Field D* algorithm is widely used in mobile robot navigation since it can plan and replan any-angle paths through non-uniform cost grids. However, it still suffers from inefficiency and sub-optimality. In this article...Field D* algorithm is widely used in mobile robot navigation since it can plan and replan any-angle paths through non-uniform cost grids. However, it still suffers from inefficiency and sub-optimality. In this article, a new linear interpolation-based planning and replanning algorithm, Update-Reducing Field D*, is proposed. It employs different approaches during initial planning and replanning respectively in order to reduce the number of updates of the rhs-values of vertices. Experiments have shown that Update-Reducing Field D* runs faster than Field D* and returns smoother and lower-cost paths.展开更多
A theorem for osculatory rational interpolation was shown to establish a new criterion of interpolation. On the basis of this conclusion a practical algorithm was presented to get a reduction model of the linear syste...A theorem for osculatory rational interpolation was shown to establish a new criterion of interpolation. On the basis of this conclusion a practical algorithm was presented to get a reduction model of the linear systems. Some numerical examples were given to explain the result in this paper.展开更多
In this paper, the definition of NURBS curve and a speed-controlled interpolation in which the feed rate is automatically adjusted in order to meet the specified chord error limit were discussed. Besides those, a defi...In this paper, the definition of NURBS curve and a speed-controlled interpolation in which the feed rate is automatically adjusted in order to meet the specified chord error limit were discussed. Besides those, a definition of linear interpolation error of post-processed data was proposed, which should be paid more attention to because it will not only reduce quality of the surface but also may cause interference and other unexpected trouble. In order to control the error, a robust algorithm was proposed, which successfully met a desired error limit through interpolating some essential CL data. The excellence of the proposed algorithm, in terms of its reliability and self-adaptiveness, has been proved by simulation results.展开更多
文摘Field D* algorithm is widely used in mobile robot navigation since it can plan and replan any-angle paths through non-uniform cost grids. However, it still suffers from inefficiency and sub-optimality. In this article, a new linear interpolation-based planning and replanning algorithm, Update-Reducing Field D*, is proposed. It employs different approaches during initial planning and replanning respectively in order to reduce the number of updates of the rhs-values of vertices. Experiments have shown that Update-Reducing Field D* runs faster than Field D* and returns smoother and lower-cost paths.
基金supported by the National Natural Science Foundation of China (Grant No.10271074)
文摘A theorem for osculatory rational interpolation was shown to establish a new criterion of interpolation. On the basis of this conclusion a practical algorithm was presented to get a reduction model of the linear systems. Some numerical examples were given to explain the result in this paper.
文摘In this paper, the definition of NURBS curve and a speed-controlled interpolation in which the feed rate is automatically adjusted in order to meet the specified chord error limit were discussed. Besides those, a definition of linear interpolation error of post-processed data was proposed, which should be paid more attention to because it will not only reduce quality of the surface but also may cause interference and other unexpected trouble. In order to control the error, a robust algorithm was proposed, which successfully met a desired error limit through interpolating some essential CL data. The excellence of the proposed algorithm, in terms of its reliability and self-adaptiveness, has been proved by simulation results.