by unilateral,and bottom throwing was better than top throwing.The blade of the soil cutter consisted of a straight blade and a curved blade,and the sliding-cutting angle was 14°-40°.The field test results showed the soil-covering device had good performance with a width of 1.4-2.2 m,a thickness of the soil-covering layer(TSL)of 23.2-40.7 mm,a standard deviation(SD)of 1.4-2.9 mm,width uniformity of 100%,and leakage rate of zero.The established model,between the thickness of soil-covering layer and trenching depth,throwing angle,and rotation speed of the throwing wheels,has a determination coefficient of 0.9757 and can be used to guide the operating parameters.The soil cutter reduced the power consumption and impact load of the throwing wheels by 64.77%and 60.88%,respectively.This work provides a type of new equipment for the mechanization technology of straw mulching in arid and semi-arid orchards.
文摘Background Weed infestation in cotton has been reported to offer severe competition and cause yield reduction to a large extent.Weeding via cultural practices is time consuming,tedious,and expensive due to long duration of cotton crop and regular monsoon rains during cotton production in India.Chemical weed control has been successfully utilized in cotton in the recent past.However,continuous use of similar herbicides leads to resistance in weeds against herbicides.And when sprayed to the field,herbicides not only suppress weeds but leave undesirable residues in the soil that are hazardous to the environment.Therefore,a study was performed at cotton research area at Chaudhary Charan Singh Haryana Agricultural University,Hisar,Haryana during two consecutive kharif seasons(2020 and 2021)to determine the most suitable and sustainable weed management strategy through the integration of chemical and cultural methods.Results Mulching with rice straw of 7.5 t ha^(-1)resulted in significantly higher cotton seed yield(3189 and 3084 kg ha^(-1))and better weed control in comparison to no mulch treatments(2990 and 2904 kg ha^(-1))in 2020 and 2021,respectively.Among various weed management levels,the significantly lowest cotton seed yield was recorded in untreated control(1841 and 1757 kg·ha^(-1)during 2020 and 2021,respectively)in comparison to other treatments while all other treatments were statistically at par with each other during both years of crop experimentation.Conclusion Mulching with rice straw of 7.5 t·ha^(-1)along with a pre-emergence application of pendimethalin(active ingredient)at 1.5 kg·ha^(-1)fb(followed by)one hoeings at 45 days after sowing(DAS)and fb glyphosate 2 kg·ha^(-1)(Shielded spray)at 90 DAS is a viable option for effective control of grassy and broadleaved weeds in Bt cotton in north-west India.