Owing to the complexity of the pipe-in-pipe (PIP) riser system in structure, load and restraint, many problems arise in the structural analysis of the system. This paper presents a new method for nonlinear static fini...Owing to the complexity of the pipe-in-pipe (PIP) riser system in structure, load and restraint, many problems arise in the structural analysis of the system. This paper presents a new method for nonlinear static finite element stress analysis of the PIP riser system. The finite element (FE) model of the PIP riser system is built via software AutoPIPE 6.1. According to the specialties of a variety of components in the PIP riser system, different elements are used so as to model the system accurately. Allowing for the complication in modeling the effects of seabed restraint, a technique based on the bilinear spring concept is developed to calculate the soil properties. Then, based on a pipeline project, the entire procedure of stress analysis is discussed in detail, including creation of an FE model, processing of input data and analysis of results. A wide range of loading schemes is investigated to ascertain that the stresses remain within the acceptable range of the pipe material strength. Finally, the effects of the location of flanges, the thermal expansion of submarine pipelines and the seabed restraint on stress distribution in the riser and expansion loop are studied, which are valuable for pipeline designers.展开更多
The linear isothermo-viscoelastic constitutive equation is established according to the principle of viscoelastic mechanics. Given the boundary conditions of the temperature field, the linear thermo-viscoelastic const...The linear isothermo-viscoelastic constitutive equation is established according to the principle of viscoelastic mechanics. Given the boundary conditions of the temperature field, the linear thermo-viscoelastic constitutive equation is established acording to the analysis of the thermorheologically simple. The stress analysis model is constructed on the base of some reasonable hypotheses which consider the restraint conditions of mold and the characteristics of injection molding in the post-filling stage. The mathematical model is calculated by the finite difference method. The results can help to predict the warpage of plastic products.展开更多
This study deals with stress analysis of annular rotating discs made of functionally graded materials(FGMs).Elasticity modulus and density of the discs are assumed to vary radially according to a power law function,...This study deals with stress analysis of annular rotating discs made of functionally graded materials(FGMs).Elasticity modulus and density of the discs are assumed to vary radially according to a power law function,but the material is of constant Poisson's ratio.A gradient parameter n is chosen between 0 and 1.0.When n = 0,the disc becomes a homogeneous isotropic material.Tangential and radial stress distributions and displacements on the disc are investigated for various gradient parameters n by means of the diverse elasticity modulus and density by using analytical and numerical solutions.Finally,a homogenous tangential stress distribution and the lowest radial stresses along the radius of a rotating disc are approximately obtained for the gradient parameter n = 1.0 compared with the homogeneous,isotropic case n = 0.This means that a disc made of FGMs has the capability of higher angular rotations compared with the homogeneous isotropic disc.展开更多
Thesubsea dynamic riser base (SDRB) is an important piece of equipment for the floating production platform mooring system.One end is connected to the rigid pipeline, carrying a rigid pipeline thermal expansion load...Thesubsea dynamic riser base (SDRB) is an important piece of equipment for the floating production platform mooring system.One end is connected to the rigid pipeline, carrying a rigid pipeline thermal expansion load and the other end is connected to a flexible riser, carrying the dynamic load of the flexible riser, so its function is a transition connection between the flexible riser and the rigid pipeline which fixes the flexible riser on the seabed. On the other hand. as a typical subsea product, the design will satisfythe requirements of the standards for subsea products. By studying the stress analysisphilosophy of the topside piping and subsea pipeline, a physical model and procedure for piping stress analysis of the SDRB have been established.The conditions of the adverse design load have been considered, and a combination of the static load from the rigid pipeline and the dynamic load flexibility has also been optimized. And a comparative analysis between the AMSE, DNV and API standards for piping stress with the checking rules has been done.Because theSDRB belongs to the subsea pipeline terminal product, the use of DNV standards to check its process piping stress is recommended. Finally, the process piping stress of the SDRB has been calculated, and the results show that the jacket pipe and the carrier pipe stress of the SDRB process piping satisfy the DNV standards as a whole.The bulkhead cannot be accurately simulated by the AutoPIPE software which uses the FEA software ANSYS inthe detailed analysis, but the checking results will still meet the requirements of the DNV standards.展开更多
