Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response.Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice ...Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response.Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region–specific,particularly involving the corticolimbic system,including the ventral tegmental area,nucleus accumbens,prefrontal cortex,amygdala,and hippocampus.Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology.In this review,we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression.We focused on associated molecular pathways and neural circuits,with special attention to the brain-derived neurotrophic factor–tropomyosin receptor kinase B signaling pathway and the ventral tegmental area–nucleus accumbens dopamine circuit.We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature,severity,and duration of stress,especially in the above-mentioned brain regions of the corticolimbic system.Therefore,BDNF might be a biological indicator regulating stress-related processes in various brain regions.展开更多
Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post–traumatic stress disorder. Monoamines and amino acids are important types...Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post–traumatic stress disorder. Monoamines and amino acids are important types of neurotransmitters. Our previous results have shown that disco-interacting protein 2 homolog A(Dip2a) knockout mice exhibit brain development disorders and abnormal amino acid metabolism in serum. This suggests that DIP2A is involved in the metabolism of amino acid–associated neurotransmitters. Therefore, we performed targeted neurotransmitter metabolomics analysis and found that Dip2a deficiency caused abnormal metabolism of tryptophan and thyroxine in the basolateral amygdala and medial prefrontal cortex. In addition, acute restraint stress induced a decrease in 5-hydroxytryptamine in the basolateral amygdala. Additionally, Dip2a was abundantly expressed in excitatory neurons of the basolateral amygdala, and deletion of Dip2a in these neurons resulted in hopelessness-like behavior in the tail suspension test. Altogether, these findings demonstrate that DIP2A in the basolateral amygdala may be involved in the regulation of stress susceptibility. This provides critical evidence implicating a role of DIP2A in affective disorders.展开更多
Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stre...Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.展开更多
A steady rise in the overall population is creating an overburden on crops due to their global demand.On the other hand,given the current climate change and population growth,agricultural practices established during ...A steady rise in the overall population is creating an overburden on crops due to their global demand.On the other hand,given the current climate change and population growth,agricultural practices established during the Green Revolution are no longer viable.Consequently,innovative practices are the prerequisite of the time struggle with the rising global food demand.The potential of nanotechnology to reduce the phytotoxic effects of these ecological restrictions has shown significant promise.Nanoparticles(NPs)typically enhance plant resilience to stressors by fortifying the physical barrier,optimizing photosynthesis,stimulating enzymatic activity for defense,elevating the concentration of stress-resistant compounds,and activating the expression of genes associated with defense mechanisms.In this review,we thoroughly cover the uptake and translocations of NPs crops and their potential valuable functions in enhancing plant growth and development at different growth stages.Additionally,we addressed how NPs improve plant resistance to biotic and abiotic stress.Generally,this review presents a thorough understanding of the significance of NPs in plants and their prospective value for plant antioxidant and crop development.展开更多
Emerging evidence indicates that childhood stressors, such as familial conflict, bullying, academic pressure, and traumatic events, can significantly worsen inflammatory skin conditions like atopic dermatitis (AD) and...Emerging evidence indicates that childhood stressors, such as familial conflict, bullying, academic pressure, and traumatic events, can significantly worsen inflammatory skin conditions like atopic dermatitis (AD) and psoriasis. This review explores the underlying neuroimmune pathways that link stress to skin inflammation in children, focusing on the role of the hypothalamic-pituitary-adrenal (HPA) axis and stress-induced cytokine production. Studies have shown that chronic psychological stress leads to dysregulation of the HPA axis, resulting in elevated cortisol levels, which paradoxically impair skin barrier function and upregulate pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β. Specific stressors, such as bullying, have been associated with heightened immune responses, increasing inflammation in the skin. For example, research has demonstrated that children who experience social stressors show elevated levels of C-reactive protein (CRP) and other markers of systemic inflammation, which directly correlate with skin condition flare-ups. Furthermore, exposure to early life stress has been linked to long-term alterations in immune function, perpetuating chronic inflammation even in the absence of ongoing stress. Future research should focus on longitudinal studies assessing how the timing, duration, and type of stressors influence skin condition severity, alongside evaluating interventions like cognitive-behavioral therapy (CBT) and stress management techniques. By addressing these childhood stressors, there is potential to not only mitigate skin condition flares but also reduce the long-term health consequences of chronic inflammation leading to therapeutic strategies that emphasize mental health alongside traditional dermatological treatments.展开更多
Background:Weight-related self-stigma(WRSS)is prevalent among individuals with different types of weight status and is associated with a range of negative health outcomes.Social support and coping models explain how i...Background:Weight-related self-stigma(WRSS)is prevalent among individuals with different types of weight status and is associated with a range of negative health outcomes.Social support and coping models explain how individuals may use different coping methods to deal with their mental health needs.Psychological distress(e.g.,depression and stress)could lead to overuse of social media and smartphones.When using social media or smartphones,individuals are likely to be exposed to negative comments regarding weight/shape/size posted on the social media.Consequently,individuals who experience problematic social media use(PSMU)or problematic smartphone use(PSPU)may develop WRSS.Therefore,the present study examined the roles of PSMU and PSPU as mediators in the relationship between psychological distress and WRSS.Methods:Using convenience sampling via an online survey,622 participants with a mean age of 23.70 years(SD=4.33)completed questions assessing sociodemographic variables,psychological distress,PSMU,PSPU,WRSS,and self-reported weight and height.Results:The hierarchical regression models showed that sex(β=0.08,p=0.01),BMI(β=0.39,p<0.001),depression(β=0.21,p=0.001),stress(β=0.18,p=0.01),PSMU(β=0.09,p=0.045),and PSPU(β=0.14,p=0.001)were significant factors for WRSS.Conclusion:The mediation models showed that both PSMU and PSPU were significant mediators in the relationships between depression and stress with WRSS.The present findings provide some evidence for understanding WRSS and has important implications for developing interventions to reduce its negative impact on individuals’health and well-being.展开更多
