This paper applies the stochastic finite element method to analyse the statistics of stresses in earth dams and assess the safety and reliability of the dams. Formulations of the stochastic finite element method are b...This paper applies the stochastic finite element method to analyse the statistics of stresses in earth dams and assess the safety and reliability of the dams. Formulations of the stochastic finite element method are briefly reviewed and the procedure for assessing dam's strength and stability is described. As an example, a detailed analysis for an actual dam Nululin dam is performed. A practical method for studying built-dams based on the prototype observation data is described.展开更多
This paper surveys models and statistical properties of random systems of hard particles. Such systems appear frequently in materials science, biology and elsewhere. In mathematical-statistical investigations, simulat...This paper surveys models and statistical properties of random systems of hard particles. Such systems appear frequently in materials science, biology and elsewhere. In mathematical-statistical investigations, simulations of such structures play an important role. In these simulations various methods and models are applied, namely the RSA model, sedimentation and collective rearrangement algorithms, molecular dynamics, and Monte Carlo methods such as the Metropolis-Hastings algorithm. The statistical description of real and simulated particle systems uses ideas of the mathematical theories of random sets and point processes. This leads to characteristics such as volume fraction or porosity, covariance, contact distribution functions, specific connectivity number from the random set approach and intensity, pair correlation function and mark correlation functions from the point process approach. Some of them can be determined stereologically using planar sections, while others can only be obtained using three-dimensional data and 3D image analysis. They are valuable tools for fitting models to empirical data and, consequently, for understanding various materials, biological structures, porous media and other practically important spatial structures.展开更多
提出一种机器识别哈萨克语句情感的模型。使用条件随机场CRFs(Conditional Random Fields)对哈萨克语句中的情感关键词进行机器识别,在此基础上结合语句逻辑结构分析,能初步判断出哈萨克语句的喜、怒、哀、俱情感倾向。拓宽了哈萨克语...提出一种机器识别哈萨克语句情感的模型。使用条件随机场CRFs(Conditional Random Fields)对哈萨克语句中的情感关键词进行机器识别,在此基础上结合语句逻辑结构分析,能初步判断出哈萨克语句的喜、怒、哀、俱情感倾向。拓宽了哈萨克语言计算机机处理的范围。展开更多
Joint roughness is one of the most important issues in the hydromechanical behavior of rock mass.Therefore,the joint roughness coefficient(JRC)estimation is of paramount importance in geomechanics engineering applicat...Joint roughness is one of the most important issues in the hydromechanical behavior of rock mass.Therefore,the joint roughness coefficient(JRC)estimation is of paramount importance in geomechanics engineering applications.Studies show that the application of statistical parameters alone may not produce a sufficiently reliable estimation of the JRC values.Therefore,alternative data-driven methods are proposed to assess the JRC values.In this study,Gaussian process(GP),K-star,random forest(RF),and extreme gradient boosting(XGBoost)models are employed,and their performance and accuracy are compared with those of benchmark regression formula(i.e.Z2,Rp,and SDi)for the JRC estimation.To analyze the models’performance,112 rock joint profile datasets having eight common statistical parameters(R_(ave),R_(max),SD_(h),iave,SD_(i),Z_(2),R_(p),and SF)and one output variable(JRC)are utilized,of which 89 and 23 datasets are used for training and validation of models,respectively.The interpretability of the developed XGBoost model is presented in terms of feature importance ranking,partial dependence plots(PDPs),feature interaction,and local interpretable model-agnostic explanations(LIME)techniques.Analyses of results show that machine learning models demonstrate higher accuracy and precision for estimating JRC values compared with the benchmark empirical equations,indicating the generalization ability of the data-driven models in better estimation accuracy.展开更多
文摘This paper applies the stochastic finite element method to analyse the statistics of stresses in earth dams and assess the safety and reliability of the dams. Formulations of the stochastic finite element method are briefly reviewed and the procedure for assessing dam's strength and stability is described. As an example, a detailed analysis for an actual dam Nululin dam is performed. A practical method for studying built-dams based on the prototype observation data is described.
文摘This paper surveys models and statistical properties of random systems of hard particles. Such systems appear frequently in materials science, biology and elsewhere. In mathematical-statistical investigations, simulations of such structures play an important role. In these simulations various methods and models are applied, namely the RSA model, sedimentation and collective rearrangement algorithms, molecular dynamics, and Monte Carlo methods such as the Metropolis-Hastings algorithm. The statistical description of real and simulated particle systems uses ideas of the mathematical theories of random sets and point processes. This leads to characteristics such as volume fraction or porosity, covariance, contact distribution functions, specific connectivity number from the random set approach and intensity, pair correlation function and mark correlation functions from the point process approach. Some of them can be determined stereologically using planar sections, while others can only be obtained using three-dimensional data and 3D image analysis. They are valuable tools for fitting models to empirical data and, consequently, for understanding various materials, biological structures, porous media and other practically important spatial structures.
文摘Joint roughness is one of the most important issues in the hydromechanical behavior of rock mass.Therefore,the joint roughness coefficient(JRC)estimation is of paramount importance in geomechanics engineering applications.Studies show that the application of statistical parameters alone may not produce a sufficiently reliable estimation of the JRC values.Therefore,alternative data-driven methods are proposed to assess the JRC values.In this study,Gaussian process(GP),K-star,random forest(RF),and extreme gradient boosting(XGBoost)models are employed,and their performance and accuracy are compared with those of benchmark regression formula(i.e.Z2,Rp,and SDi)for the JRC estimation.To analyze the models’performance,112 rock joint profile datasets having eight common statistical parameters(R_(ave),R_(max),SD_(h),iave,SD_(i),Z_(2),R_(p),and SF)and one output variable(JRC)are utilized,of which 89 and 23 datasets are used for training and validation of models,respectively.The interpretability of the developed XGBoost model is presented in terms of feature importance ranking,partial dependence plots(PDPs),feature interaction,and local interpretable model-agnostic explanations(LIME)techniques.Analyses of results show that machine learning models demonstrate higher accuracy and precision for estimating JRC values compared with the benchmark empirical equations,indicating the generalization ability of the data-driven models in better estimation accuracy.