Light beam deflections caused by stress or strain gradients are inves- tigated analytically and experimentally in homogeneous beam specimens which are subjected to a particular case of flexure with shear. This study i...Light beam deflections caused by stress or strain gradients are inves- tigated analytically and experimentally in homogeneous beam specimens which are subjected to a particular case of flexure with shear. This study is a generalization of the prior an alytical-experimental examination of strain-gradient light deflections produced in stressed plates, which had concentrated on the simplest case where in- formation of interest is collected along a line of symmetry of the stress field. Main purpose of the present investigation is to document the efficacy of the strain-gradient method in analysis of the general case of stress state. The most interesting stress state is that in a beam subjected to the Saint-Venant bending, where the transversal and the longitudinal axes of the beam are in pure shear. The obtained results are compared with the predictions of the developed analytical models and with the pre- dictions of Filon's stress function. The procedures of evaluating the photoelastic and material coefficients using strain-gradient techniques were tested positively.展开更多
The paper presents and discusses theoretical bases and methodology of development of two- and three-dimensional analytical and optical isodynes. Atten- tion is given to the theoretical admissibility of the major compo...The paper presents and discusses theoretical bases and methodology of development of two- and three-dimensional analytical and optical isodynes. Atten- tion is given to the theoretical admissibility of the major components of the physical and mathematical models which are taken as the theoretical basis of the isodynes, and of the related analytical and experimental procedures of stress analysis. Efficiency and reliability of the nondestructive isodyne stress analysis are discussed.展开更多
Stress analysis of cylindrical grid-stiffened composite shells was conducted under transverse loading,pure bending,torsion and axial compression under clamped-free boundary condition.Electrical strain gauges were empl...Stress analysis of cylindrical grid-stiffened composite shells was conducted under transverse loading,pure bending,torsion and axial compression under clamped-free boundary condition.Electrical strain gauges were employed to measure the strains in transverse loading case to validate the finite element analysis which was conducted using ANSYS software.Good agreement was obtained between the two methods.It was observed that stiffening the composite shell with helical ribs decreased the average equivalent Von Mises stress on the shell.The reduction of the stress seemed to be higher in the intersection of two ribs.It was also seen that the stress reduction ratio was higher when the structure was under bending compared to torsion and axial compression.The reduction ratio was approximately 75% in pure bending in the intersection point of the ribs,while it was approximately 25% in torsion.Therefore,it is concluded that the presence of the ribs is more effective under bending.Failure analysis was done using Tsai-Wu criterion.The ribs were observed to result in maximum and minimum increase in the failure load of the structure under transverse bending and torsional loading,respectively.展开更多
Based on the general displacement method and the basic hypothesis of the trial load method, a new advanced trial load method, the general displacement arch-cantilever element method, was proposed to derive the transfo...Based on the general displacement method and the basic hypothesis of the trial load method, a new advanced trial load method, the general displacement arch-cantilever element method, was proposed to derive the transformation relation of displacements and loads between the surface nodes and middle plane nodes. This method considers the nodes on upstream and downstream surfaces of the arch dam to be exit nodes (master nodes), and the middle plane nodes to be slave nodes. According to the derived displacement and load transformation matrices, the equilibrium equation treating the displacement of middle plane nodes as a basic unknown variable is transformed into one that treats the displacement of upstream and downstream nodes as a basic unknown variable. Because the surface nodes have only three degrees of freedom (DOF), this method can be directly coupled with the finite element method (FEM), which is used for foundation simulation to analyze the stress of the arch dam with consideration of dam-foundation interaction. Moreover, using the FEM, the nodal load of the arch dam can be easily obtained. Case studies of a typical cylindrical arch dam and the Wudongde arch dam demonstrate the robustness and feasibility of the proposed method.展开更多
Coronavirus(COVID-19)has impacted nearly every person across the globe either in terms of losses of life or as of lockdown.The current coronavirus(COVID-19)pandemic is a rare/special situation where people can express...Coronavirus(COVID-19)has impacted nearly every person across the globe either in terms of losses of life or as of lockdown.The current coronavirus(COVID-19)pandemic is a rare/special situation where people can express their feelings on Internet-based social networks.Social media is emerging as the biggest platform in recent years where people spend most of their time expressing themselves and their emotions.This research is based on gathering data from Twitter and analyzing the behavior of the people during the COVID-19 lockdown.The research is based on the logic expressed by people in this perspective and emotions for the suffering of COVID-19 and lockdown.In this research,we have used a Long Short-Term Memory(LSTM)network model with Convolutional Neural Network using Keras python deep-learning library to determine whether social media platform users are depressed in terms of positive,negative,or neutral emotional out bust based on their Twitter posts.The results showed that the model has 88.14%accuracy(representation of the correct prediction over the test dataset)after 10 epochs which most tweets showed had neutral polarity.The evaluation shows interesting results in positive(1),negative(–1),and neutral(0)emotions through different visualization.展开更多