Objectives:Recently,how family-related factors influence employees’mental health has garnered increasing attention from researchers and practitioners.Drawing on the cognitive appraisal theory of stress,this study aim...Objectives:Recently,how family-related factors influence employees’mental health has garnered increasing attention from researchers and practitioners.Drawing on the cognitive appraisal theory of stress,this study aims to examine how and when family financial stress affects the employees’mental health and investigate the mediating role of performance stress and the moderating role of workplace competition.Methods:A cross-sectional survey was conducted with 23,520 Chinese employees by using a voluntary and anonymous structured questionnaire,which included family financial stress,performance stress,symptom checklist 90(SCL-90)scale,and workplace competition.The data were analyzed using SPSS 26.0 software and macro PROCESS.Results:The analysis of the mediating effect showed that performance stress mediated the relationship between family financial stress and psychological depression(b=0.064,SE=0.002,p<0.0001)and physical somatization(b=0.042,SE=0.002,p<0.0001),indicating spillover effects of stress from home to workplace.The moderating mediation analysis revealed that the crossover effects were amplified by workplace competition.For psychological depression,index of moderated mediation was:b=0.012,SE=0.001,p<0.001;For physical somatization,index of moderated mediation was:b=0.008,SE=0.001,p<0.001.Conclusion:Performance stress acts as a mediator in the link between family financial stress and mental health.Furthermore,the mediating effects was amplified by workplace competition.These findings suggest that workplace competition may serve to exacerbate the negative spillover effects from home to work through the mechanism of workrelated stress.Organizations should consider implementing supportive measures to mitigate family financial stress,such as providing financial counseling and fostering a collaborative work environment,to reduce the adverse effects of family financial stress on employees’mental health.展开更多
Cytokinins are plant hormones that are essential for plant growth and development and are involved in a variety of processes.They are synthesized by the modification of adenine with an isoprenoid chain,resulting in cy...Cytokinins are plant hormones that are essential for plant growth and development and are involved in a variety of processes.They are synthesized by the modification of adenine with an isoprenoid chain,resulting in cytokinins such as isopentenyladenine and zeatin.The levels of these hormones are regulated by conjugation,degradation and oxidation processes that modulate their activity.Cytokinins are perceived by cells through specific receptors that,when activated,trigger signaling cascades responsible for regulating the expression of genes critical for development.In addition,cytokinins interact with other hormones,such as auxins,to coordinate plant growth and architecture.They are transported by the xylem and phloem,allowing them to be distributed to different parts of the plant and to regulate processes such as cell division,morphogenesis and inhibition of leaf senescence,thereby prolonging the vegetative phase.Cytokinins also play a role in plant responses to biotic and abiotic stresses.They influence the expression of defense genes against pathogens and pests and adjust plant metabolism and growth in response to adverse conditions such as drought and salinity.Cytokinins interact in an integrated manner with other stress hormones,such as abscisic acid and ethylene,to coordinate plant responses to environmental challenges.In agriculture,the manipulation of cytokinins,whether by external application or genetic modification,shows great potential for increasing crop yields and improving plant resistance to stress.Advances in molecular biology and gene editing offer new opportunities to precisely modify these functions.This review elucidates recent research on cytokinins,covering their mechanisms of action,interactions with other hormones,and applications in agriculture.展开更多
Accurate acquisition of the rock stress is crucial for various rock engineering applications.The hollow inclusion (HI) technique is widely used for measuring in-situ rock stress.This technique calculates the stress te...Accurate acquisition of the rock stress is crucial for various rock engineering applications.The hollow inclusion (HI) technique is widely used for measuring in-situ rock stress.This technique calculates the stress tensor by measuring strain using an HI strain cell.However,existing analytical solutions for stress calculation based on an HI strain cell in a double-layer medium are not applicable when an HI strain cell is used in a three-layer medium,leading to erroneous stress calculations.To address this issue,this paper presents a method for calculating stress tensors in a three-layer medium using numerical simulations,specifically by obtaining a constitutive matrix that relates strain measurements to stress tensors in a three-layer medium.Furthermore,using Latin hypercube sampling (LHS) and orthogonal experimental design strategies,764 groups of numerical models encompassing various stress measurement scenarios have been established and calculated using FLAC^(3D)software.Finally,a surrogate model based on artificial neural network (ANN) was developed to predict constitutive matrices,achieving a goodness of fit (R^(2)) of 0.999 and a mean squared error (MSE) of 1.254.A software program has been developed from this surrogate model for ease of use in practical engineering applications.The method’s accuracy was verified through numerical simulations,analytical solution and laboratory experiment,demonstrating its effectiveness in calculating stress in a three-layer medium.The surrogate model was applied to calculate mining-induced stress in the roadway roof rock of a coal mine,a typical case for stress measurement in a three-layer medium.Errors in stress calculations arising from the use of existing analytical solutions were corrected.The study also highlights the significant errors associated with using double-layer analytical solutions in a three-layer medium,which could lead to inappropriate engineering design.展开更多
