Stream temperatures are sensitive to climate change and runoff regime variations. A comprehensive understanding on the effects of glacial melting on the stream temperatures are important in the Tibetan Plateau, of whi...Stream temperatures are sensitive to climate change and runoff regime variations. A comprehensive understanding on the effects of glacial melting on the stream temperatures are important in the Tibetan Plateau, of which contains the largest ice volume outside Polar Regions. This study documented the high-resolution stream temperature thermal regimes from glacier-fed and non-glacial rivers at four sites, versus a high-resolution glacier mass balance monitoring at Zhadang glacier, during summer melt seasons from 2007-2009 in the Nam Co basin of southern Tibetan Plateau. The results showed mean summer stream temperature and magnitude of daily thermal variation were lower at all sites when compared with alpine glacierized environments at lower latitudes. Mean stream temperatures for glacier-fed rivers(4.0℃ to 6.5℃)were minimum and least variable near the glacier terminus with increasing toward downstream(+0.13℃ km^(–1) to +0.28℃ km^(–1)). Meanwhile, stream temperature in 2008 was similar to that in 2007 and2009. For the non-glacial rivers, mean stream temperatures was about 9.0℃ with significantly warmer in summer months in 2009 and 2007 than that in 2008. These differences indicated that stream temperature was strongly influenced by discharge and precipitation. Particularly, the glacier mass balance played a large role on the stream temperature directly when the glacier melt contributed more than 50% of the glacial river runoff. Our results demonstrated the stream thermal variability from southern Tibetan rivers and provided new insight into the influence of glacier mass balance on stream thermal variability in high-altitude river system.展开更多
Effective temperature level of stream, namely stream pseudo temperature, is determined by its actual temperature and heat transfer temperature difference contribution value. Heat transfer temperature difference con-tr...Effective temperature level of stream, namely stream pseudo temperature, is determined by its actual temperature and heat transfer temperature difference contribution value. Heat transfer temperature difference con-tribution value of a stream depends on its heat transfer film coefficient, cost per unit heat transfer area, actual tem-perature, and so on. In the determination of the suitable heat transfer temperature difference contribution values of the stream, the total annual cost of multistream heat exchanger network (MSHEN) is regarded as an objective func-tion, and genetic/simulated annealing algorithm (GA/SA) is adopted for optimizing the heat transfer temperature difference contribution values of the stream. The stream pseudo temperatures are subsequently obtained. On the ba-sis of stream pseudo temperature, optimized MSHEN can be attained by the temperature-enthalpy (T-H) diagram method. This approach is characterized with fewer decision variables and higher feasibility of solutions. The calcu-lation efficiency of GA/SA can be remarkably enhanced by this approach and more probability is shown in search-ing the global optimum solution. Hence this approach is presented for solving industrial-sized MSHEN which is difficult to deal by traditional algorithm. Moreover, in the optimization of stream heat transfer temperature differ-ence contribution values, the effects of the stream temperature, the heat transfer film coefficient, and the construc-tion material of heat exchangers are considered, therefore this approach can be used to optimize and design heat exchanger network (HEN) with unequal heat transfer film coefficients and different of construction materials. The performance of the proposed approach has been demonstrated with three examples and the obtained solutions are compared with those available in literatures. The results show that the large-scale MSHEN synthesis problems can be solved to obtain good solutions with the modest computational effort.展开更多
The stratospheric influences on the non-uniform variation in early spring(March–April,MA)surface temperature over Eurasia is investigated based on the ERA-Interim,NCEP-1,and NCEP-2 reanalysis data for the period198...The stratospheric influences on the non-uniform variation in early spring(March–April,MA)surface temperature over Eurasia is investigated based on the ERA-Interim,NCEP-1,and NCEP-2 reanalysis data for the period1980–2016.A lead–lag correlation is found between preceding winter(December–February,DJF)stratospheric polar vortex displacements(SPVD)and the MA west–east seesaw pattern in surface temperature over Eurasia.Further analysis reveals that the East Asian jet stream may act as a bridge linking DJF SPVD and MA surface temperature over Eurasia.A positive change in SPVD is associated with a decelerated polar jet stream and an accelerated East Asian jet stream in the troposphere in DJF.The East Asian jet stream signal can persist into MA.As a result,anomalous southerly/northerly winds prevail over western/eastern Eurasia,accounting for the west–east surface temperature seesaw over Eurasia.展开更多