In this study,the deformation and stress distribution of printed circuit board(PCB)with different thickness and composite materials under a shock loading were analyzed by the finite element analysis.The standard 8-lay...In this study,the deformation and stress distribution of printed circuit board(PCB)with different thickness and composite materials under a shock loading were analyzed by the finite element analysis.The standard 8-layer PCB subjected to a shock loading 1500 g was evaluated first.Moreover,the finite element models of the PCB with different thickness by stacking various number of layers were discussed.In addition to changing thickness,the core material of PCB was replaced from woven E-glass/epoxy to woven carbon fiber/epoxy for structural enhancement.The non-linear material property of copper foil was considered in the analysis.The results indicated that a thicker PCB has lower stress in the copper foil in PCBs under the shock loading.The stress difference between the thicker PCB(2.6 mm)and thinner PCB(0.6 mm)is around 5%.Using woven carbon fiber/epoxy as core material could lower the stress of copper foil around 6.6%under the shock loading 1500 g for the PCB with 0.6 mm thickness.On the other hand,the stress level is under the failure strength of PCBs with carbon fiber/epoxy core layers and thickness 2.6 mm when the peak acceleration changes from 1500 g to 5000 g.This study could provide a reference for the design and proper applications of the PCB with different thickness and composite materials.展开更多
Objective: To analyze the stress distribution of calcaneus with posterior articular facet compressed after fracture and talus during gait. Methods: A wedge under the posterior articular was transected from a normal fi...Objective: To analyze the stress distribution of calcaneus with posterior articular facet compressed after fracture and talus during gait. Methods: A wedge under the posterior articular was transected from a normal finite element model of calcaneus and talus to simulate malformation of compression of the posterior facet after fracture of calcaneus. The model was used to simulate for three subphases of the stance during the gait(heel strike, midstance, push off) and calculate the finite element. The results were compared with normal situation. Results: The stress distribution within the bone in situation of malformation was obtained and regions of elevated stresses for three subphases were located. The results were significantly different from that of normal situation. Conclusion: The simulation of calcaneus and talus in malformation has important clinic implication and can provide an insight into the factors contributing to many clinic pathogenic changes after fracture of calcaneus.展开更多
Flow?induced vibration plays a positive role on heat transfer enhancement. Meanwhile, it is also a negative factor for fatigue strength. Satisfying the fatigue strength is the primary prerequisite for heat transfer en...Flow?induced vibration plays a positive role on heat transfer enhancement. Meanwhile, it is also a negative factor for fatigue strength. Satisfying the fatigue strength is the primary prerequisite for heat transfer enhancement. This paper numerically studied the flow?induced vibration of planar elastic tube bundle based on a two?way fluid–structure interaction(FSI) calculation. The numerical calculation involved the unsteady, three?dimensional incompressible governing equations solved with finite volume approach and the dynamic balance equation of planar elastic tube bundle solved with finite element method combined with dynamic mesh scheme. The numerical approach was verified by comparing with the published experimental results. Then the vibration trajectory, deformation and stress contour of planar elastic tube bundle were all studied. Results show that the combined movement of planar elastic tube bundle represents the agitation from inside to outside. The vibration of out?of?plane is the main vibration form with the typically sinusoidal behavior because the magnitude of displacement along the out?of?plane direction is the 100 times than the value of in?plane direction. The dangerous point locates in the innermost tube where the equivalent stress can be utilized to study the multiaxial fatigue of planar elastic tube bundle due to the alternating stress concentration. In the velocity range of 0.2-3 m/s, it is inferred that the vibration amplitude plays a role on the stress response and the stress amplitude is susceptible to the fluid velocity. This research paves a way for studying the fatigue strength of planar elastic tube bundle by flow?induced vibration.展开更多
It is important to analyse the casting product and the mold at the same time considering thermal contraction of the casting and thermal expansion of the mold. The analysis considering contact of the casting and the mo...It is important to analyse the casting product and the mold at the same time considering thermal contraction of the casting and thermal expansion of the mold. The analysis considering contact of the casting and the mold induces the precise prediction of stress distribution and the defect such as hot tearing. But it is difficult to generate FEM mesh for the interface of the casting and the mold. Moreover the mesh for the mold domain spends lots of computational time and memory for the analysis due to a number of meshes. Consequently we proposed the virtual mold technique which only uses mesh of the casting part for thermal stress analysis in casting process. The spring bar element in virtual mold technique is used to consider the contact of the casting and the mold. In general, a volume of the mold is much bigger than that of casting part, so the proposed technique decreases the number of mesh and saves the computational memory and time greatly. In this study, the proposed technique was verified by the comparison with the traditional contact technique on a specimen. And the proposed technique gave satisfactory results.展开更多
