The development of strength and the form of attack of cement-based material made of limestone powder at low water-binder ratio under low-temperature sulfate environment were studied. The results indicate that when wat...The development of strength and the form of attack of cement-based material made of limestone powder at low water-binder ratio under low-temperature sulfate environment were studied. The results indicate that when water-binder ratio is lower than 0.40, the cement-based material with limestone powder has insignificant change in appearance after being soaked in 10% magnesium sulfate solution at low temperature for 120 d, and has significant change in appearance after being soaked at the age of 200 d. Expansion damage and exfoliation occur on the surface of concrete test cube at different levels. When limestone powder accounts for about 28 percent of cementitious material, with the decrease of water-binder ratio, the compressive strength loss has gradually decreased after the material is soaked in the magnesium sulfate solution at low temperature at the age of 200 d. After the specimen with the water-binder ratio of less than 0.4 and the limestone powder volume of greater than 20% is soaked in 10% magnesium sulfate solution at low temperature at the age of 200 d, gypsum attack-led destruction is caused to the concrete test cube, without thaumasite sulfate attack.展开更多
Limestone in cement could be a source of CO3^2- needed for thaumasite formation which will result in thanmasite form of sulfate attack (TSA) probably. TSA has more deterioration than ettringite or gypsum form of sul...Limestone in cement could be a source of CO3^2- needed for thaumasite formation which will result in thanmasite form of sulfate attack (TSA) probably. TSA has more deterioration than ettringite or gypsum form of sulfate attack because it targets the calcium silicate hydrates (C-S-H) which is the main binder phase in all Portland cement-based materials. By means of physical and mechanical property testing as well as erosion phases analysis, magnesium sulfate attack of cement-based material containing 35% limestone powder by mass at 5 ± 2 ℃ is investigated. The compressive strength and flexural strength of mortar specimen immersed in MgSO4 solution increase firstly, then decrease rapidly with the immersing age. Relative dynamic elastic modulus of mortar specimen changes in a phased process. After immersing in MgSO4 solution for 15 weeks, the main erosion phases in paste specimen change from four phases compounds, three phases compounds to two phases compounds from surface to inside. Deterioration course of limestone cement-based material exposed to magnesium sulfate aggressive environment appears progressive damage layer by layer, and every layer probably suffers four stages, which are property strengthening stage, initial degradation stage, thaumasite formation stage and cementation loss stage, respectively.展开更多
Influences of polymer-based grinding aid(PGA) on the damage process of concrete exposed to sulfate attack under dry-wet cycles were investigated. The mass loss, dynamic modulus of elasticity(Erd), and S and Ca ele...Influences of polymer-based grinding aid(PGA) on the damage process of concrete exposed to sulfate attack under dry-wet cycles were investigated. The mass loss, dynamic modulus of elasticity(Erd), and S and Ca element contents of concrete specimens were measured. Scanning electron microscopy(SEM), mercury intrusion porosimetry(MIP), and X-ray diffractometry(XRD) were used to investigate the changing of microstructure of interior concrete. The results indicated that PGA was capable of reducing the mass loss and improving the sulfate attack resistance of concrete. X-ray fluorescence(XRF) analysis revealed that PGA delayed the transport process of sulfate ions and Ca ions. In addition, MIP analysis disclosed that the micropores of concrete with PGA increased in the fraction of 20-100 nm and decreased in the residues of 200 nm. Compared with the blank sample, concrete with PGA had more slender and well-organized hydration products, and no changes in hydration products ratio or type were observed.展开更多
The effect of sulfate on Fischer-Tropsch synthesis performance was investigated in a slurryphase continuously stirred tank reactor (CSTR) over a Fe-Mn catalyst. The physiochemical properties of the catalyst impregna...The effect of sulfate on Fischer-Tropsch synthesis performance was investigated in a slurryphase continuously stirred tank reactor (CSTR) over a Fe-Mn catalyst. The physiochemical properties of the catalyst impregnated with different levels of sulfate were characterized by N2 physisorption, X-ray photoelectron spectroscopy (XPS), H2 (or CO) temperature-programmed reduction (TPR), Mossbauer spectroscopy, and CO2 temperature-programmed desorption (TPD). The characterization results indicated that the impregnated sulfate slightly decreased the BET surface area and pore volume of the catalyst, suppressed the catalyst reduction and carburization in CO and syngas, and decreased the catalyst surface basicity. At the same time, the addition of small amounts of sulfate improved the activities of FischerTropsch synthesis (FTS) and water gas shift (WGS), shifted the product to light hydrocarbons (C1-C11) and suppressed the formation of heavy products (C12+). Addition of SO4^2- to the catalyst improved the FTS activity at a sulfur loading of 0.05-0.80 g per 100 g Fe, and S-05 catalyst gave the highest CO conversion (62.3%), and beyond this sulfur level the activity of the catalyst decreased.展开更多
文摘The development of strength and the form of attack of cement-based material made of limestone powder at low water-binder ratio under low-temperature sulfate environment were studied. The results indicate that when water-binder ratio is lower than 0.40, the cement-based material with limestone powder has insignificant change in appearance after being soaked in 10% magnesium sulfate solution at low temperature for 120 d, and has significant change in appearance after being soaked at the age of 200 d. Expansion damage and exfoliation occur on the surface of concrete test cube at different levels. When limestone powder accounts for about 28 percent of cementitious material, with the decrease of water-binder ratio, the compressive strength loss has gradually decreased after the material is soaked in the magnesium sulfate solution at low temperature at the age of 200 d. After the specimen with the water-binder ratio of less than 0.4 and the limestone powder volume of greater than 20% is soaked in 10% magnesium sulfate solution at low temperature at the age of 200 d, gypsum attack-led destruction is caused to the concrete test cube, without thaumasite sulfate attack.
