期刊文献+
共找到53篇文章
< 1 2 3 >
每页显示 20 50 100
Optimal setting and placement of FACTS devices using strength Pareto multi-objective evolutionary algorithm 被引量:2
1
作者 Amin Safari Hossein Shayeghi Mojtaba Bagheri 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期829-839,共11页
This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for... This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for locating and setting of thyristor controlled series capacitor(TCSC) and static var compensator(SVC) using the multi-objective optimization approach named strength pareto multi-objective evolutionary algorithm(SPMOEA). Maximization of the static voltage stability margin(SVSM) and minimizations of real power losses(RPL) and load voltage deviation(LVD) are taken as the goals or three objective functions, when optimally locating multi-type FACTS devices. The performance and effectiveness of the proposed approach has been validated by the simulation results of the IEEE 30-bus and IEEE 118-bus test systems. The proposed approach is compared with non-dominated sorting particle swarm optimization(NSPSO) algorithm. This comparison confirms the usefulness of the multi-objective proposed technique that makes it promising for determination of combinatorial problems of FACTS devices location and setting in large scale power systems. 展开更多
关键词 strength pareto multi-objective evolutionary algorithm STATIC var COMPENSATOR (SVC) THYRISTOR controlled series capacitor (TCSC) STATIC voltage stability margin optimal location
下载PDF
Multi-Objective Optimization Algorithm for Grouping Decision Variables Based on Extreme Point Pareto Frontier
2
作者 JunWang Linxi Zhang +4 位作者 Hao Zhang Funan Peng Mohammed A.El-Meligy Mohamed Sharaf Qiang Fu 《Computers, Materials & Continua》 SCIE EI 2024年第4期1281-1299,共19页
The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly... The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently. 展开更多
关键词 multi-objective evolutionary optimization algorithm decision variables grouping extreme point pareto frontier
下载PDF
A Survey of Evolutionary Algorithms for Multi-Objective Optimization Problems With Irregular Pareto Fronts 被引量:24
3
作者 Yicun Hua Qiqi Liu +1 位作者 Kuangrong Hao Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第2期303-318,I0001-I0004,共20页
Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remed... Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remedy this issue,a large body of research has been performed in recent years and many new algorithms have been proposed.This paper provides a comprehensive survey of the research on MOPs with irregular Pareto fronts.We start with a brief introduction to the basic concepts,followed by a summary of the benchmark test problems with irregular problems,an analysis of the causes of the irregularity,and real-world optimization problems with irregular Pareto fronts.Then,a taxonomy of the existing methodologies for handling irregular problems is given and representative algorithms are reviewed with a discussion of their strengths and weaknesses.Finally,open challenges are pointed out and a few promising future directions are suggested. 展开更多