In this paper, a computational method for finite element stress analysis of a cyclically symmetric structure subjected to arbitrary loads is provided. At first, using discrete Fourier transformation technique, the com...In this paper, a computational method for finite element stress analysis of a cyclically symmetric structure subjected to arbitrary loads is provided. At first, using discrete Fourier transformation technique, the complete structure is analyzed by considering only one sector with appropriate complex constraints on its boundary with the adjacent sectors. Next, an imaginary structure which is composed of two identically overlapping sectors is constructed, and that the complex constraints mentioned above can be equivalently replaced by a set of real constraints on this imaginary structure is proved. Therefore, the stress analysis of a cyclically symmetric structure can be solved conveniently by most of finite element programs.展开更多
In this paper, the stress-strain curve of material is fitted by polygonal line composed of three lines. According to the theory of proportional loading in elastoplasticity, we simplify the complete stress-strain relat...In this paper, the stress-strain curve of material is fitted by polygonal line composed of three lines. According to the theory of proportional loading in elastoplasticity, we simplify the complete stress-strain relations, which are given by the increment theory of elastoplasticity. Thus, the finite element equation with the solution of displacement is derived. The assemblage elastoplastic stiffness matrix can be obtained by adding something to the elastic matrix, hence it will shorten the computing time. The determination of every loading increment follows the von Mises yield criteria. The iterative method is used in computation. It omits the redecomposition of the assemblage stiffness matrix and it will step further to shorten the computing time. Illustrations are given to the high-order element application departure from proportional loading, the computation of unloading fitting to the curve and the problem of load estimation.展开更多
The application of the finite layer & triangular prism element method to the 3D ground subsidence and stress analysis caused by mining is presented. The layer elements and the triangular prism elements have been a...The application of the finite layer & triangular prism element method to the 3D ground subsidence and stress analysis caused by mining is presented. The layer elements and the triangular prism elements have been alternatively used in the numerical simulation system, the displacement pattern, strain matrix, elastic matrix, stiffness matrix, load matrix and the stress matrix of the layer element and triangular prism element have been presented. By means of the Fortran90 programming language, a numerical simulation system based on finite layer & triangular prism element have been built up, and this system is suitable for subsidence prediction and stress analysis of all mining condition and mining methods. Comparing with the infinite element method, this approach dramatically reduces the size of the set of equations that need to be solved, and greatly reduces the amount of data preparation required. It not only saves the internal storage, and the computation time, but also decreases the cost.展开更多
In this paper, the mechanical strength of the toroidal field (TF) magnets of HT-7U with the electromagnetic force in different magnetic fields is emphatically analyzed by means of finite element method. The model and ...In this paper, the mechanical strength of the toroidal field (TF) magnets of HT-7U with the electromagnetic force in different magnetic fields is emphatically analyzed by means of finite element method. The model and feasible method of computation are put forward. Some important conclusions are made available for reference in the design and construction of TF for HT-7U.展开更多
The stress distribution of notched specimen of brittle material under a plane pressure was studied using a photoelastic meth- od,When elastic deformation appeared inside the specimen,the force transferred by dowel par...The stress distribution of notched specimen of brittle material under a plane pressure was studied using a photoelastic meth- od,When elastic deformation appeared inside the specimen,the force transferred by dowel part was triangular transverse force and frictional force on the upper surface of the sample.The quantity of the frictional force was about 31 percent of transverse force.The stress inside the sample was linear along the central cross section of the sample and there was maximum tensile stress σ_y at the tip of the notch.Basing on shearing stress deviation method,the tensile stress σ_y,σ_x and shearing stress τ_(xy) at the cen- tral sections and four adjacent cross sections were calculated.The result pointed out that σ_x and τ_(xy) were smaller than σ_y.There- fore,σ_y was the main factor for crack formation and propagation.展开更多
The Bayan Har block is mainly bounded by the east Kunlun fault zone to the north, Garze-Yushu -Xianshuihe fault zone to the south and Longmenshan fault zone to the east (Fig. 1). In the past 20 years, large earthqua...The Bayan Har block is mainly bounded by the east Kunlun fault zone to the north, Garze-Yushu -Xianshuihe fault zone to the south and Longmenshan fault zone to the east (Fig. 1). In the past 20 years, large earthquakes have occurred frequently along this block's boundaries, which has received much attention among geoscientists. Whether large earthquakes will happen (and where) along this block's boundary faults in the future are two key problems that need to be addressed. This study calculates the accumulated tectonic stress and superposition of the coulomb stress caused by fault slip of 16 large earthquakes since 1904, and evaluates the possible locations of future earthquakes that may occur around this block.展开更多