基金supported by the National Natural Science Foundation of China(41501063,41421061,913252001)Chinese Academy of Sciences(KJZD-EW-G03-04+1 种基金QYZDJ-SSWDQC039)the State Key Laboratory of Cryospheric Science(KJZD-ZZ-2017)
文摘Stream temperatures are sensitive to climate change and runoff regime variations. A comprehensive understanding on the effects of glacial melting on the stream temperatures are important in the Tibetan Plateau, of which contains the largest ice volume outside Polar Regions. This study documented the high-resolution stream temperature thermal regimes from glacier-fed and non-glacial rivers at four sites, versus a high-resolution glacier mass balance monitoring at Zhadang glacier, during summer melt seasons from 2007-2009 in the Nam Co basin of southern Tibetan Plateau. The results showed mean summer stream temperature and magnitude of daily thermal variation were lower at all sites when compared with alpine glacierized environments at lower latitudes. Mean stream temperatures for glacier-fed rivers(4.0℃ to 6.5℃)were minimum and least variable near the glacier terminus with increasing toward downstream(+0.13℃ km^(–1) to +0.28℃ km^(–1)). Meanwhile, stream temperature in 2008 was similar to that in 2007 and2009. For the non-glacial rivers, mean stream temperatures was about 9.0℃ with significantly warmer in summer months in 2009 and 2007 than that in 2008. These differences indicated that stream temperature was strongly influenced by discharge and precipitation. Particularly, the glacier mass balance played a large role on the stream temperature directly when the glacier melt contributed more than 50% of the glacial river runoff. Our results demonstrated the stream thermal variability from southern Tibetan rivers and provided new insight into the influence of glacier mass balance on stream thermal variability in high-altitude river system.
基金Supported by the Deutsche Forschungsgemeinschaft (DFG No.RO 294/9).
文摘Effective temperature level of stream, namely stream pseudo temperature, is determined by its actual temperature and heat transfer temperature difference contribution value. Heat transfer temperature difference con-tribution value of a stream depends on its heat transfer film coefficient, cost per unit heat transfer area, actual tem-perature, and so on. In the determination of the suitable heat transfer temperature difference contribution values of the stream, the total annual cost of multistream heat exchanger network (MSHEN) is regarded as an objective func-tion, and genetic/simulated annealing algorithm (GA/SA) is adopted for optimizing the heat transfer temperature difference contribution values of the stream. The stream pseudo temperatures are subsequently obtained. On the ba-sis of stream pseudo temperature, optimized MSHEN can be attained by the temperature-enthalpy (T-H) diagram method. This approach is characterized with fewer decision variables and higher feasibility of solutions. The calcu-lation efficiency of GA/SA can be remarkably enhanced by this approach and more probability is shown in search-ing the global optimum solution. Hence this approach is presented for solving industrial-sized MSHEN which is difficult to deal by traditional algorithm. Moreover, in the optimization of stream heat transfer temperature differ-ence contribution values, the effects of the stream temperature, the heat transfer film coefficient, and the construc-tion material of heat exchangers are considered, therefore this approach can be used to optimize and design heat exchanger network (HEN) with unequal heat transfer film coefficients and different of construction materials. The performance of the proposed approach has been demonstrated with three examples and the obtained solutions are compared with those available in literatures. The results show that the large-scale MSHEN synthesis problems can be solved to obtain good solutions with the modest computational effort.
基金Supported by the National Natural Science Foundation of China(41210007 and 41375083)
文摘The stratospheric influences on the non-uniform variation in early spring(March–April,MA)surface temperature over Eurasia is investigated based on the ERA-Interim,NCEP-1,and NCEP-2 reanalysis data for the period1980–2016.A lead–lag correlation is found between preceding winter(December–February,DJF)stratospheric polar vortex displacements(SPVD)and the MA west–east seesaw pattern in surface temperature over Eurasia.Further analysis reveals that the East Asian jet stream may act as a bridge linking DJF SPVD and MA surface temperature over Eurasia.A positive change in SPVD is associated with a decelerated polar jet stream and an accelerated East Asian jet stream in the troposphere in DJF.The East Asian jet stream signal can persist into MA.As a result,anomalous southerly/northerly winds prevail over western/eastern Eurasia,accounting for the west–east surface temperature seesaw over Eurasia.