This paper presents some results of stress field reconstruction in the Nankai Trough subduction zone located within the area bounded by 136.3°–137°E and 33°–33.5°N where 12 scientific wells were ...This paper presents some results of stress field reconstruction in the Nankai Trough subduction zone located within the area bounded by 136.3°–137°E and 33°–33.5°N where 12 scientific wells were drilled during Nankai Trough Seismogenic Zone Experiment expeditions of the Integrated Ocean Drilling Program and International Ocean Discovery Program.We use the logging data to derive orientations of the maximum principal stress axis at different depths followed by the reconstruction of stress orientations in each individual well.From these data,we further derive average stress orientations along the wells and use these data to reconstruct the stress trajectory field taking into account the presence of Megasplay fault.The results are shown as the stress trajectories of the maximum principal horizontal stresses.They are generally consistent with data the World Stress Map Project data.展开更多
Understanding the stress distribution derived from monitoring the principal stress(PS)in slopes is of great importance.In this study,a miniature sensor for quantifying the two-dimensional(2D)PS in landslide model test...Understanding the stress distribution derived from monitoring the principal stress(PS)in slopes is of great importance.In this study,a miniature sensor for quantifying the two-dimensional(2D)PS in landslide model tests is proposed.The fundamental principle and design of the sensor are demonstrated.The sensor comprises three earth pressure gages and one gyroscope,with the utilization of three-dimensional(3D)printing technology.The difficulties of installation location during model preparation and sensor rotation during testing can be effectively overcome using this sensor.Two different arrangements of the sensors are tested in verification tests.Additionally,the application of the sensor in an excavated-induced slope model is tested.The results demonstrate that the sensor exhibits commendable performance and achieves a desirable level of accuracy,with a principal stress angle error of±5°in the verification tests.The stress transformation of the slope model,generated by excavation,is demonstrated in the application test by monitoring the two miniature principal stress(MPS)sensors.The sensor has a significant potential for measuring primary stress in landslide model tests and other geotechnical model experiments.展开更多
Evaluation of hydromechanical shear behavior of unsaturated soils is still a challenging issue. The time and cost needed for conducting precise experimental investigation on shear behavior of unsaturated soils have en...Evaluation of hydromechanical shear behavior of unsaturated soils is still a challenging issue. The time and cost needed for conducting precise experimental investigation on shear behavior of unsaturated soils have encouraged several investigators to develop analytical, empirical, or semi-empirical models for predicting the shear behavior of unsaturated soils. However, most of the previously proposed models are for specimens subjected to the isotropic state of stress, without considering the effect of initial shear stress. In this study, a hydromechanical constitutive model is proposed for unsaturated collapsible soils during shearing, with consideration of the effect of the initial shear stress. The model implements an effective stress-based disturbed state concept (DSC) to predict the stress-strain behavior of the soil. Accordingly, material/state variables were defined for both the start of the shearing stage and the critical state of the soil. A series of laboratory tests was performed using a fully automated unsaturated triaxial device to verify the proposed model. The experimental program included 23 suction-controlled unsaturated triaxial shear tests on reconstituted specimens of Gorgan clayey loess wetted to different levels of suctions under both isotropic and anisotropic stress states. The results show excellent agreement between the prediction by the proposed model and the experimental results.展开更多
Fracture(fault)reactivation can lead to dynamic geological hazards including earthquakes,rock collapses,landslides,and rock bursts.True triaxial compression tests were conducted to analyze the fracture reactivation pr...Fracture(fault)reactivation can lead to dynamic geological hazards including earthquakes,rock collapses,landslides,and rock bursts.True triaxial compression tests were conducted to analyze the fracture reactivation process under two different orientations of σ_(2),i.e.σ_(2) parallel to the fracture plane(Scheme 2)and σ_(2) cutting through the fracture plane(Scheme 3),under varying σ_(3) from 10 MPa to 40 MPa.The peak or fracture reactivation strength,deformation,failure mode,and post-peak mechanical behavior of intact(Scheme 1)and pre-fractured(Schemes 2 and 3)specimens were also compared.Results show that for intact specimens,the stress remains nearly constant in the residual sliding stage with no stick-slip,and the newly formed fracture surface only propagates along the σ_(2) direction when σ_(3) ranges from 10 MPa to 30 MPa,while it extends along both σ_(2) and σ_(3) directions when σ_(3) increases to 40 MPa;for the pre-fractured specimens,the fractures are usually reactivated under all the σ_(3) levels in Scheme 2,but fracture reactivation only occurs when σ_(3) is greater than 25 MPa in Scheme 3,below which new faulting traversing the original macro fracture occurs.In all the test schemes,both ε_(2) and ε_(3) experience an accumulative process of elongation,after which an abrupt change occurs at the point of the final failure;the degree of this change is dependent on the orientation of the new faulting or the slip direction of the original fracture,and it is generally more than 10 times larger in the slip direction of the original fracture than in the non-slip direction.Besides,the differential stress(peak stress)required for reactivation and the post-peak stress drop increase with increasing σ_(3).Post-peak stress drop and residual strength in Scheme 3 are generally greater than those in Scheme 2 at the same σ_(3) value.Our study clearly shows that intermediate principal stress orientation not only affects the fracture reactivation strength but also influences the slip deformation and failure modes.These new findings facilitate the mitigation of dynamic geological hazards associated with fracture and fault slip.展开更多
Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this cha...Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries.展开更多