Based on the APDL (ANSYS Parametric Design Language) and combined with the actual project related to parameters of filling material, imported Duncan-Chang constitutive model which has been widely applied in soil mas...Based on the APDL (ANSYS Parametric Design Language) and combined with the actual project related to parameters of filling material, imported Duncan-Chang constitutive model which has been widely applied in soil mass and rock-fill in the ANSYS software. With the three-dimensional nonlinear finite element analysis by the mid-point incremental method, what have been computed are the deformation and stress analysis ofNa Ba reservoir CFRD (Concrete Face Rock-fill Dam) in filling period. The calculation results provide practical reference for the dam during construction safety filling stress and deformation analysis and real-time monitoring.展开更多
文摘Owing to the complexity of the pipe-in-pipe (PIP) riser system in structure, load and restraint, many problems arise in the structural analysis of the system. This paper presents a new method for nonlinear static finite element stress analysis of the PIP riser system. The finite element (FE) model of the PIP riser system is built via software AutoPIPE 6.1. According to the specialties of a variety of components in the PIP riser system, different elements are used so as to model the system accurately. Allowing for the complication in modeling the effects of seabed restraint, a technique based on the bilinear spring concept is developed to calculate the soil properties. Then, based on a pipeline project, the entire procedure of stress analysis is discussed in detail, including creation of an FE model, processing of input data and analysis of results. A wide range of loading schemes is investigated to ascertain that the stresses remain within the acceptable range of the pipe material strength. Finally, the effects of the location of flanges, the thermal expansion of submarine pipelines and the seabed restraint on stress distribution in the riser and expansion loop are studied, which are valuable for pipeline designers.
文摘The linear isothermo-viscoelastic constitutive equation is established according to the principle of viscoelastic mechanics. Given the boundary conditions of the temperature field, the linear thermo-viscoelastic constitutive equation is established acording to the analysis of the thermorheologically simple. The stress analysis model is constructed on the base of some reasonable hypotheses which consider the restraint conditions of mold and the characteristics of injection molding in the post-filling stage. The mathematical model is calculated by the finite difference method. The results can help to predict the warpage of plastic products.
基金Pamukkale University Scientific Research Council supporting this study under Project Contract No.2008FBE006 and 2010FBE096
文摘This study deals with stress analysis of annular rotating discs made of functionally graded materials(FGMs).Elasticity modulus and density of the discs are assumed to vary radially according to a power law function,but the material is of constant Poisson's ratio.A gradient parameter n is chosen between 0 and 1.0.When n = 0,the disc becomes a homogeneous isotropic material.Tangential and radial stress distributions and displacements on the disc are investigated for various gradient parameters n by means of the diverse elasticity modulus and density by using analytical and numerical solutions.Finally,a homogenous tangential stress distribution and the lowest radial stresses along the radius of a rotating disc are approximately obtained for the gradient parameter n = 1.0 compared with the homogeneous,isotropic case n = 0.This means that a disc made of FGMs has the capability of higher angular rotations compared with the homogeneous isotropic disc.
基金financially supported by Offshore Engineering Equipment Scientific Research Project--Topic on Subsea Production System DesignKey Equipment Research & Development from Ministry of Industry and Information Technology of the People's Republic of China E-0813C003
文摘Thesubsea dynamic riser base (SDRB) is an important piece of equipment for the floating production platform mooring system.One end is connected to the rigid pipeline, carrying a rigid pipeline thermal expansion load and the other end is connected to a flexible riser, carrying the dynamic load of the flexible riser, so its function is a transition connection between the flexible riser and the rigid pipeline which fixes the flexible riser on the seabed. On the other hand. as a typical subsea product, the design will satisfythe requirements of the standards for subsea products. By studying the stress analysisphilosophy of the topside piping and subsea pipeline, a physical model and procedure for piping stress analysis of the SDRB have been established.The conditions of the adverse design load have been considered, and a combination of the static load from the rigid pipeline and the dynamic load flexibility has also been optimized. And a comparative analysis between the AMSE, DNV and API standards for piping stress with the checking rules has been done.Because theSDRB belongs to the subsea pipeline terminal product, the use of DNV standards to check its process piping stress is recommended. Finally, the process piping stress of the SDRB has been calculated, and the results show that the jacket pipe and the carrier pipe stress of the SDRB process piping satisfy the DNV standards as a whole.The bulkhead cannot be accurately simulated by the AutoPIPE software which uses the FEA software ANSYS inthe detailed analysis, but the checking results will still meet the requirements of the DNV standards.