基金Funded by the National Natural Science Foundation of China(No.51109073)
文摘Limestone in cement could be a source of CO3^2- needed for thaumasite formation which will result in thanmasite form of sulfate attack (TSA) probably. TSA has more deterioration than ettringite or gypsum form of sulfate attack because it targets the calcium silicate hydrates (C-S-H) which is the main binder phase in all Portland cement-based materials. By means of physical and mechanical property testing as well as erosion phases analysis, magnesium sulfate attack of cement-based material containing 35% limestone powder by mass at 5 ± 2 ℃ is investigated. The compressive strength and flexural strength of mortar specimen immersed in MgSO4 solution increase firstly, then decrease rapidly with the immersing age. Relative dynamic elastic modulus of mortar specimen changes in a phased process. After immersing in MgSO4 solution for 15 weeks, the main erosion phases in paste specimen change from four phases compounds, three phases compounds to two phases compounds from surface to inside. Deterioration course of limestone cement-based material exposed to magnesium sulfate aggressive environment appears progressive damage layer by layer, and every layer probably suffers four stages, which are property strengthening stage, initial degradation stage, thaumasite formation stage and cementation loss stage, respectively.
基金Funded by National Natural Science Foundation of China(No.51578141)National Program on Key Basic Research Project(973 Program)(No.2015CB655102)Ministry of Science and Technology of China(No.2016YFE011820)
文摘Influences of polymer-based grinding aid(PGA) on the damage process of concrete exposed to sulfate attack under dry-wet cycles were investigated. The mass loss, dynamic modulus of elasticity(Erd), and S and Ca element contents of concrete specimens were measured. Scanning electron microscopy(SEM), mercury intrusion porosimetry(MIP), and X-ray diffractometry(XRD) were used to investigate the changing of microstructure of interior concrete. The results indicated that PGA was capable of reducing the mass loss and improving the sulfate attack resistance of concrete. X-ray fluorescence(XRF) analysis revealed that PGA delayed the transport process of sulfate ions and Ca ions. In addition, MIP analysis disclosed that the micropores of concrete with PGA increased in the fraction of 20-100 nm and decreased in the residues of 200 nm. Compared with the blank sample, concrete with PGA had more slender and well-organized hydration products, and no changes in hydration products ratio or type were observed.
基金the National Natural Science Foundation of China(20590360)and the Natural Science Foundation of Shanxi Province(2006021014).
文摘The effect of sulfate on Fischer-Tropsch synthesis performance was investigated in a slurryphase continuously stirred tank reactor (CSTR) over a Fe-Mn catalyst. The physiochemical properties of the catalyst impregnated with different levels of sulfate were characterized by N2 physisorption, X-ray photoelectron spectroscopy (XPS), H2 (or CO) temperature-programmed reduction (TPR), Mossbauer spectroscopy, and CO2 temperature-programmed desorption (TPD). The characterization results indicated that the impregnated sulfate slightly decreased the BET surface area and pore volume of the catalyst, suppressed the catalyst reduction and carburization in CO and syngas, and decreased the catalyst surface basicity. At the same time, the addition of small amounts of sulfate improved the activities of FischerTropsch synthesis (FTS) and water gas shift (WGS), shifted the product to light hydrocarbons (C1-C11) and suppressed the formation of heavy products (C12+). Addition of SO4^2- to the catalyst improved the FTS activity at a sulfur loading of 0.05-0.80 g per 100 g Fe, and S-05 catalyst gave the highest CO conversion (62.3%), and beyond this sulfur level the activity of the catalyst decreased.