Two long-term slow slip events(SSEs) in Lower Cook Inlet, Alaska, were identified by Li SS et al.(2016). The earlier SSE lasted at least 9 years with M_(w) ~7.8 and had an average slip rate of ~82 mm/year. The latter ...Two long-term slow slip events(SSEs) in Lower Cook Inlet, Alaska, were identified by Li SS et al.(2016). The earlier SSE lasted at least 9 years with M_(w) ~7.8 and had an average slip rate of ~82 mm/year. The latter SSE, occurring in a similar area, lasted approximately 2 years with M_(w) ~7.2 and an average slip rate of ~91 mm/year. To test whether these SSEs triggered earthquakes near the slow slip area, we calculated the Coulomb stressing rate changes on receiver faults by using two fault geometry definitions: nodal planes of focal mechanism solutions of past earthquakes, and optimally oriented fault planes. Regions in the shallow slab(30–60 km) that experienced a significant increase in the Coulomb stressing rate due to slip by the SSEs showed an increase in seismicity rates during SSE periods. No correlation was found in the volumes that underwent a significant increase in the Coulomb stressing rate during the SSE within the crust and the intermediate slab. We modeled variations in seismicity rates by using a combination of the Coulomb stress transfer model and the framework of rate-and-state friction. Our model indicated that the SSEs increased the Coulomb stress changes on adjacent faults,thereby increasing the seismicity rates even though the ratio of the SSE stressing rate to the background stressing rate was small. Each long-term SSE in Alaska brought the megathrust updip of the SSE areas closer to failure by up to 0.1–0.15 MPa. The volumes of significant Coulomb stress changes caused by the Upper and Lower Cook Inlet SSEs did not overlap.展开更多
This study proposes an alternative calculation mode for stresses on the slip surface(SS).The calculation of the normal stress(NS)on the SS involves examining its composition and expanding its unknown using the Taylor ...This study proposes an alternative calculation mode for stresses on the slip surface(SS).The calculation of the normal stress(NS)on the SS involves examining its composition and expanding its unknown using the Taylor series.This expansion enables the reasonable construction of a function describing the NS on the SS.Additionally,by directly incorporating the nonlinear Generalized Hoke-Brown(GHB)strength criterion and utilizing the slope factor of safety(FOS)definition,a function of the shear stress on the SS is derived.This function considers the mutual feedback mechanism between the NS and strength parameters of the SS.The stress constraints conditions are then introduced at both ends of the SS based on the spatial stress relation of one point.Determining the slope FOS and stress solution for the SS involves considering the mechanical equilibrium conditions and the stress constraint conditions satisfied by the sliding body.The proposed approach successfully simulates the tension-shear stress zone near the slope top and provides an intuitive description of the concentration effect of compression-shear stress of the SS near the slope toe.Furthermore,compared to other methods,the present method demonstrates superior processing capabilities for the embedded nonlinear GHB strength criterion.展开更多
The stress gradient of surrounding rock and reasonable prestress of support are the keys to ensuring the stability of roadways.The elastic-plastic analytical solution for surrounding rock was derived based on unified ...The stress gradient of surrounding rock and reasonable prestress of support are the keys to ensuring the stability of roadways.The elastic-plastic analytical solution for surrounding rock was derived based on unified strength theory.A model for solving the stress gradient of the surrounding rock with the intermediate principal stress parameter b was established.The correctness and applicability of the solution for the stress gradient in the roadway surrounding rock was verified via multiple methods.Furthermore,the laws of stress,displacement,and the plastic zone of the surrounding rock with different b values and prestresses were revealed.As b increases,the stress gradient in the plastic zone increases,and the displacement and plastic zone radius decrease.As the prestress increases,the peak stress shifts toward the sidewalls,and the stress and stress gradient increments decrease.In addition,the displacement increment and plastic zone increment were proposed to characterize the support effect.The balance point of the plastic zone area appears before that of the displacement zone.The relationship between the stress gradient compensation coefficient and the prestress is obtained.This study provides a research method and idea for determining the reasonable prestress of support in roadways.展开更多
The generalized rheological tests on sandstone were conducted under both dynamic stress and seepage fields.The results demonstrate that the rheological strain of the specimen under increased stress conditions is great...The generalized rheological tests on sandstone were conducted under both dynamic stress and seepage fields.The results demonstrate that the rheological strain of the specimen under increased stress conditions is greater than that under creep conditions,indicating that the dynamic stress field significantly influences the rheological behaviours of sandstone.Following the rheological tests,the number of small pores in the sandstone decreased,while the number of medium-sized pores increased,forming new seepage channels.The high initial rheological stress accelerated fracture compression and the closure of seepage channels,resulting in reduction in the permeability of sandstone.Based on the principles of generalized rheology and the experimental findings,a novel rock rheological constitutive model incorporating both the dynamic stress field and seepage properties has been developed.Numerical simulations of surrounding rock deformation in geotechnical engineering were carried out using a secondary development version of this model,which confirmed the applicability of the generalized rheological numerical simulation method.These results provide theoretical support for the long-term stability evaluation of engineering rock masses and for predicting the deformation of surrounding rock.展开更多
Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cereb...Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury.展开更多
基金supported financially by the National Natural Science Foundation of China,No.82071272(to YZ).
文摘Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response.Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region–specific,particularly involving the corticolimbic system,including the ventral tegmental area,nucleus accumbens,prefrontal cortex,amygdala,and hippocampus.Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology.In this review,we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression.We focused on associated molecular pathways and neural circuits,with special attention to the brain-derived neurotrophic factor–tropomyosin receptor kinase B signaling pathway and the ventral tegmental area–nucleus accumbens dopamine circuit.We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature,severity,and duration of stress,especially in the above-mentioned brain regions of the corticolimbic system.Therefore,BDNF might be a biological indicator regulating stress-related processes in various brain regions.