基金the Natural SciencesEngineering Research Council of Canadathe NATO Scientific Affairs Division
文摘Light beam deflections caused by stress or strain gradients are inves- tigated analytically and experimentally in homogeneous beam specimens which are subjected to a particular case of flexure with shear. This study is a generalization of the prior an alytical-experimental examination of strain-gradient light deflections produced in stressed plates, which had concentrated on the simplest case where in- formation of interest is collected along a line of symmetry of the stress field. Main purpose of the present investigation is to document the efficacy of the strain-gradient method in analysis of the general case of stress state. The most interesting stress state is that in a beam subjected to the Saint-Venant bending, where the transversal and the longitudinal axes of the beam are in pure shear. The obtained results are compared with the predictions of the developed analytical models and with the pre- dictions of Filon's stress function. The procedures of evaluating the photoelastic and material coefficients using strain-gradient techniques were tested positively.
文摘The paper presents and discusses theoretical bases and methodology of development of two- and three-dimensional analytical and optical isodynes. Atten- tion is given to the theoretical admissibility of the major components of the physical and mathematical models which are taken as the theoretical basis of the isodynes, and of the related analytical and experimental procedures of stress analysis. Efficiency and reliability of the nondestructive isodyne stress analysis are discussed.
文摘Stress analysis of cylindrical grid-stiffened composite shells was conducted under transverse loading,pure bending,torsion and axial compression under clamped-free boundary condition.Electrical strain gauges were employed to measure the strains in transverse loading case to validate the finite element analysis which was conducted using ANSYS software.Good agreement was obtained between the two methods.It was observed that stiffening the composite shell with helical ribs decreased the average equivalent Von Mises stress on the shell.The reduction of the stress seemed to be higher in the intersection of two ribs.It was also seen that the stress reduction ratio was higher when the structure was under bending compared to torsion and axial compression.The reduction ratio was approximately 75% in pure bending in the intersection point of the ribs,while it was approximately 25% in torsion.Therefore,it is concluded that the presence of the ribs is more effective under bending.Failure analysis was done using Tsai-Wu criterion.The ribs were observed to result in maximum and minimum increase in the failure load of the structure under transverse bending and torsional loading,respectively.
基金supported by the National Natural Science Foundation of China (Grant No. 90510017)
文摘Based on the general displacement method and the basic hypothesis of the trial load method, a new advanced trial load method, the general displacement arch-cantilever element method, was proposed to derive the transformation relation of displacements and loads between the surface nodes and middle plane nodes. This method considers the nodes on upstream and downstream surfaces of the arch dam to be exit nodes (master nodes), and the middle plane nodes to be slave nodes. According to the derived displacement and load transformation matrices, the equilibrium equation treating the displacement of middle plane nodes as a basic unknown variable is transformed into one that treats the displacement of upstream and downstream nodes as a basic unknown variable. Because the surface nodes have only three degrees of freedom (DOF), this method can be directly coupled with the finite element method (FEM), which is used for foundation simulation to analyze the stress of the arch dam with consideration of dam-foundation interaction. Moreover, using the FEM, the nodal load of the arch dam can be easily obtained. Case studies of a typical cylindrical arch dam and the Wudongde arch dam demonstrate the robustness and feasibility of the proposed method.
基金This project was funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,under Grant No.(D-209-830-1443).The authors,therefore,gratefully acknowledge DSR technical and financial support.
文摘Coronavirus(COVID-19)has impacted nearly every person across the globe either in terms of losses of life or as of lockdown.The current coronavirus(COVID-19)pandemic is a rare/special situation where people can express their feelings on Internet-based social networks.Social media is emerging as the biggest platform in recent years where people spend most of their time expressing themselves and their emotions.This research is based on gathering data from Twitter and analyzing the behavior of the people during the COVID-19 lockdown.The research is based on the logic expressed by people in this perspective and emotions for the suffering of COVID-19 and lockdown.In this research,we have used a Long Short-Term Memory(LSTM)network model with Convolutional Neural Network using Keras python deep-learning library to determine whether social media platform users are depressed in terms of positive,negative,or neutral emotional out bust based on their Twitter posts.The results showed that the model has 88.14%accuracy(representation of the correct prediction over the test dataset)after 10 epochs which most tweets showed had neutral polarity.The evaluation shows interesting results in positive(1),negative(–1),and neutral(0)emotions through different visualization.