关键词 evolutionary algorithm machine learning multi-objective optimization problems(MOPs) irregular pareto fronts
下载PDF
Tourism Route Recommendation Based on A Multi-Objective Evolutionary Algorithm Using Two-Stage Decomposition and Pareto Layering 被引量:1
4
作者 Xiaoyao Zheng Baoting Han Zhen Ni 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第2期486-500,共15页
Tourism route planning is widely applied in the smart tourism field.The Pareto-optimal front obtained by the traditional multi-objective evolutionary algorithm exhibits long tails,sharp peaks and disconnected regions ... Tourism route planning is widely applied in the smart tourism field.The Pareto-optimal front obtained by the traditional multi-objective evolutionary algorithm exhibits long tails,sharp peaks and disconnected regions problems,which leads to uneven distribution and weak diversity of optimization solutions of tourism routes.Inspired by these limitations,we propose a multi-objective evolutionary algorithm for tourism route recommendation(MOTRR)with two-stage and Pareto layering based on decomposition.The method decomposes the multiobjective problem into several subproblems,and improves the distribution of solutions through a two-stage method.The crowding degree mechanism between extreme and intermediate populations is used in the two-stage method.The neighborhood is determined according to the weight of the subproblem for crossover mutation.Finally,Pareto layering is used to improve the updating efficiency and population diversity of the solution.The two-stage method is combined with the Pareto layering structure,which not only maintains the distribution and diversity of the algorithm,but also avoids the same solutions.Compared with several classical benchmark algorithms,the experimental results demonstrate competitive advantages on five test functions,hypervolume(HV)and inverted generational distance(IGD)metrics.Using the experimental results of real scenic spot datasets from two famous tourism social networking sites with vast amounts of users and large-scale online comments in Beijing,our proposed algorithm shows better distribution.It proves that the tourism routes recommended by our proposed algorithm have better distribution and diversity,so that the recommended routes can better meet the personalized needs of tourists. 展开更多
关键词 evolutionary algorithm multi-objective optimization pareto optimization tourism route recommendation two-stage decomposition
下载PDF
A Multi-Objective Optimal Evolutionary Algorithm Based on Tree-Ranking 被引量:1
5
作者 Shi Chuan, Kang Li-shan, Li Yan, Yan Zhen-yuState Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei,China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第S1期207-211,共5页
Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has so... Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has some shortcoming s, in this paper, we proposed a new method using tree structure to express the relationship of solutions. Experiments prove that the method can reach the Pare-to front, retain the diversity of the population, and use less time. 展开更多
关键词 multi-objective optimal problem multi-objective optimal evolutionary algorithm pareto dominance tree structure dynamic space-compressed mutative operator
下载PDF
Synergetic Optimization of Missile Shapes for Aerodynamic and Radar Cross-Section Performance Based on Multi-objective Evolutionary Algorithm
6
作者 刘洪 《Journal of Shanghai Jiaotong university(Science)》 EI 2004年第2期36-40,共5页
A multiple-objective evolutionary algorithm (MOEA) with a new Decision Making (DM) scheme for MOD of conceptual missile shapes was presented, which is contrived to determine suitable tradeoffs from Pareto optimal set ... A multiple-objective evolutionary algorithm (MOEA) with a new Decision Making (DM) scheme for MOD of conceptual missile shapes was presented, which is contrived to determine suitable tradeoffs from Pareto optimal set using interactive preference articulation. There are two objective functions, to maximize ratio of lift to drag and to minimize radar cross-section (RCS) value. 3D computational electromagnetic solver was used to evaluate RCS, electromagnetic performance. 3D Navier-Stokes flow solver was adopted to evaluate aerodynamic performance. A flight mechanics solver was used to analyze the stability of the missile. Based on the MOEA, a synergetic optimization of missile shapes for aerodynamic and radar cross-section performance is completed. The results show that the proposed approach can be used in more complex optimization case of flight vehicles. 展开更多
关键词 multi-objective design(MOD) multidisciplinary design optimization (MDO) evolutionary algorithm synergetic optimization decision making scheme interactive preference articulation pareto optimal set
下载PDF
Improved hybrid Strength Pareto Evolutionary Algorithms for multi-objective optimization
7
作者 K.Shankar Akshay S.Baviskar 《International Journal of Intelligent Computing and Cybernetics》 EI 2018年第1期20-46,共27页
Purpose–The purpose of this paper is to design an improved multi-objective algorithm with better spread and convergence than some current algorithms.The proposed application is for engineering design problems.Design/... Purpose–The purpose of this paper is to design an improved multi-objective algorithm with better spread and convergence than some current algorithms.The proposed application is for engineering design problems.Design/methodology/approach–This study proposes two novel approaches which focus on faster convergence to the Pareto front(PF)while adopting the advantages of Strength Pareto Evolutionary Algorithm-2(SPEA2)for better spread.In first method,decision variables corresponding to the optima of individual objective functions(Utopia Point)are strategically used to guide the search toward PF.In second method,boundary points of the PF are calculated and their decision variables are seeded to the initial population.Findings–The proposed methods are tested with a wide range of constrained and unconstrained multi-objective test functions using standard performance metrics.Performance evaluation demonstrates the superiority of proposed algorithms over well-known existing algorithms(such as NSGA-II and SPEA2)and recent ones such as NSLS and E-NSGA-II in most of the benchmark functions.It is also tested on an engineering design problem and compared with a currently used algorithm.Practical implications–The algorithms are intended to be used for practical engineering design problems which have many variables and conflicting objectives.A complex example of Welded Beam has been shown at the end of the paper.Social implications–The algorithm would be useful for many design problems and social/industrial problems with conflicting objectives.Originality/value–This paper presents two novel hybrid algorithms involving SPEA2 based on:local search;and Utopia point directed search principles.This concept has not been investigated before. 展开更多
关键词 evolutionary algorithms Boundary points multi-objective optimization problems strength pareto evolutionary algorithm 2(SPEA2)
下载PDF
Pareto强度值演化算法求解约束优化问题 被引量:56
8
作者 周育人 李元香 +1 位作者 王勇 康立山 《软件学报》 EI CSCD 北大核心 2003年第7期1243-1249,共7页
提出了一种求解约束函数优化问题的方法.它不使用传统的惩罚函数,也不区分可行解和不可行解.新的演化算法将约束优化问题转换成两个目标优化问题,其中一个为原问题的目标函数,另一个为违反约束条件的程度函数.利用多目标优化问题中的Par... 提出了一种求解约束函数优化问题的方法.它不使用传统的惩罚函数,也不区分可行解和不可行解.新的演化算法将约束优化问题转换成两个目标优化问题,其中一个为原问题的目标函数,另一个为违反约束条件的程度函数.利用多目标优化问题中的Pareto优于关系,定义个体Pareto强度值指标以便对个体进行排序选优,根据Pareto强度值排序和最小代数代沟模型设计出新的实数编码遗传算法.对常见测试函数的数值实验证实了新方法的有效性、通用性和稳健性,其性能优于现有的一些演化算法.特别是对于一些既有等式约束又有不等式约束的复杂非线性规划问题,该算法获得了更高精度的解. 展开更多
关键词 演化算法 约束优化问题 多目标 pareto强度值
下载PDF
应用精确Zoeppritz方程的叠前PP-PS波联合非线性反演方法
9
作者 杨涛 王鹏起 +3 位作者 李庆春 霍科宇 李伟 何煦鹍 《石油地球物理勘探》 北大核心 2025年第1期152-162,203,共12页
叠前AVO反演是获取地层物性参数的重要手段,传统的叠前AVO反演方法多基于近似反射系数方程,往往在特定的地质环境或大入射角情况下精度较低。为克服这些不足,文中提出了一种基于精确Zoeppritz方程的叠前PP-PS波联合非线性反演方法。该... 叠前AVO反演是获取地层物性参数的重要手段,传统的叠前AVO反演方法多基于近似反射系数方程,往往在特定的地质环境或大入射角情况下精度较低。为克服这些不足,文中提出了一种基于精确Zoeppritz方程的叠前PP-PS波联合非线性反演方法。该方法将多目标的全局优化算法与纵横波联合反演相结合,可同时对PP和PS波两个目标函数进行优化,从而实现完全非线性参数反演。为解决传统PP-PS波联合反演中PS波地震资料权重系数给定困难的问题,在贝叶斯框架下建立了PP-PS波联合反演的多目标函数,并引入多目标智能优化算法——SPEA2求解构建的反演多目标函数。单井合成地震记录、Marmousi模型合成地震记录以及实际地震数据的测试结果表明,该叠前PP-PS波联合非线性反演方法能够高精度地估计地层的弹性参数,在处理复杂地层和大入射角地震数据时反演效果优于传统的AVO反演方法。 展开更多
关键词 精确Zoeppritz 方程 叠前AVO 反演 SPEA2(strength pareto evolutionary algorithm 2) PP-PS 波联合 反演 贝叶斯框架
下载PDF
基于Pareto强度进化算法的供水库群多目标优化调度 被引量:13
10
作者 丁胜祥 董增川 +1 位作者 王德智 李庆航 《水科学进展》 EI CAS CSCD 北大核心 2008年第5期679-684,共6页
提出用Pareto强度进化算法解决供水库群的多目标优化调度问题,算法利用种群的进化过程模拟寻找非劣解集的过程,将供水库群多目标优化调度问题的解当作进化种群中的个体,按照解的Pareto强度值与密度进行适应度计算,利用种群中个体的进化... 提出用Pareto强度进化算法解决供水库群的多目标优化调度问题,算法利用种群的进化过程模拟寻找非劣解集的过程,将供水库群多目标优化调度问题的解当作进化种群中的个体,按照解的Pareto强度值与密度进行适应度计算,利用种群中个体的进化操作获得非劣解,最终整个种群进化为非劣解集。实例分析结果表明,算法能实现多峰搜索,最终非劣解集的分布均匀,且收敛速度快,为解决供水库群多目标优化调度问题提供了一种有效的方法。 展开更多
关键词 供水库群 多目标 优化调度 pareto强度进化算法
下载PDF
利用强度Pareto进化算法的多目标无功优化 被引量:21
11
作者 冯士刚 艾芊 《高电压技术》 EI CAS CSCD 北大核心 2007年第9期115-119,共5页