基金supported by the STI 2030—Major Projects 2021ZD0204000,No.2021ZD0204003 (to XZ)the National Natural Science Foundation of China,Nos.32170973 (to XZ),32071018 (to ZH)。
文摘Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post–traumatic stress disorder. Monoamines and amino acids are important types of neurotransmitters. Our previous results have shown that disco-interacting protein 2 homolog A(Dip2a) knockout mice exhibit brain development disorders and abnormal amino acid metabolism in serum. This suggests that DIP2A is involved in the metabolism of amino acid–associated neurotransmitters. Therefore, we performed targeted neurotransmitter metabolomics analysis and found that Dip2a deficiency caused abnormal metabolism of tryptophan and thyroxine in the basolateral amygdala and medial prefrontal cortex. In addition, acute restraint stress induced a decrease in 5-hydroxytryptamine in the basolateral amygdala. Additionally, Dip2a was abundantly expressed in excitatory neurons of the basolateral amygdala, and deletion of Dip2a in these neurons resulted in hopelessness-like behavior in the tail suspension test. Altogether, these findings demonstrate that DIP2A in the basolateral amygdala may be involved in the regulation of stress susceptibility. This provides critical evidence implicating a role of DIP2A in affective disorders.
基金financially supported by the National Natural Science Foundation of China(No.52204084)the Open Research Fund of the State Key Laboratory of Coal Resources and safe Mining,CUMT,China(No.SKLCRSM 23KF004)+3 种基金the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China(No.FRF-IDRY-GD22-002)the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,China(No.QNXM20220009)the National Key R&D Program of China(Nos.2022YFC2905600 and 2022 YFC3004601)the Science,Technology&Innovation Project of Xiongan New Area,China(No.2023XAGG0061)。
文摘Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.
基金The authors extend their gratitude to the Deanship of Scientific Research(DSR),King Faisal University,Saudi Arabia,for funding the publication of this work(Project number:KFU250560).
文摘A steady rise in the overall population is creating an overburden on crops due to their global demand.On the other hand,given the current climate change and population growth,agricultural practices established during the Green Revolution are no longer viable.Consequently,innovative practices are the prerequisite of the time struggle with the rising global food demand.The potential of nanotechnology to reduce the phytotoxic effects of these ecological restrictions has shown significant promise.Nanoparticles(NPs)typically enhance plant resilience to stressors by fortifying the physical barrier,optimizing photosynthesis,stimulating enzymatic activity for defense,elevating the concentration of stress-resistant compounds,and activating the expression of genes associated with defense mechanisms.In this review,we thoroughly cover the uptake and translocations of NPs crops and their potential valuable functions in enhancing plant growth and development at different growth stages.Additionally,we addressed how NPs improve plant resistance to biotic and abiotic stress.Generally,this review presents a thorough understanding of the significance of NPs in plants and their prospective value for plant antioxidant and crop development.
文摘Emerging evidence indicates that childhood stressors, such as familial conflict, bullying, academic pressure, and traumatic events, can significantly worsen inflammatory skin conditions like atopic dermatitis (AD) and psoriasis. This review explores the underlying neuroimmune pathways that link stress to skin inflammation in children, focusing on the role of the hypothalamic-pituitary-adrenal (HPA) axis and stress-induced cytokine production. Studies have shown that chronic psychological stress leads to dysregulation of the HPA axis, resulting in elevated cortisol levels, which paradoxically impair skin barrier function and upregulate pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β. Specific stressors, such as bullying, have been associated with heightened immune responses, increasing inflammation in the skin. For example, research has demonstrated that children who experience social stressors show elevated levels of C-reactive protein (CRP) and other markers of systemic inflammation, which directly correlate with skin condition flare-ups. Furthermore, exposure to early life stress has been linked to long-term alterations in immune function, perpetuating chronic inflammation even in the absence of ongoing stress. Future research should focus on longitudinal studies assessing how the timing, duration, and type of stressors influence skin condition severity, alongside evaluating interventions like cognitive-behavioral therapy (CBT) and stress management techniques. By addressing these childhood stressors, there is potential to not only mitigate skin condition flares but also reduce the long-term health consequences of chronic inflammation leading to therapeutic strategies that emphasize mental health alongside traditional dermatological treatments.
基金supported in part by(received funding from)the Ministry of Science and Technology,Taiwan(MOST 110-2410-H-006-115,MOST 111-2410-H-006-100)the National Science and Technology Council,Taiwan(NSTC 112-2410-H-006-089-SS2)+1 种基金the Higher Education Sprout Project,the Ministry of Education at the Headquarters of University Advancement at the National Cheng Kung University(NCKU)the 2021 Southeast and South Asia and Taiwan Universities Joint Research Scheme(NCKU 31).
文摘Background:Weight-related self-stigma(WRSS)is prevalent among individuals with different types of weight status and is associated with a range of negative health outcomes.Social support and coping models explain how individuals may use different coping methods to deal with their mental health needs.Psychological distress(e.g.,depression and stress)could lead to overuse of social media and smartphones.When using social media or smartphones,individuals are likely to be exposed to negative comments regarding weight/shape/size posted on the social media.Consequently,individuals who experience problematic social media use(PSMU)or problematic smartphone use(PSPU)may develop WRSS.Therefore,the present study examined the roles of PSMU and PSPU as mediators in the relationship between psychological distress and WRSS.Methods:Using convenience sampling via an online survey,622 participants with a mean age of 23.70 years(SD=4.33)completed questions assessing sociodemographic variables,psychological distress,PSMU,PSPU,WRSS,and self-reported weight and height.Results:The hierarchical regression models showed that sex(β=0.08,p=0.01),BMI(β=0.39,p<0.001),depression(β=0.21,p=0.001),stress(β=0.18,p=0.01),PSMU(β=0.09,p=0.045),and PSPU(β=0.14,p=0.001)were significant factors for WRSS.Conclusion:The mediation models showed that both PSMU and PSPU were significant mediators in the relationships between depression and stress with WRSS.The present findings provide some evidence for understanding WRSS and has important implications for developing interventions to reduce its negative impact on individuals’health and well-being.