基金the support from Ministry of Science and Technology,Taiwan,R.O.C.,through grant MOST-105-2221-E-007-031-MY3.
文摘In this study,the deformation and stress distribution of printed circuit board(PCB)with different thickness and composite materials under a shock loading were analyzed by the finite element analysis.The standard 8-layer PCB subjected to a shock loading 1500 g was evaluated first.Moreover,the finite element models of the PCB with different thickness by stacking various number of layers were discussed.In addition to changing thickness,the core material of PCB was replaced from woven E-glass/epoxy to woven carbon fiber/epoxy for structural enhancement.The non-linear material property of copper foil was considered in the analysis.The results indicated that a thicker PCB has lower stress in the copper foil in PCBs under the shock loading.The stress difference between the thicker PCB(2.6 mm)and thinner PCB(0.6 mm)is around 5%.Using woven carbon fiber/epoxy as core material could lower the stress of copper foil around 6.6%under the shock loading 1500 g for the PCB with 0.6 mm thickness.On the other hand,the stress level is under the failure strength of PCBs with carbon fiber/epoxy core layers and thickness 2.6 mm when the peak acceleration changes from 1500 g to 5000 g.This study could provide a reference for the design and proper applications of the PCB with different thickness and composite materials.
文摘Objective: To analyze the stress distribution of calcaneus with posterior articular facet compressed after fracture and talus during gait. Methods: A wedge under the posterior articular was transected from a normal finite element model of calcaneus and talus to simulate malformation of compression of the posterior facet after fracture of calcaneus. The model was used to simulate for three subphases of the stance during the gait(heel strike, midstance, push off) and calculate the finite element. The results were compared with normal situation. Results: The stress distribution within the bone in situation of malformation was obtained and regions of elevated stresses for three subphases were located. The results were significantly different from that of normal situation. Conclusion: The simulation of calcaneus and talus in malformation has important clinic implication and can provide an insight into the factors contributing to many clinic pathogenic changes after fracture of calcaneus.
基金Supported by National Natural Science Foundation of China(Grant No.51475268)National Basic Research Program of China(973 Program,Grant No.2007CB206903)
文摘Flow?induced vibration plays a positive role on heat transfer enhancement. Meanwhile, it is also a negative factor for fatigue strength. Satisfying the fatigue strength is the primary prerequisite for heat transfer enhancement. This paper numerically studied the flow?induced vibration of planar elastic tube bundle based on a two?way fluid–structure interaction(FSI) calculation. The numerical calculation involved the unsteady, three?dimensional incompressible governing equations solved with finite volume approach and the dynamic balance equation of planar elastic tube bundle solved with finite element method combined with dynamic mesh scheme. The numerical approach was verified by comparing with the published experimental results. Then the vibration trajectory, deformation and stress contour of planar elastic tube bundle were all studied. Results show that the combined movement of planar elastic tube bundle represents the agitation from inside to outside. The vibration of out?of?plane is the main vibration form with the typically sinusoidal behavior because the magnitude of displacement along the out?of?plane direction is the 100 times than the value of in?plane direction. The dangerous point locates in the innermost tube where the equivalent stress can be utilized to study the multiaxial fatigue of planar elastic tube bundle due to the alternating stress concentration. In the velocity range of 0.2-3 m/s, it is inferred that the vibration amplitude plays a role on the stress response and the stress amplitude is susceptible to the fluid velocity. This research paves a way for studying the fatigue strength of planar elastic tube bundle by flow?induced vibration.
文摘It is important to analyse the casting product and the mold at the same time considering thermal contraction of the casting and thermal expansion of the mold. The analysis considering contact of the casting and the mold induces the precise prediction of stress distribution and the defect such as hot tearing. But it is difficult to generate FEM mesh for the interface of the casting and the mold. Moreover the mesh for the mold domain spends lots of computational time and memory for the analysis due to a number of meshes. Consequently we proposed the virtual mold technique which only uses mesh of the casting part for thermal stress analysis in casting process. The spring bar element in virtual mold technique is used to consider the contact of the casting and the mold. In general, a volume of the mold is much bigger than that of casting part, so the proposed technique decreases the number of mesh and saves the computational memory and time greatly. In this study, the proposed technique was verified by the comparison with the traditional contact technique on a specimen. And the proposed technique gave satisfactory results.
文摘In this paper, a computational method for finite element stress analysis of a cyclically symmetric structure subjected to arbitrary loads is provided. At first, using discrete Fourier transformation technique, the complete structure is analyzed by considering only one sector with appropriate complex constraints on its boundary with the adjacent sectors. Next, an imaginary structure which is composed of two identically overlapping sectors is constructed, and that the complex constraints mentioned above can be equivalently replaced by a set of real constraints on this imaginary structure is proved. Therefore, the stress analysis of a cyclically symmetric structure can be solved conveniently by most of finite element programs.
文摘In this paper, the stress-strain curve of material is fitted by polygonal line composed of three lines. According to the theory of proportional loading in elastoplasticity, we simplify the complete stress-strain relations, which are given by the increment theory of elastoplasticity. Thus, the finite element equation with the solution of displacement is derived. The assemblage elastoplastic stiffness matrix can be obtained by adding something to the elastic matrix, hence it will shorten the computing time. The determination of every loading increment follows the von Mises yield criteria. The iterative method is used in computation. It omits the redecomposition of the assemblage stiffness matrix and it will step further to shorten the computing time. Illustrations are given to the high-order element application departure from proportional loading, the computation of unloading fitting to the curve and the problem of load estimation.
文摘The application of the finite layer & triangular prism element method to the 3D ground subsidence and stress analysis caused by mining is presented. The layer elements and the triangular prism elements have been alternatively used in the numerical simulation system, the displacement pattern, strain matrix, elastic matrix, stiffness matrix, load matrix and the stress matrix of the layer element and triangular prism element have been presented. By means of the Fortran90 programming language, a numerical simulation system based on finite layer & triangular prism element have been built up, and this system is suitable for subsidence prediction and stress analysis of all mining condition and mining methods. Comparing with the infinite element method, this approach dramatically reduces the size of the set of equations that need to be solved, and greatly reduces the amount of data preparation required. It not only saves the internal storage, and the computation time, but also decreases the cost.
文摘In this paper, the mechanical strength of the toroidal field (TF) magnets of HT-7U with the electromagnetic force in different magnetic fields is emphatically analyzed by means of finite element method. The model and feasible method of computation are put forward. Some important conclusions are made available for reference in the design and construction of TF for HT-7U.
文摘The stress distribution of notched specimen of brittle material under a plane pressure was studied using a photoelastic meth- od,When elastic deformation appeared inside the specimen,the force transferred by dowel part was triangular transverse force and frictional force on the upper surface of the sample.The quantity of the frictional force was about 31 percent of transverse force.The stress inside the sample was linear along the central cross section of the sample and there was maximum tensile stress σ_y at the tip of the notch.Basing on shearing stress deviation method,the tensile stress σ_y,σ_x and shearing stress τ_(xy) at the cen- tral sections and four adjacent cross sections were calculated.The result pointed out that σ_x and τ_(xy) were smaller than σ_y.There- fore,σ_y was the main factor for crack formation and propagation.
基金supported by Geological Survey programs from Geological Survey of China(No.1212011120163 and 12120114002101)Basic Science Research Fund of the Institute of Geomechanics,CAGS (No.DZLXJK201212)National Natural Science Foundation of China (No.41171009)
文摘The Bayan Har block is mainly bounded by the east Kunlun fault zone to the north, Garze-Yushu -Xianshuihe fault zone to the south and Longmenshan fault zone to the east (Fig. 1). In the past 20 years, large earthquakes have occurred frequently along this block's boundaries, which has received much attention among geoscientists. Whether large earthquakes will happen (and where) along this block's boundary faults in the future are two key problems that need to be addressed. This study calculates the accumulated tectonic stress and superposition of the coulomb stress caused by fault slip of 16 large earthquakes since 1904, and evaluates the possible locations of future earthquakes that may occur around this block.
文摘Based on the APDL (ANSYS Parametric Design Language) and combined with the actual project related to parameters of filling material, imported Duncan-Chang constitutive model which has been widely applied in soil mass and rock-fill in the ANSYS software. With the three-dimensional nonlinear finite element analysis by the mid-point incremental method, what have been computed are the deformation and stress analysis ofNa Ba reservoir CFRD (Concrete Face Rock-fill Dam) in filling period. The calculation results provide practical reference for the dam during construction safety filling stress and deformation analysis and real-time monitoring.