为更好地解决电力系统多目标无功优化问题,分析了当前多目标无功优化算法存在的缺陷,首次将强度Pareto进化算法(SPEA2)应用于多目标无功优化,为真正意义上的多目标无功优化提供了依据。SPEA2是一种新型的多目标进化算法,参数设置少,收... 为更好地解决电力系统多目标无功优化问题,分析了当前多目标无功优化算法存在的缺陷,首次将强度Pareto进化算法(SPEA2)应用于多目标无功优化,为真正意义上的多目标无功优化提供了依据。SPEA2是一种新型的多目标进化算法,参数设置少,收敛速度快,寻优能力强,求得的Pareto最优解分布均匀。IEEE30节点测试系统的算例结果表明所提出的算法在多目标无功优化中具有良好的效果,为各目标之间的权衡分析提供了有效工具,是一种求解多目标无功优化问题的有效方法。 展开更多
关键词 强度pareto进化算法 pareto最优解 静态电压稳定裕度 多目标无功优化 电力系统 IEEE30节点测试系统
下载PDF
基于强度Pareto进化算法的最优潮流 被引量:2
12
作者 刘耀年 于晶 +2 位作者 禹冰 王颖 张伟民 《电测与仪表》 北大核心 2011年第9期53-56,72,共5页
为更好地解决电力系统最优潮流问题,分析了当前多目标优化算法存在的缺陷,将强度Pareto进化算法(SPEA)应用于最优潮流中。SPEA是一种新型的多目标进化算法,具有收敛速度快,参数设置少,全局搜索能力强,所求的Pareto最优解分布均匀等优点... 为更好地解决电力系统最优潮流问题,分析了当前多目标优化算法存在的缺陷,将强度Pareto进化算法(SPEA)应用于最优潮流中。SPEA是一种新型的多目标进化算法,具有收敛速度快,参数设置少,全局搜索能力强,所求的Pareto最优解分布均匀等优点。通过对IEEE30节点测试系统运用SPEA和混沌粒子群方法(CPSO)的计算结果对比,表明SPEA应用于最优潮流,为各目标函数之间的权衡分析提供了有效工具,是一种求解最优潮流问题的有效方法。 展开更多
关键词 电力系统 最优潮流 强度pareto进化算法 pareto最优解
下载PDF
基于强度Pareto进化的注塑机注射性能多目标优化 被引量:3
13
作者 李中凯 谭建荣 +1 位作者 冯毅雄 裘乐淼 《计算机集成制造系统》 EI CSCD 北大核心 2007年第11期2162-2168,2183,共8页
为实现大型注塑机注射性能的优化设计,构建了注射压力、注射速率和注射功率优化模型,应用多目标进化算法,系统分析了影响注射性能的各方面因素。改进强度Pareto进化算法,引入模糊C均值聚类,加快外部种群的聚类过程。采用约束Pareto支配... 为实现大型注塑机注射性能的优化设计,构建了注射压力、注射速率和注射功率优化模型,应用多目标进化算法,系统分析了影响注射性能的各方面因素。改进强度Pareto进化算法,引入模糊C均值聚类,加快外部种群的聚类过程。采用约束Pareto支配和浮点数、二进制混合染色体编码策略,一次运行就能求得分布均匀的Pa-reto最优解集,并使用基于集合理论的方法选择一个最优解。试验分析表明:结合了强度Pareto进化算法与模糊C均值聚类方法的混合算法在提高注射综合性能的同时,能够获得比线性加权法分布性更好的Pareto前沿;且与强度Pareto进化算法相比,显著缩短了运算时间,具有较高的效率与鲁棒性。 展开更多
关键词 强度pareto进化算法 模糊C均值聚类 多目标优化 大型注射成型机 注射性能模型
下载PDF
基于强度Pareto进化算法的双足机器人步态规划 被引量:1
14
作者 毕盛 庄钟杰 闵华清 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第10期68-73,共6页
为了获得良好的双足机器人步行模式,提出了以步行过程中机器人的稳定性、移动性和能耗为目标的步态规划多目标优化方法.该方法基于倒立摆模型产生基本步态,并使用罚函数法和改进的强度Pareto进化算法(SPEA2)在可行域中求得基于基本步态... 为了获得良好的双足机器人步行模式,提出了以步行过程中机器人的稳定性、移动性和能耗为目标的步态规划多目标优化方法.该方法基于倒立摆模型产生基本步态,并使用罚函数法和改进的强度Pareto进化算法(SPEA2)在可行域中求得基于基本步态的Pareto解集,从而找出最优解.最后在Matlab6.5仿真环境下进行步态仿真,并将产生的步态应用于SCUT-I型仿人机器人,实现了平均步行速度为0.26m/s的稳定行走. 展开更多
关键词 仿人机器人 步态规划 多目标进化算法 强度pareto进化算法
下载PDF
Data Structures in Multi-Objective Evolutionary Algorithms 被引量:1
15
作者 Najwa Altwaijry Mohamed El Bachir Menai 《Journal of Computer Science & Technology》 SCIE EI CSCD 2012年第6期1197-1210,共14页
Data structures used for an algorithm can have a great impact on its performance, particularly for the solution of large and complex problems, such as multi-objective optimization problems (MOPs). Multi-objective ev... Data structures used for an algorithm can have a great impact on its performance, particularly for the solution of large and complex problems, such as multi-objective optimization problems (MOPs). Multi-objective evolutionary algorithms (MOEAs) are considered an attractive approach for solving MOPs~ since they are able to explore several parts of the Pareto front simultaneously. The data structures for storing and updating populations and non-dominated solutions (archives) may affect the efficiency of the search process. This article describes data structures used in MOEAs for realizing populations and archives in a comparative way, emphasizing their computational requirements and general applicability reported in the original work. 展开更多
关键词 multi-objective evolutionary algorithm data structure pareto front ARCHIVE POPULATION
原文传递
考虑风电条件风险的水火风联合调度模型及求解
16
作者 张彬桥 张松甲 +3 位作者 冉远航 李述喻 杨文娟 余泽发 《太阳能学报》 EI CAS CSCD 北大核心 2024年第4期394-403,共10页
在“双碳”战略和高比例可再生能源并网政策背景下,为准确量化风电等新能源消纳成本及其随机性造成的风险损失以支持电力调度决策,采用CVaR建模风电随机性造成的弃风和弃负荷条件风险值,并应用Copula函数计算连续马尔可夫链风速模型预... 在“双碳”战略和高比例可再生能源并网政策背景下,为准确量化风电等新能源消纳成本及其随机性造成的风险损失以支持电力调度决策,采用CVaR建模风电随机性造成的弃风和弃负荷条件风险值,并应用Copula函数计算连续马尔可夫链风速模型预测风电出力,建立风电不确定风险损失、发电成本和污染排放最小的水火风电短期多目标调度模型。并通过可变外部种群规模、增强局部搜索能力和基于K近邻距离的精英种群淘汰规则3方面改进SPEA2算法以对该模型进行高效求解。仿真结果显示CVaR能很好建模风电不确定风险,并通过改进SPEA2找到更好的Pareto最优解集。 展开更多
关键词 多目标优化 风电 不确定性 条件风险价值 改进SPEA2
原文传递
含多电解槽的新能源制氢能量管理优化 被引量:2
17
作者 陈磊磊 年珩 +3 位作者 赵建勇 范彩兄 周军 石生超 《电力工程技术》 北大核心 2024年第2期2-10,共9页
新能源制氢系统是提升风能、太阳能等新能源消纳的有效途径。目前国内外关于电解槽能量管理的研究以单电解槽为主。单电解槽能量管理未考虑电解槽非线性的工作特性,难以兼顾多个电解槽制氢效率,影响系统经济性。文中针对含有多电解槽的... 新能源制氢系统是提升风能、太阳能等新能源消纳的有效途径。目前国内外关于电解槽能量管理的研究以单电解槽为主。单电解槽能量管理未考虑电解槽非线性的工作特性,难以兼顾多个电解槽制氢效率,影响系统经济性。文中针对含有多电解槽的新能源制氢系统的能量管理问题进行了研究,以新能源消纳率、经济收益、制氢率为目标,考虑单个电解槽运行特性以及生产约束条件,建立包含风电、光伏、蓄电池、多电解槽的能量管理优化模型,并采用强度Pareto进化算法2(strength Pareto evolutionary algorithm 2,SPEA2)求解多目标优化问题。仿真研究表明,文中所提能量管理策略能够实现新能源发电的100%消纳,单位制氢收益可提升5.15%。因此,对多电解槽制氢系统进行有效的能量管理有助于提高制氢效率,可有效克服单电解槽运行及能量管理的不足。 展开更多
关键词 多电解槽 能量管理 制氢收益 新能源制氢系统 强度pareto进化算法2(SPEA2) 并网场景
下载PDF
基于两阶段邻域搜索的污水处理过程智能优化控制
18
作者 李洪澎 周平 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第9期1569-1577,共9页
为了更好地平衡污水处理过程中出水水质与能耗的关系,本文提出一种基于两阶段邻域搜索的污水处理过程智能优化控制方法.首先,建立以能耗和出水水质为优化目标的多目标优化模型;其次,提出一种基于两阶段邻域搜索的SPEA2(2-NS-SPEA2)对所... 为了更好地平衡污水处理过程中出水水质与能耗的关系,本文提出一种基于两阶段邻域搜索的污水处理过程智能优化控制方法.首先,建立以能耗和出水水质为优化目标的多目标优化模型;其次,提出一种基于两阶段邻域搜索的SPEA2(2-NS-SPEA2)对所建立的模型进行优化,通过对外部档案集中稀疏解的周围进行两阶段邻域搜索,并利用替代策略对外部档案集进行更新,提高算法的优化性能,获得质量更高的硝态氮浓度和溶解氧浓度的优化设定值;最后,利用PID控制器跟踪控制所确定的优化设定值,以保证优化方法的准确实施.污水处理过程运行优化控制实验表明:所提方法能够在保证出水水质满足排放标准的前提下,有效地净化水质、降低污水处理过程中产生的能耗. 展开更多
关键词 污水处理过程 能耗 水质 改进强度帕累托算法(SPEA2)
下载PDF
基于帕累托最优的配电网多目标规划 被引量:47
19
作者 盛四清 范林涛 +1 位作者 李兴 檀晓林 《电力系统自动化》 EI CSCD 北大核心 2014年第15期51-57,共7页
提出了一种能够反映配电网结构合理程度的可靠性指标——网络风险指数,并建立了以配电网投资费用、网络损耗和网络风险指数为目标函数,综合考虑经济性和可靠性的配电网规划模型。设计了一种基于节点关联矩阵的网络修复算法,能够对随机... 提出了一种能够反映配电网结构合理程度的可靠性指标——网络风险指数,并建立了以配电网投资费用、网络损耗和网络风险指数为目标函数,综合考虑经济性和可靠性的配电网规划模型。设计了一种基于节点关联矩阵的网络修复算法,能够对随机生成的网络中的孤岛、孤链和闭环进行检测和修复,使网络满足配电网辐射状要求。对强度帕累托进化算法进行了改进,给出了新的适应度函数,以提高算法的搜索速度和搜索能力,并利用逼近理想解排序法(TOPSIS)对帕累托前沿中的个体进行排序,筛选出最优方案。最后,对一个54节点配电网进行规划,结果表明网络风险指数与配电网的停电损失具有极强的线性相关性,其可以作为表征配电网可靠性的指标;与传统强度帕累托进化算法相比,所提改进算法具有较强的搜索能力和较快的搜索速度。 展开更多
关键词 配电网规划 网络风险指数 网络修复 帕累托最优 强度帕累托进化算法
下载PDF
智能电网经济运行的多目标调度优化策略(英文) 被引量:31
20
作者 郑漳华 艾芊 +3 位作者 徐伟华 施婕 解大 韩利 《电网技术》 EI CSCD 北大核心 2010年第2期7-13,共7页
探讨了新形势下电网监控调度和优化运行的问题。根据智能电网安全、经济、清洁的特点,以有功网损、污染气体排放量和系统电压稳定程度3个指标对电网的安全性、经济性和环保性进行量化评估,并将双馈感应发电机的模型加入到潮流计算的模型... 探讨了新形势下电网监控调度和优化运行的问题。根据智能电网安全、经济、清洁的特点,以有功网损、污染气体排放量和系统电压稳定程度3个指标对电网的安全性、经济性和环保性进行量化评估,并将双馈感应发电机的模型加入到潮流计算的模型中,考虑了大容量风电并网对系统的影响,将上述指标作为优化目标,用强度Pareto进化算法对优化模型进行求解,并对上述3个优化目标进行寻优,很好地解决了智能电网中多方面的监测和多目标优化运行问题,为智能电网的监控运行提供了思路。 展开更多
关键词 智能电网 监控指标 双馈感应发电机 强度pareto进化算法 多目标优化
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部