基金upported by the National Natural Science Foundation of China(project no.72272117).
文摘Objectives:Recently,how family-related factors influence employees’mental health has garnered increasing attention from researchers and practitioners.Drawing on the cognitive appraisal theory of stress,this study aims to examine how and when family financial stress affects the employees’mental health and investigate the mediating role of performance stress and the moderating role of workplace competition.Methods:A cross-sectional survey was conducted with 23,520 Chinese employees by using a voluntary and anonymous structured questionnaire,which included family financial stress,performance stress,symptom checklist 90(SCL-90)scale,and workplace competition.The data were analyzed using SPSS 26.0 software and macro PROCESS.Results:The analysis of the mediating effect showed that performance stress mediated the relationship between family financial stress and psychological depression(b=0.064,SE=0.002,p<0.0001)and physical somatization(b=0.042,SE=0.002,p<0.0001),indicating spillover effects of stress from home to workplace.The moderating mediation analysis revealed that the crossover effects were amplified by workplace competition.For psychological depression,index of moderated mediation was:b=0.012,SE=0.001,p<0.001;For physical somatization,index of moderated mediation was:b=0.008,SE=0.001,p<0.001.Conclusion:Performance stress acts as a mediator in the link between family financial stress and mental health.Furthermore,the mediating effects was amplified by workplace competition.These findings suggest that workplace competition may serve to exacerbate the negative spillover effects from home to work through the mechanism of workrelated stress.Organizations should consider implementing supportive measures to mitigate family financial stress,such as providing financial counseling and fostering a collaborative work environment,to reduce the adverse effects of family financial stress on employees’mental health.
基金funded by Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior(CAPES)[Funding Code 001],CAPES/BRASIL PDPG-POSDOC No.2930/2022.Conselho Nacional de Desenvolvimento Cientifico e Tecnologico(CNPq)Fundacao de Amparo a Pesquisa do Estado de Minas Gerais(FAPEMIG)[BPD-00571-22].
文摘Cytokinins are plant hormones that are essential for plant growth and development and are involved in a variety of processes.They are synthesized by the modification of adenine with an isoprenoid chain,resulting in cytokinins such as isopentenyladenine and zeatin.The levels of these hormones are regulated by conjugation,degradation and oxidation processes that modulate their activity.Cytokinins are perceived by cells through specific receptors that,when activated,trigger signaling cascades responsible for regulating the expression of genes critical for development.In addition,cytokinins interact with other hormones,such as auxins,to coordinate plant growth and architecture.They are transported by the xylem and phloem,allowing them to be distributed to different parts of the plant and to regulate processes such as cell division,morphogenesis and inhibition of leaf senescence,thereby prolonging the vegetative phase.Cytokinins also play a role in plant responses to biotic and abiotic stresses.They influence the expression of defense genes against pathogens and pests and adjust plant metabolism and growth in response to adverse conditions such as drought and salinity.Cytokinins interact in an integrated manner with other stress hormones,such as abscisic acid and ethylene,to coordinate plant responses to environmental challenges.In agriculture,the manipulation of cytokinins,whether by external application or genetic modification,shows great potential for increasing crop yields and improving plant resistance to stress.Advances in molecular biology and gene editing offer new opportunities to precisely modify these functions.This review elucidates recent research on cytokinins,covering their mechanisms of action,interactions with other hormones,and applications in agriculture.
基金funding support from the National Natural Science Foundation of China (Nos. 42477208 and 52079134)the Natural Science Foundation of Hubei Province, China (No. 2024AFA072)+2 种基金the Youth Innovation Promotion Association CAS (No. 2022332)the National Key R&D Program of China (No. 2024YFF0508203)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering Safety (Nos. SKLGME-JBGS2402 and SKLGME022022)。
文摘Accurate acquisition of the rock stress is crucial for various rock engineering applications.The hollow inclusion (HI) technique is widely used for measuring in-situ rock stress.This technique calculates the stress tensor by measuring strain using an HI strain cell.However,existing analytical solutions for stress calculation based on an HI strain cell in a double-layer medium are not applicable when an HI strain cell is used in a three-layer medium,leading to erroneous stress calculations.To address this issue,this paper presents a method for calculating stress tensors in a three-layer medium using numerical simulations,specifically by obtaining a constitutive matrix that relates strain measurements to stress tensors in a three-layer medium.Furthermore,using Latin hypercube sampling (LHS) and orthogonal experimental design strategies,764 groups of numerical models encompassing various stress measurement scenarios have been established and calculated using FLAC^(3D)software.Finally,a surrogate model based on artificial neural network (ANN) was developed to predict constitutive matrices,achieving a goodness of fit (R^(2)) of 0.999 and a mean squared error (MSE) of 1.254.A software program has been developed from this surrogate model for ease of use in practical engineering applications.The method’s accuracy was verified through numerical simulations,analytical solution and laboratory experiment,demonstrating its effectiveness in calculating stress in a three-layer medium.The surrogate model was applied to calculate mining-induced stress in the roadway roof rock of a coal mine,a typical case for stress measurement in a three-layer medium.Errors in stress calculations arising from the use of existing analytical solutions were corrected.The study also highlights the significant errors associated with using double-layer analytical solutions in a three-layer medium,which could lead to inappropriate engineering design.
文摘This paper presents some results of stress field reconstruction in the Nankai Trough subduction zone located within the area bounded by 136.3°–137°E and 33°–33.5°N where 12 scientific wells were drilled during Nankai Trough Seismogenic Zone Experiment expeditions of the Integrated Ocean Drilling Program and International Ocean Discovery Program.We use the logging data to derive orientations of the maximum principal stress axis at different depths followed by the reconstruction of stress orientations in each individual well.From these data,we further derive average stress orientations along the wells and use these data to reconstruct the stress trajectory field taking into account the presence of Megasplay fault.The results are shown as the stress trajectories of the maximum principal horizontal stresses.They are generally consistent with data the World Stress Map Project data.
基金supported by the National Nature Science Foundation of China(Grant No.42207216)the Major Program of the National Natural Science Foundation of China(Grant No.42090055)the National Nature Science Foundation of China(Grant No.42377182).
文摘Understanding the stress distribution derived from monitoring the principal stress(PS)in slopes is of great importance.In this study,a miniature sensor for quantifying the two-dimensional(2D)PS in landslide model tests is proposed.The fundamental principle and design of the sensor are demonstrated.The sensor comprises three earth pressure gages and one gyroscope,with the utilization of three-dimensional(3D)printing technology.The difficulties of installation location during model preparation and sensor rotation during testing can be effectively overcome using this sensor.Two different arrangements of the sensors are tested in verification tests.Additionally,the application of the sensor in an excavated-induced slope model is tested.The results demonstrate that the sensor exhibits commendable performance and achieves a desirable level of accuracy,with a principal stress angle error of±5°in the verification tests.The stress transformation of the slope model,generated by excavation,is demonstrated in the application test by monitoring the two miniature principal stress(MPS)sensors.The sensor has a significant potential for measuring primary stress in landslide model tests and other geotechnical model experiments.
文摘Evaluation of hydromechanical shear behavior of unsaturated soils is still a challenging issue. The time and cost needed for conducting precise experimental investigation on shear behavior of unsaturated soils have encouraged several investigators to develop analytical, empirical, or semi-empirical models for predicting the shear behavior of unsaturated soils. However, most of the previously proposed models are for specimens subjected to the isotropic state of stress, without considering the effect of initial shear stress. In this study, a hydromechanical constitutive model is proposed for unsaturated collapsible soils during shearing, with consideration of the effect of the initial shear stress. The model implements an effective stress-based disturbed state concept (DSC) to predict the stress-strain behavior of the soil. Accordingly, material/state variables were defined for both the start of the shearing stage and the critical state of the soil. A series of laboratory tests was performed using a fully automated unsaturated triaxial device to verify the proposed model. The experimental program included 23 suction-controlled unsaturated triaxial shear tests on reconstituted specimens of Gorgan clayey loess wetted to different levels of suctions under both isotropic and anisotropic stress states. The results show excellent agreement between the prediction by the proposed model and the experimental results.
基金funding support from the National Nature Science Foundation of China(Grant No.42272334)the National Key Research and Development Program of China(Grant No.2022YFE0137200)the Taishan Scholars Program(Grant No.2019RKB01083).
文摘Fracture(fault)reactivation can lead to dynamic geological hazards including earthquakes,rock collapses,landslides,and rock bursts.True triaxial compression tests were conducted to analyze the fracture reactivation process under two different orientations of σ_(2),i.e.σ_(2) parallel to the fracture plane(Scheme 2)and σ_(2) cutting through the fracture plane(Scheme 3),under varying σ_(3) from 10 MPa to 40 MPa.The peak or fracture reactivation strength,deformation,failure mode,and post-peak mechanical behavior of intact(Scheme 1)and pre-fractured(Schemes 2 and 3)specimens were also compared.Results show that for intact specimens,the stress remains nearly constant in the residual sliding stage with no stick-slip,and the newly formed fracture surface only propagates along the σ_(2) direction when σ_(3) ranges from 10 MPa to 30 MPa,while it extends along both σ_(2) and σ_(3) directions when σ_(3) increases to 40 MPa;for the pre-fractured specimens,the fractures are usually reactivated under all the σ_(3) levels in Scheme 2,but fracture reactivation only occurs when σ_(3) is greater than 25 MPa in Scheme 3,below which new faulting traversing the original macro fracture occurs.In all the test schemes,both ε_(2) and ε_(3) experience an accumulative process of elongation,after which an abrupt change occurs at the point of the final failure;the degree of this change is dependent on the orientation of the new faulting or the slip direction of the original fracture,and it is generally more than 10 times larger in the slip direction of the original fracture than in the non-slip direction.Besides,the differential stress(peak stress)required for reactivation and the post-peak stress drop increase with increasing σ_(3).Post-peak stress drop and residual strength in Scheme 3 are generally greater than those in Scheme 2 at the same σ_(3) value.Our study clearly shows that intermediate principal stress orientation not only affects the fracture reactivation strength but also influences the slip deformation and failure modes.These new findings facilitate the mitigation of dynamic geological hazards associated with fracture and fault slip.
基金funded by the National Key R&D Program of China(Grant No.2022YFC2903904)the National Natural Science Foundation of China(Grant Nos.51904057 and U1906208).
文摘Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries.
基金supported by the National Natural Science Foundation of China (Grant No. 42104001)。
文摘Two long-term slow slip events(SSEs) in Lower Cook Inlet, Alaska, were identified by Li SS et al.(2016). The earlier SSE lasted at least 9 years with M_(w) ~7.8 and had an average slip rate of ~82 mm/year. The latter SSE, occurring in a similar area, lasted approximately 2 years with M_(w) ~7.2 and an average slip rate of ~91 mm/year. To test whether these SSEs triggered earthquakes near the slow slip area, we calculated the Coulomb stressing rate changes on receiver faults by using two fault geometry definitions: nodal planes of focal mechanism solutions of past earthquakes, and optimally oriented fault planes. Regions in the shallow slab(30–60 km) that experienced a significant increase in the Coulomb stressing rate due to slip by the SSEs showed an increase in seismicity rates during SSE periods. No correlation was found in the volumes that underwent a significant increase in the Coulomb stressing rate during the SSE within the crust and the intermediate slab. We modeled variations in seismicity rates by using a combination of the Coulomb stress transfer model and the framework of rate-and-state friction. Our model indicated that the SSEs increased the Coulomb stress changes on adjacent faults,thereby increasing the seismicity rates even though the ratio of the SSE stressing rate to the background stressing rate was small. Each long-term SSE in Alaska brought the megathrust updip of the SSE areas closer to failure by up to 0.1–0.15 MPa. The volumes of significant Coulomb stress changes caused by the Upper and Lower Cook Inlet SSEs did not overlap.
基金Project(52278380)supported by the National Natural Science Foundation of ChinaProject(2023JJ30670)supported by the National Science Foundation of and Technology Major Project of Hunan Province,China。
文摘This study proposes an alternative calculation mode for stresses on the slip surface(SS).The calculation of the normal stress(NS)on the SS involves examining its composition and expanding its unknown using the Taylor series.This expansion enables the reasonable construction of a function describing the NS on the SS.Additionally,by directly incorporating the nonlinear Generalized Hoke-Brown(GHB)strength criterion and utilizing the slope factor of safety(FOS)definition,a function of the shear stress on the SS is derived.This function considers the mutual feedback mechanism between the NS and strength parameters of the SS.The stress constraints conditions are then introduced at both ends of the SS based on the spatial stress relation of one point.Determining the slope FOS and stress solution for the SS involves considering the mechanical equilibrium conditions and the stress constraint conditions satisfied by the sliding body.The proposed approach successfully simulates the tension-shear stress zone near the slope top and provides an intuitive description of the concentration effect of compression-shear stress of the SS near the slope toe.Furthermore,compared to other methods,the present method demonstrates superior processing capabilities for the embedded nonlinear GHB strength criterion.
基金Project(52274130)supported by the National Natural Science Foundation of ChinaProject(ZR2024ZD22)supported by the Major Basic Research Project of the Shandong Provincial Natural Science Foundation,China+2 种基金Project(2023375)supported by the Guizhou University Research and Innovation Team,ChinaProject(Leading Fund(2023)09)supported by the Natural Science Research Fund of Guizhou University,ChinaProject(JYBSYS2021101)supported by the Open Fund of Key Laboratory of Safe and Effective Coal Mining,Ministry of Education,China。
文摘The stress gradient of surrounding rock and reasonable prestress of support are the keys to ensuring the stability of roadways.The elastic-plastic analytical solution for surrounding rock was derived based on unified strength theory.A model for solving the stress gradient of the surrounding rock with the intermediate principal stress parameter b was established.The correctness and applicability of the solution for the stress gradient in the roadway surrounding rock was verified via multiple methods.Furthermore,the laws of stress,displacement,and the plastic zone of the surrounding rock with different b values and prestresses were revealed.As b increases,the stress gradient in the plastic zone increases,and the displacement and plastic zone radius decrease.As the prestress increases,the peak stress shifts toward the sidewalls,and the stress and stress gradient increments decrease.In addition,the displacement increment and plastic zone increment were proposed to characterize the support effect.The balance point of the plastic zone area appears before that of the displacement zone.The relationship between the stress gradient compensation coefficient and the prestress is obtained.This study provides a research method and idea for determining the reasonable prestress of support in roadways.
基金supported and financed by Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology (No.2024yjrc96)Anhui Provincial University Excellent Research and Innovation Team Support Project (No.2022AH010053)+2 种基金National Key Research and Development Program of China (Nos.2023YFC2907602 and 2022YFF1303302)Anhui Provincial Major Science and Technology Project (No.202203a07020011)Open Foundation of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining (No.EC2023020)。
文摘The generalized rheological tests on sandstone were conducted under both dynamic stress and seepage fields.The results demonstrate that the rheological strain of the specimen under increased stress conditions is greater than that under creep conditions,indicating that the dynamic stress field significantly influences the rheological behaviours of sandstone.Following the rheological tests,the number of small pores in the sandstone decreased,while the number of medium-sized pores increased,forming new seepage channels.The high initial rheological stress accelerated fracture compression and the closure of seepage channels,resulting in reduction in the permeability of sandstone.Based on the principles of generalized rheology and the experimental findings,a novel rock rheological constitutive model incorporating both the dynamic stress field and seepage properties has been developed.Numerical simulations of surrounding rock deformation in geotechnical engineering were carried out using a secondary development version of this model,which confirmed the applicability of the generalized rheological numerical simulation method.These results provide theoretical support for the long-term stability evaluation of engineering rock masses and for predicting the deformation of surrounding rock.
基金supported by the National Natural Science Foundation of China,Nos.82260245(to YX),81660207(to YX),81960253(to YL),82160268(to YL),U1812403(to ZG)Science and Technology Projects of Guizhou Province,Nos.[2019]1440(to YX),[2020]1Z067(to WH)+1 种基金Cultivation Foundation of Guizhou Medical University,No.[20NSP069](to YX)Excellent Young Talents Plan of Guizhou Medical University,No.(2022)101(to WH)。
文摘Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury.