This paper addressed the efect of copper acetate on the combustion characteristics of anthracite depending on the fractional composition of fuel and additive introduction method.Anthracite was impregnated with 5 wt%of...This paper addressed the efect of copper acetate on the combustion characteristics of anthracite depending on the fractional composition of fuel and additive introduction method.Anthracite was impregnated with 5 wt%of Cu(CH_(3)COO)_(2)by mechanical mixing and incipient wetness impregnation.Four anthracite samples of diferent fraction with d<0.1 mm,d=0.1-0.5 mm,d=0.5-1.0 mm,and d=1.0-2.0 mm were compared.According to EDX mapping,incipient wetness impregnation provides a higher dispersion of the additive and its uniform distribution in the sample.The ignition and combustion characteristics of the modifed anthracite samples were studied by thermal analysis and high-speed video recording of the processes in a combustion chamber(at heating medium temperature of 800℃).It was found that copper acetate increases anthracite reactivity,which was evidenced by decreased onset temperature of combustion(ΔT_(i))by 35-190℃and reduced ignition delay time(Δτ_(i))by 2.1-5.4 s.Copper acetate reduces fuel underburning(on average by 70%)in the ash residue of anthracite and decreases the amount of CO and NO_(x)in gas-phase products(on average by 18.5%and 20.8%,respectively).The mechanism for activation of anthracite combustion by copper acetate is proposed.展开更多
The sulfur phase in high sulfur-containing bauxite was studied by an X-ray diffraction analysis and a chemistry quantitative analysis.The methods for the removal of different shaped sulfur were also discussed.The resu...The sulfur phase in high sulfur-containing bauxite was studied by an X-ray diffraction analysis and a chemistry quantitative analysis.The methods for the removal of different shaped sulfur were also discussed.The results show that sulfur phases in high sulfur-containing bauxites exist in the main form of sulfide sulfur (pyrite) or sulfate sulfur,and the main sulfur forms of bauxites from different regions are not the same.Through a combination of an X-ray diffraction analysis and a chemistry quantitative analysis,the sulfur phases of high sulfur-containing bauxite could be accurately investigated.Deciding the main sulfur form of high sulfur-containing bauxite could provide theoretical instruction for choosing methods for the removal of sulfur from bauxite,and an oxidizing-roasting process is an effective way to remove sulfide sulfur from high sulfur-containing bauxite,the content of S^2-in crude ore in the digestion liquor is above 1.7 g/L,but in the roasted ore digestion liquor,it is below 0.18 g/L.Using the sodium carbonate solution washing technology to wash bauxite can effectively remove sulfate sulfur,the content of the total sulfur in ore is lowered to below 0.2% and can meet the production requirements for the sulfur content.展开更多
A facile one-step co-precipitation method was demonstrated to fabricate amorphous sulfurcontaining calcium phosphate (SCP) nanoparticles, in which the sulfur group was in-situ introduced into calcium phosphate. The ...A facile one-step co-precipitation method was demonstrated to fabricate amorphous sulfurcontaining calcium phosphate (SCP) nanoparticles, in which the sulfur group was in-situ introduced into calcium phosphate. The resulting SCP exhibited a noticeable enhanced performance for Pb(II) removal in comparison with hydroxyapatite (HAP), being capable of easily reducing 20 ppm of Pb(II) to below the acceptable standard for drinking water within less than 10 min. Remarkably, the saturated removal capacities of Pb(II) on SCP were as high as 1720.57 mg/g calculated by the Langmuir isotherm model, exceeding largely that of the previously reported absorbents. Significantly, SCP displayed highly selective removal ability toward Pb(II) ions in the presence of the competing metal ions (Ni(II), Co(II), Zn(II), and Cd(II)). Further investigations indicated that such ultra-high removal efficiency and preferable affinity of Pb(II) ions on SCP may be reasonably ascribed to the formation of rodlike hydroxypyromorphite crystals on the surface of SCP via dissolution-precipitation and ion exchange reactions, accompanied by the presence of lead sulfide precipitates. High removal efficiency, fast removal kinetics and excellent selectivity toward Pb(II) made the obtained SCP material an ideal candidate for Pb(II) ions decontamination in practical application.展开更多
The thermodynamic and kinetic mechanisms of Taixi anthracite during its graphitization process were explored.To understand the variation trends of carbon arrangement order,microcrystal size,and graphitization degree a...The thermodynamic and kinetic mechanisms of Taixi anthracite during its graphitization process were explored.To understand the variation trends of carbon arrangement order,microcrystal size,and graphitization degree against temperature during the graphitization process,a series of experiments were performed using Raman spectroscopy and X-ray diffraction(XRD).Subsequently,the influencing factors of the dominant reaction at different temperatures were analyzed using thermodynamics and kinetics.The results showed that the graphitization process of Taixi anthracite can be divided into three stages from the perspective of reaction thermodynamics and kinetics.Temperature played a crucial role in the formation and growth of a graphitic structure.Meanwhile,multivariate mechanisms coexisted in the graphitization process.At ultrahigh temperatures,the defects of synthetic graphite could not be completely eliminated and perfect graphite crystals could not be produced.At low temperatures,the reaction is mainly controlled by dynamics,while at high temperatures,thermodynamics dominates the direction of the reaction.展开更多
Alkaline sulfur-containing lixiviants,including thiosulfate,polysulfides,and alkaline sulfide solutions,stand out as a promising class of alternatives to cyanide because of their low toxicity,high efficiency,and stron...Alkaline sulfur-containing lixiviants,including thiosulfate,polysulfides,and alkaline sulfide solutions,stand out as a promising class of alternatives to cyanide because of their low toxicity,high efficiency,and strong adaptability.In this paper,we summarized the research progress and remaining challenges in gold extraction using these noncyanide reagents.After a brief introduction to the preparation method,the transformation process of various sulfur-containing species in alkaline solutions was discussed.Thereafter,some insights into the mechanism of gold leaching in alkaline sulfur-containing solutions were presented from different aspects,including thermodynamics analysis,electrochemical dissolution,and leaching kinetics.Moreover,recent progress in in-situ generation of sulfur-containing anions from gold-bearing sulfide minerals was outlined as well.Gold passivation caused by sulfur species was discussed in particular because it is considered the greatest challenge facing sulfur-containing leaching systems.Alkaline sulfur-containing lixiviants are expected to serve as alternatives in industrial applications of gold extraction,particularly for refractory gold ores containing copper and carbonaceous matter.展开更多
Materialization of coal is one of effective and clean pathways for its utilization. The microstructures of coal-based carbon materials have an important influence on their functional applications. Herein, the microstr...Materialization of coal is one of effective and clean pathways for its utilization. The microstructures of coal-based carbon materials have an important influence on their functional applications. Herein, the microstructural evolution of anthracite in the temperature range of 1000–2800 ℃ was systematically investigated to provide a guidance for the microstructural regulation of coal-based carbon materials.The results indicate that the microstructure of anthracite undergoes an important change during carbonization-graphitization process. As the temperature increases, aromatic layers in anthracite gradually transform into disordered graphite microcrystals and further grow into ordered graphite microcrystals, and then ordered graphite microcrystals are laterally linked to form pseudo-graphite phase and eventually transformed into highly ordered graphite-like sheets. In particular, 2000–2200 ℃ is a critical temperature region for the qualitative change of ordered graphite crystallites to pseudo-graphite phase,in which the relevant structural parameters including stacking height, crystallite lateral size and graphitization degree show a rapid increase. Moreover, both aromaticity and graphitization degree have a linear positive correlation with carbonization-graphitization temperature in a specific temperature range.Besides, after initial carbonization, some defect structures in anthracite such as aliphatic carbon and oxygen-containing functional groups are released in the form of gaseous low-molecular volatiles along with an increased pore structure, and the intermediates derived from minerals could facilitate the conversion of sp^(3) amorphous carbon to sp^(2) graphitic carbon. This work provides a valuable reference for the rational design of microstructure of coal-based carbon materials.展开更多
CO2 gasification of Fuijian high-metamorphous anthracite with black liquor (BL) and/or mixture of BL and calcium stuff (BL+Ca) as catalyst was studied by using a thermogravimetry under 750-950℃ at ambient pressu...CO2 gasification of Fuijian high-metamorphous anthracite with black liquor (BL) and/or mixture of BL and calcium stuff (BL+Ca) as catalyst was studied by using a thermogravimetry under 750-950℃ at ambient pressure. When the coal was impregnated with an appropriate quantity of Ca and BL mixture, the catalytic activity of CO2 gasification was enhanced obviously. With a loading of 8%Na-BL+2%Ca, the carbon conversion of three coal samples tested reaches up to 92.9%-99.3% at 950℃ within 30min. The continuous formation of alkali surface compounds such as ([-COM], [-CO2M]) and the presence of exchanged Ca, such as calcium phenolate and calcium carboxylates (COO)2Ca, contribute to the increase in catalytic efficiency, and using BL+Ca is more efficient than that adding BL only, The homogeneous model and shrinking-core model were applied to correlate the data of conversion with time and to estimate the reaction rate constants under different temperature. The corresponding reaction activation energy (Ea) and pre-exponential factor of three anthracites were estimated. It is found that Ea is in the range from 73.6 to 121.4kJ·mol^-1 in the case of BL+Ca, and 74.3 to 104.2kJ·mol^-1 when only BL was used as the catalyst, both of which are much less than that from 143.5 to 181.4kJ·mol^-1 if no catalyst used. It is clearly demonstrated that both of BL+Ca mixture and BL could be the source of cheap and effective catalyst for coal gasification.展开更多
Activated carbon samples were developed from coal samples obtained from a coal mine, rat (Zonguldak, Turkey) and anthracite (Siberia, Russia), applying pyrolysis in a temperature range of 600-900 ℃ under N2 flow,...Activated carbon samples were developed from coal samples obtained from a coal mine, rat (Zonguldak, Turkey) and anthracite (Siberia, Russia), applying pyrolysis in a temperature range of 600-900 ℃ under N2 flow, and activation using chemical agents such as KOH, NH4Cl, ZnCl2 at 650 ℃. Nitrogen adsorption at low temperature (77 K) was used to characterize the activated carbon samples, and their pore structure properties including pore volume, pore diameter and pore size distribution were determined by means of the t-plots and DFT methods. The surface area values were higher for rat coal samples than for anthracite one, and for the rat coal samples treated with KOH + NH4Cl + ZnCl2 at 650 °C [Rat650(2)] there are highest surface area and total pore volume, 315.6 m2·g^-1 and 0.156 ml·g^-1, respectively. The highest value of the hydrogen sorption capacity was found as 0.71% (by mass) for the rat coal sample obtained by KOH + ZnCl2 treatment at 650 °C [Rat650(1)].展开更多
In order to fundamentally solve the acidification problem of high sulfur-containing bauxite during storage, by simulating the environment of minerals storage in laboratory, the acidification mechanism and influencing ...In order to fundamentally solve the acidification problem of high sulfur-containing bauxite during storage, by simulating the environment of minerals storage in laboratory, the acidification mechanism and influencing factors of high sulfur-containing bauxite were studied and confirmed using the single variable method to control the atmosphere, water and other variables. The results show that the acidification is mostly caused by the oxidation of sulfur-containing bauxite, which is mainly the natural oxidation of Pyrite(Fe S2), then the alkaline minerals dissolute in the presence of water, leading to the acidification phenomenon, which is influenced by moisture and air flow. Finally, more acid-producing substances are formed, resulting in the acidification of high sulfur-containing bauxite. The acidification of high sulfur-containing bauxite results from the combined effect of the oxygen in the air and water, which can be significantly alleviated by controlling the diffusion of the oxygen in air.展开更多
The combustion process of Yangquan anthracite(YQ) with the addition of 0.045wt%, 0.211wt%, 1.026wt%, and 2.982wt% chlorine was investigated using a thermogravimetric method from an ambient temperature to 1173 K in a...The combustion process of Yangquan anthracite(YQ) with the addition of 0.045wt%, 0.211wt%, 1.026wt%, and 2.982wt% chlorine was investigated using a thermogravimetric method from an ambient temperature to 1173 K in an air atmosphere. Results show that the YQ combustion characteristics are not significantly affected by an increase in chlorine content. Data acquired for combustion conversion are then further processed for kinetic analysis. Average apparent activation energies determined using the model-free method(specifically the KAS method) are 103.025, 110.250, 99.906, and 110.641 k J/mol, respectively, and the optimal kinetic model for describing the combustion process of chlorine-containing YQ is the nucleation kinetic model, as determined by the z(α) master plot method. The mechanism function of the nucleation kinetic model is then employed to estimate the pre-exponential factor, by making use of the compensation effect. The kinetic models to describe chlorine-containing YQ combustion are thus obtained through advanced determination of the optimal mechanism function, average apparent activation energy, and the pre-exponential factor.展开更多
By means of the split Hopkinson pressure bar (SHPB) testing system, this paper presents a dynamic constitu- tive relation of anthracite at a strain rate of ε =5-85s^-1. Generally, the dynamic stress-strain curve fo...By means of the split Hopkinson pressure bar (SHPB) testing system, this paper presents a dynamic constitu- tive relation of anthracite at a strain rate of ε =5-85s^-1. Generally, the dynamic stress-strain curve for this kind of anthracite under uni-axial compression has the following four stages: a non-linear loading stage, a plastic yielding stage, a strain-strengthening stage and an unloading breakage stage. Correspondingly, the initial elastic modulus Eb, the yielding strength σs and the ultimate strength σb increase along with an increasing strain rate. The time-dependent elasticity was identified when we analyzed the mechanical properties of anthracite. Based on characteristics of measured dynamic stress-strain curves and an analysis of existing rock dynamic constitutive models, as well as a preparatory simulation, a new visco-elastic damage model has been introduced in this paper. A linear spring is put parallel to two Maxwell units with different relaxation times to express two distinct plastic flows. The damage D is equal to [Eb- E(εi)]/Eb, where Eb is the beginning modulus and the E(εi) is the slope of a connected line between the origin point and any other point on a tested stress-strain curve. In the new constitutive model, one Maxwell unit with low relaxation time φ is used to describe the response of anthracite to a low strain rate, while the other, with a high relaxation time φ describes the response of anthracite to a high strain rate. Simulated stress-strain curves from the new model are consistent with the measured curves.展开更多
Four new Schiff bases of 1,10-phenanthroline-2,9-dicarboxaldehyde with sulfur-containing amines such as 2-mercaptoaniline, S-alkyl/aryl dithiocarbazates and thiosemicarbazide have been synthesized and characterized by...Four new Schiff bases of 1,10-phenanthroline-2,9-dicarboxaldehyde with sulfur-containing amines such as 2-mercaptoaniline, S-alkyl/aryl dithiocarbazates and thiosemicarbazide have been synthesized and characterized by spectroscopic and X-ray crystallographic techniques. A comparative study of the methods of synthesis has been made using both traditional and microwave techniques. A significant reduction in reaction time has been observed when the microwave method was used. In some of the reactions, the yields also increased significantly.展开更多
Anthracite in Jincheng is a highly metamorphic coal and its system of fissures and pores is differentfrom that of low and medium ranked coal.In order to discover their characteristics,69 samples were collected from 18...Anthracite in Jincheng is a highly metamorphic coal and its system of fissures and pores is differentfrom that of low and medium ranked coal.In order to discover their characteristics,69 samples were collected from 18 CBM wells in Zhengzhuang in Jincheng and their fissures and pores were observed by a Scanning Electron Microscope(SEM).To the naked eyes and by SEM,the pores in the Jincheng anthracite are seen to have abundant mold pores with isolated,shallow and poor connectivity(diameters between 1~50 μm) and few plant tissue pores,gas pores,and solution pores.Most of the fissures are filled with clay minerals or closed;while open fissures are not often visible in the Jincheng coal(aperture between 3~10 μm).These characteristics are determined by the high rank and high vitrinite content of the coal.The existence of too many mold pores and filled fissures does not allow the migration of methane,hence hydraulic fracture stimulation will be required and is an effective method of adding and connecting fissures to enhance CBM production.展开更多
Structural and thermodynamic parameters of 56 oxygen-containing and 56 sulfur- containing organic compounds were computed at the B3LPY/6-311G** level using density functional theory (DFT) method. Furthermore,the d...Structural and thermodynamic parameters of 56 oxygen-containing and 56 sulfur- containing organic compounds were computed at the B3LPY/6-311G** level using density functional theory (DFT) method. Furthermore,the dependent equations between the experimental data of boiling points (Tb) and theoretical parameters were proposed with SPSS12.0 for windows software,whose correlation coefficients R2 are 0.933 and 0.945. These dependent equations were validated by cross-validation method (q2 are 0.923 and 0.929,respectively). VIF (variance inflation factors) and t-value methods were also used to verify the significance and self-correlationship of each variable. Results indicate that our dependent equation exhibits good prediction ability,and molecular polarizability (α) is the main factor affecting the Tb of oxygen- and sulfur-containing organic compounds. To our interest,obvious dependence could also be found among the oxygen- and sulfur-containing organic compounds' experimental data of boiling points (Tb) with R^2 of 0.857.展开更多
CeO_2–CaO–Pd/HZSM-5 catalyst was prepared for the dimethyl ether(DME) one-step synthesis in a continuous fixed-bed micro-reactor from the sulfur-containing syngas. The catalytic stability over hybrid catalyst of Ce...CeO_2–CaO–Pd/HZSM-5 catalyst was prepared for the dimethyl ether(DME) one-step synthesis in a continuous fixed-bed micro-reactor from the sulfur-containing syngas. The catalytic stability over hybrid catalyst of CeO_2–CaO–Pd/HZSM-5 was investigated to ensure that the kinetics experimental results were not significantly influenced by induction period and catalytic deactivation. A large number of kinetic data points(40 sets) were obtained over a range of temperature(240–300 °C), pressure(3–4 MPa), gas hourly space velocity(GHSV)(2000–3000 L·kg^(-1)·h^(-1)) and H_2/CO mole ratio(2–3). Kinetic model for the methanol synthesis reaction and the dehydration of methanol were obtained separately according to reaction mechanism and Langmuir–Hinshelwood mechanism. Regression parameters were investigated by the method combining the simplex method and Runge–Kutta method. The model calculations were in appropriate accordance with the experimental data.展开更多
The effects of blending Enugu coal and anthracite on tin smelting using Nigerian Dogo Na Hauwa cassiterite have been studied. The work utilized various blends ranging from 100% to 0% anthracite. The content of the Enu...The effects of blending Enugu coal and anthracite on tin smelting using Nigerian Dogo Na Hauwa cassiterite have been studied. The work utilized various blends ranging from 100% to 0% anthracite. The content of the Enugu coal in the blend varied from 5% to 100%. The various tin metal recovery percentage for each batch of smelting using various blends was noted. Anthracite alone had the highest recovery of 71.90% followed by 5% blend of Enugu with anthracite. The result, however, showed that as the Enugu Coal was increased in the blend, the recovery was also decreasing. This equally affected the quality of tin metal recovered by increasing the grade. The work recommended that since the cost of production is the critical issue, 5% - 15% range of Enugu Coal should be used in preparing blends to bring down the cost of imported anthracite which is put at $906.69 per ton. The use of 15% Enugu coal will result in lowering the cost of imported anthracite by $136.0.展开更多
Since the most sensitive resonance lines of nonmetallic elements are situated in vacuum ultraviolet region (below 190 nm), they can not be directly determined with a common AAS instrument covering the spectral range...Since the most sensitive resonance lines of nonmetallic elements are situated in vacuum ultraviolet region (below 190 nm), they can not be directly determined with a common AAS instrument covering the spectral range from 190 to 700 nm. The molecular absorption spectrometry is often used for the determination of nonmetallic elements. Syty et al. used vapor molecular absorption spectrometry(VMAS) to determine the sulfur dioxide and sulfide, in which a hydrogen hollow cathode lamp was used as a continuum source to determine SO;at 210 nm and a deuterium arc展开更多
The fundamental question of super-low-ash coal preparation is how to furthest depress high ash component pollution. A jigging process was used to remove high ash refuse and middling, then a high precision heavy medium...The fundamental question of super-low-ash coal preparation is how to furthest depress high ash component pollution. A jigging process was used to remove high ash refuse and middling, then a high precision heavy medium cyclone was used to further separate near gravity light material. A two-stage heavy medium cylindrical cyclone with the same separation density was used to increase the precision of separation. The feed was de-slimed and fine-grind coal was added with media to improve the stability of the suspension. The pump frequency conversion timing and an air spring were used to steady the cyclone inlet pressure. Based on a series of study and pilot tests, a 1.00 Mt/a (output) commercial separation system with Ep value under 0.015 was built up. Super low ash (Ad≤2.00%) Taixi Anthracite has been put into commercial production.展开更多
The present study focuses on the inorganic geochemical features of the bituminous coal samples from the Raniganj and the Jharia Basins,as well as the anthracite samples from the Himalayan fold-thrust belts of Sikkim,I...The present study focuses on the inorganic geochemical features of the bituminous coal samples from the Raniganj and the Jharia Basins,as well as the anthracite samples from the Himalayan fold-thrust belts of Sikkim,India.The SiO_(2)content(48.05 wt%to 65.09 wt%and 35.92 wt%to 50.11 wt%in the bituminous and anthracite samples,respectively)and the ratio of Al_(2)O_(3)/TiO_(2)(6.97 to 17.03 in the bituminous coal samples and 10.34 to 20.07 in the anthracite samples)reveal the intermediate igneous source rock composition of the minerals.The ratio of the K_(2)O/Al_(2)O_(3)in the ash yield of the bituminous coal samples(0.03 to 0.09)may suggest the presence of kaolinite mixed with montmorillonite,while its range in the ash yield of the anthracite samples(0.16 to 0.27)may imply the presence of illite mixed with kaolinite.The chemical index of alteration values may suggest the moderate to strong chemical weathering of the source rock under sub-humid to humid climatic conditions.The plot of the bituminous coal samples in the A–CN–K diagram depicts the traditional weathering trend of parent rocks,but the anthracite samples plot near the illite feld and are a bit ofset from the weathering trend.This may imply the plausible infuences of the potassium-metasomatism at post coalifcation stages,which is further supported by high K_(2)O/Na_(2)O ratio(29.88–80.13).The Fourier transform infrared spectra further reveal the hydroxyl stretching intensity of illite in the anthracite samples substantiating the efect of the epigenetic potassium-metasomatism.The decrease in total kaolinite intensity/compound intensity of quartz and feldspar may provide additional evidence towards this epigenetic event.展开更多
文摘This paper addressed the efect of copper acetate on the combustion characteristics of anthracite depending on the fractional composition of fuel and additive introduction method.Anthracite was impregnated with 5 wt%of Cu(CH_(3)COO)_(2)by mechanical mixing and incipient wetness impregnation.Four anthracite samples of diferent fraction with d<0.1 mm,d=0.1-0.5 mm,d=0.5-1.0 mm,and d=1.0-2.0 mm were compared.According to EDX mapping,incipient wetness impregnation provides a higher dispersion of the additive and its uniform distribution in the sample.The ignition and combustion characteristics of the modifed anthracite samples were studied by thermal analysis and high-speed video recording of the processes in a combustion chamber(at heating medium temperature of 800℃).It was found that copper acetate increases anthracite reactivity,which was evidenced by decreased onset temperature of combustion(ΔT_(i))by 35-190℃and reduced ignition delay time(Δτ_(i))by 2.1-5.4 s.Copper acetate reduces fuel underburning(on average by 70%)in the ash residue of anthracite and decreases the amount of CO and NO_(x)in gas-phase products(on average by 18.5%and 20.8%,respectively).The mechanism for activation of anthracite combustion by copper acetate is proposed.
基金Project(20971041) supported by the National Natural Science Foundation of ChinaProject(09B032) supported by Scientific Research Fund of Hunan Provincial Education Department,China
文摘The sulfur phase in high sulfur-containing bauxite was studied by an X-ray diffraction analysis and a chemistry quantitative analysis.The methods for the removal of different shaped sulfur were also discussed.The results show that sulfur phases in high sulfur-containing bauxites exist in the main form of sulfide sulfur (pyrite) or sulfate sulfur,and the main sulfur forms of bauxites from different regions are not the same.Through a combination of an X-ray diffraction analysis and a chemistry quantitative analysis,the sulfur phases of high sulfur-containing bauxite could be accurately investigated.Deciding the main sulfur form of high sulfur-containing bauxite could provide theoretical instruction for choosing methods for the removal of sulfur from bauxite,and an oxidizing-roasting process is an effective way to remove sulfide sulfur from high sulfur-containing bauxite,the content of S^2-in crude ore in the digestion liquor is above 1.7 g/L,but in the roasted ore digestion liquor,it is below 0.18 g/L.Using the sodium carbonate solution washing technology to wash bauxite can effectively remove sulfate sulfur,the content of the total sulfur in ore is lowered to below 0.2% and can meet the production requirements for the sulfur content.
文摘A facile one-step co-precipitation method was demonstrated to fabricate amorphous sulfurcontaining calcium phosphate (SCP) nanoparticles, in which the sulfur group was in-situ introduced into calcium phosphate. The resulting SCP exhibited a noticeable enhanced performance for Pb(II) removal in comparison with hydroxyapatite (HAP), being capable of easily reducing 20 ppm of Pb(II) to below the acceptable standard for drinking water within less than 10 min. Remarkably, the saturated removal capacities of Pb(II) on SCP were as high as 1720.57 mg/g calculated by the Langmuir isotherm model, exceeding largely that of the previously reported absorbents. Significantly, SCP displayed highly selective removal ability toward Pb(II) ions in the presence of the competing metal ions (Ni(II), Co(II), Zn(II), and Cd(II)). Further investigations indicated that such ultra-high removal efficiency and preferable affinity of Pb(II) ions on SCP may be reasonably ascribed to the formation of rodlike hydroxypyromorphite crystals on the surface of SCP via dissolution-precipitation and ion exchange reactions, accompanied by the presence of lead sulfide precipitates. High removal efficiency, fast removal kinetics and excellent selectivity toward Pb(II) made the obtained SCP material an ideal candidate for Pb(II) ions decontamination in practical application.
基金financially supported by the China Postdoctoral Science Foundation and China National “Twelfth Five-Year” Plan for Science & Technology (No. 2014BAB01B02)Shenhua Ningxia Coal Industry Group for financial support and providing Taixi anthracite samplesthe support of Advanced Analysis & Computation Center of China University of Mining and Technology
文摘The thermodynamic and kinetic mechanisms of Taixi anthracite during its graphitization process were explored.To understand the variation trends of carbon arrangement order,microcrystal size,and graphitization degree against temperature during the graphitization process,a series of experiments were performed using Raman spectroscopy and X-ray diffraction(XRD).Subsequently,the influencing factors of the dominant reaction at different temperatures were analyzed using thermodynamics and kinetics.The results showed that the graphitization process of Taixi anthracite can be divided into three stages from the perspective of reaction thermodynamics and kinetics.Temperature played a crucial role in the formation and growth of a graphitic structure.Meanwhile,multivariate mechanisms coexisted in the graphitization process.At ultrahigh temperatures,the defects of synthetic graphite could not be completely eliminated and perfect graphite crystals could not be produced.At low temperatures,the reaction is mainly controlled by dynamics,while at high temperatures,thermodynamics dominates the direction of the reaction.
基金the National Natural Science Foundation of China(No.51574018).
文摘Alkaline sulfur-containing lixiviants,including thiosulfate,polysulfides,and alkaline sulfide solutions,stand out as a promising class of alternatives to cyanide because of their low toxicity,high efficiency,and strong adaptability.In this paper,we summarized the research progress and remaining challenges in gold extraction using these noncyanide reagents.After a brief introduction to the preparation method,the transformation process of various sulfur-containing species in alkaline solutions was discussed.Thereafter,some insights into the mechanism of gold leaching in alkaline sulfur-containing solutions were presented from different aspects,including thermodynamics analysis,electrochemical dissolution,and leaching kinetics.Moreover,recent progress in in-situ generation of sulfur-containing anions from gold-bearing sulfide minerals was outlined as well.Gold passivation caused by sulfur species was discussed in particular because it is considered the greatest challenge facing sulfur-containing leaching systems.Alkaline sulfur-containing lixiviants are expected to serve as alternatives in industrial applications of gold extraction,particularly for refractory gold ores containing copper and carbonaceous matter.
基金supported by the National Natural Science Foundation of China(Nos.51974110,52074109 and 52274261)the Key Scientific and Technological Project of Henan Province(No.202102210183)the Coal Green Conversion Outstanding Foreign Scientists Foundation of Henan Province(No.GZS2020012).
文摘Materialization of coal is one of effective and clean pathways for its utilization. The microstructures of coal-based carbon materials have an important influence on their functional applications. Herein, the microstructural evolution of anthracite in the temperature range of 1000–2800 ℃ was systematically investigated to provide a guidance for the microstructural regulation of coal-based carbon materials.The results indicate that the microstructure of anthracite undergoes an important change during carbonization-graphitization process. As the temperature increases, aromatic layers in anthracite gradually transform into disordered graphite microcrystals and further grow into ordered graphite microcrystals, and then ordered graphite microcrystals are laterally linked to form pseudo-graphite phase and eventually transformed into highly ordered graphite-like sheets. In particular, 2000–2200 ℃ is a critical temperature region for the qualitative change of ordered graphite crystallites to pseudo-graphite phase,in which the relevant structural parameters including stacking height, crystallite lateral size and graphitization degree show a rapid increase. Moreover, both aromaticity and graphitization degree have a linear positive correlation with carbonization-graphitization temperature in a specific temperature range.Besides, after initial carbonization, some defect structures in anthracite such as aliphatic carbon and oxygen-containing functional groups are released in the form of gaseous low-molecular volatiles along with an increased pore structure, and the intermediates derived from minerals could facilitate the conversion of sp^(3) amorphous carbon to sp^(2) graphitic carbon. This work provides a valuable reference for the rational design of microstructure of coal-based carbon materials.
基金Supported by the National Natural Science Foundation of China (No.20376014) and Fujian Science and Technology Council Grant (HG99-01).
文摘CO2 gasification of Fuijian high-metamorphous anthracite with black liquor (BL) and/or mixture of BL and calcium stuff (BL+Ca) as catalyst was studied by using a thermogravimetry under 750-950℃ at ambient pressure. When the coal was impregnated with an appropriate quantity of Ca and BL mixture, the catalytic activity of CO2 gasification was enhanced obviously. With a loading of 8%Na-BL+2%Ca, the carbon conversion of three coal samples tested reaches up to 92.9%-99.3% at 950℃ within 30min. The continuous formation of alkali surface compounds such as ([-COM], [-CO2M]) and the presence of exchanged Ca, such as calcium phenolate and calcium carboxylates (COO)2Ca, contribute to the increase in catalytic efficiency, and using BL+Ca is more efficient than that adding BL only, The homogeneous model and shrinking-core model were applied to correlate the data of conversion with time and to estimate the reaction rate constants under different temperature. The corresponding reaction activation energy (Ea) and pre-exponential factor of three anthracites were estimated. It is found that Ea is in the range from 73.6 to 121.4kJ·mol^-1 in the case of BL+Ca, and 74.3 to 104.2kJ·mol^-1 when only BL was used as the catalyst, both of which are much less than that from 143.5 to 181.4kJ·mol^-1 if no catalyst used. It is clearly demonstrated that both of BL+Ca mixture and BL could be the source of cheap and effective catalyst for coal gasification.
基金provided by the project DPT2002K120640 funded by State Planning Organization (DPT), Turkey
文摘Activated carbon samples were developed from coal samples obtained from a coal mine, rat (Zonguldak, Turkey) and anthracite (Siberia, Russia), applying pyrolysis in a temperature range of 600-900 ℃ under N2 flow, and activation using chemical agents such as KOH, NH4Cl, ZnCl2 at 650 ℃. Nitrogen adsorption at low temperature (77 K) was used to characterize the activated carbon samples, and their pore structure properties including pore volume, pore diameter and pore size distribution were determined by means of the t-plots and DFT methods. The surface area values were higher for rat coal samples than for anthracite one, and for the rat coal samples treated with KOH + NH4Cl + ZnCl2 at 650 °C [Rat650(2)] there are highest surface area and total pore volume, 315.6 m2·g^-1 and 0.156 ml·g^-1, respectively. The highest value of the hydrogen sorption capacity was found as 0.71% (by mass) for the rat coal sample obtained by KOH + ZnCl2 treatment at 650 °C [Rat650(1)].
基金Project(2013AA064102)supported by the National High Technology Research and Development Program of China
文摘In order to fundamentally solve the acidification problem of high sulfur-containing bauxite during storage, by simulating the environment of minerals storage in laboratory, the acidification mechanism and influencing factors of high sulfur-containing bauxite were studied and confirmed using the single variable method to control the atmosphere, water and other variables. The results show that the acidification is mostly caused by the oxidation of sulfur-containing bauxite, which is mainly the natural oxidation of Pyrite(Fe S2), then the alkaline minerals dissolute in the presence of water, leading to the acidification phenomenon, which is influenced by moisture and air flow. Finally, more acid-producing substances are formed, resulting in the acidification of high sulfur-containing bauxite. The acidification of high sulfur-containing bauxite results from the combined effect of the oxygen in the air and water, which can be significantly alleviated by controlling the diffusion of the oxygen in air.
基金financially supported by the Beijing Municipal Science & Technology Commission of China (No.Z161100002716017)the Key Program of the National Natural Science Foundation of China (No. U1260202)the 111 Project (No. B13004)
文摘The combustion process of Yangquan anthracite(YQ) with the addition of 0.045wt%, 0.211wt%, 1.026wt%, and 2.982wt% chlorine was investigated using a thermogravimetric method from an ambient temperature to 1173 K in an air atmosphere. Results show that the YQ combustion characteristics are not significantly affected by an increase in chlorine content. Data acquired for combustion conversion are then further processed for kinetic analysis. Average apparent activation energies determined using the model-free method(specifically the KAS method) are 103.025, 110.250, 99.906, and 110.641 k J/mol, respectively, and the optimal kinetic model for describing the combustion process of chlorine-containing YQ is the nucleation kinetic model, as determined by the z(α) master plot method. The mechanism function of the nucleation kinetic model is then employed to estimate the pre-exponential factor, by making use of the compensation effect. The kinetic models to describe chlorine-containing YQ combustion are thus obtained through advanced determination of the optimal mechanism function, average apparent activation energy, and the pre-exponential factor.
基金Project 50374070 supported by the National Natural Science Foundation of China
文摘By means of the split Hopkinson pressure bar (SHPB) testing system, this paper presents a dynamic constitu- tive relation of anthracite at a strain rate of ε =5-85s^-1. Generally, the dynamic stress-strain curve for this kind of anthracite under uni-axial compression has the following four stages: a non-linear loading stage, a plastic yielding stage, a strain-strengthening stage and an unloading breakage stage. Correspondingly, the initial elastic modulus Eb, the yielding strength σs and the ultimate strength σb increase along with an increasing strain rate. The time-dependent elasticity was identified when we analyzed the mechanical properties of anthracite. Based on characteristics of measured dynamic stress-strain curves and an analysis of existing rock dynamic constitutive models, as well as a preparatory simulation, a new visco-elastic damage model has been introduced in this paper. A linear spring is put parallel to two Maxwell units with different relaxation times to express two distinct plastic flows. The damage D is equal to [Eb- E(εi)]/Eb, where Eb is the beginning modulus and the E(εi) is the slope of a connected line between the origin point and any other point on a tested stress-strain curve. In the new constitutive model, one Maxwell unit with low relaxation time φ is used to describe the response of anthracite to a low strain rate, while the other, with a high relaxation time φ describes the response of anthracite to a high strain rate. Simulated stress-strain curves from the new model are consistent with the measured curves.
文摘Four new Schiff bases of 1,10-phenanthroline-2,9-dicarboxaldehyde with sulfur-containing amines such as 2-mercaptoaniline, S-alkyl/aryl dithiocarbazates and thiosemicarbazide have been synthesized and characterized by spectroscopic and X-ray crystallographic techniques. A comparative study of the methods of synthesis has been made using both traditional and microwave techniques. A significant reduction in reaction time has been observed when the microwave method was used. In some of the reactions, the yields also increased significantly.
基金supported by the National Basic Research Program of China (No.2006CB202200)
文摘Anthracite in Jincheng is a highly metamorphic coal and its system of fissures and pores is differentfrom that of low and medium ranked coal.In order to discover their characteristics,69 samples were collected from 18 CBM wells in Zhengzhuang in Jincheng and their fissures and pores were observed by a Scanning Electron Microscope(SEM).To the naked eyes and by SEM,the pores in the Jincheng anthracite are seen to have abundant mold pores with isolated,shallow and poor connectivity(diameters between 1~50 μm) and few plant tissue pores,gas pores,and solution pores.Most of the fissures are filled with clay minerals or closed;while open fissures are not often visible in the Jincheng coal(aperture between 3~10 μm).These characteristics are determined by the high rank and high vitrinite content of the coal.The existence of too many mold pores and filled fissures does not allow the migration of methane,hence hydraulic fracture stimulation will be required and is an effective method of adding and connecting fissures to enhance CBM production.
基金Supported by the State Science Foundation of China (No. 20737001)
文摘Structural and thermodynamic parameters of 56 oxygen-containing and 56 sulfur- containing organic compounds were computed at the B3LPY/6-311G** level using density functional theory (DFT) method. Furthermore,the dependent equations between the experimental data of boiling points (Tb) and theoretical parameters were proposed with SPSS12.0 for windows software,whose correlation coefficients R2 are 0.933 and 0.945. These dependent equations were validated by cross-validation method (q2 are 0.923 and 0.929,respectively). VIF (variance inflation factors) and t-value methods were also used to verify the significance and self-correlationship of each variable. Results indicate that our dependent equation exhibits good prediction ability,and molecular polarizability (α) is the main factor affecting the Tb of oxygen- and sulfur-containing organic compounds. To our interest,obvious dependence could also be found among the oxygen- and sulfur-containing organic compounds' experimental data of boiling points (Tb) with R^2 of 0.857.
基金Supported by the National Natural Science Foundation of China(51204179,51204182,51674256)The Natural Science Foundation of Jiangsu Province,China(BK20141242)
文摘CeO_2–CaO–Pd/HZSM-5 catalyst was prepared for the dimethyl ether(DME) one-step synthesis in a continuous fixed-bed micro-reactor from the sulfur-containing syngas. The catalytic stability over hybrid catalyst of CeO_2–CaO–Pd/HZSM-5 was investigated to ensure that the kinetics experimental results were not significantly influenced by induction period and catalytic deactivation. A large number of kinetic data points(40 sets) were obtained over a range of temperature(240–300 °C), pressure(3–4 MPa), gas hourly space velocity(GHSV)(2000–3000 L·kg^(-1)·h^(-1)) and H_2/CO mole ratio(2–3). Kinetic model for the methanol synthesis reaction and the dehydration of methanol were obtained separately according to reaction mechanism and Langmuir–Hinshelwood mechanism. Regression parameters were investigated by the method combining the simplex method and Runge–Kutta method. The model calculations were in appropriate accordance with the experimental data.
文摘The effects of blending Enugu coal and anthracite on tin smelting using Nigerian Dogo Na Hauwa cassiterite have been studied. The work utilized various blends ranging from 100% to 0% anthracite. The content of the Enugu coal in the blend varied from 5% to 100%. The various tin metal recovery percentage for each batch of smelting using various blends was noted. Anthracite alone had the highest recovery of 71.90% followed by 5% blend of Enugu with anthracite. The result, however, showed that as the Enugu Coal was increased in the blend, the recovery was also decreasing. This equally affected the quality of tin metal recovered by increasing the grade. The work recommended that since the cost of production is the critical issue, 5% - 15% range of Enugu Coal should be used in preparing blends to bring down the cost of imported anthracite which is put at $906.69 per ton. The use of 15% Enugu coal will result in lowering the cost of imported anthracite by $136.0.
文摘Since the most sensitive resonance lines of nonmetallic elements are situated in vacuum ultraviolet region (below 190 nm), they can not be directly determined with a common AAS instrument covering the spectral range from 190 to 700 nm. The molecular absorption spectrometry is often used for the determination of nonmetallic elements. Syty et al. used vapor molecular absorption spectrometry(VMAS) to determine the sulfur dioxide and sulfide, in which a hydrogen hollow cathode lamp was used as a continuum source to determine SO;at 210 nm and a deuterium arc
基金Project 2004300z019 supported by the Ningxia Municipal Torch Science and Technology
文摘The fundamental question of super-low-ash coal preparation is how to furthest depress high ash component pollution. A jigging process was used to remove high ash refuse and middling, then a high precision heavy medium cyclone was used to further separate near gravity light material. A two-stage heavy medium cylindrical cyclone with the same separation density was used to increase the precision of separation. The feed was de-slimed and fine-grind coal was added with media to improve the stability of the suspension. The pump frequency conversion timing and an air spring were used to steady the cyclone inlet pressure. Based on a series of study and pilot tests, a 1.00 Mt/a (output) commercial separation system with Ep value under 0.015 was built up. Super low ash (Ad≤2.00%) Taixi Anthracite has been put into commercial production.
文摘The present study focuses on the inorganic geochemical features of the bituminous coal samples from the Raniganj and the Jharia Basins,as well as the anthracite samples from the Himalayan fold-thrust belts of Sikkim,India.The SiO_(2)content(48.05 wt%to 65.09 wt%and 35.92 wt%to 50.11 wt%in the bituminous and anthracite samples,respectively)and the ratio of Al_(2)O_(3)/TiO_(2)(6.97 to 17.03 in the bituminous coal samples and 10.34 to 20.07 in the anthracite samples)reveal the intermediate igneous source rock composition of the minerals.The ratio of the K_(2)O/Al_(2)O_(3)in the ash yield of the bituminous coal samples(0.03 to 0.09)may suggest the presence of kaolinite mixed with montmorillonite,while its range in the ash yield of the anthracite samples(0.16 to 0.27)may imply the presence of illite mixed with kaolinite.The chemical index of alteration values may suggest the moderate to strong chemical weathering of the source rock under sub-humid to humid climatic conditions.The plot of the bituminous coal samples in the A–CN–K diagram depicts the traditional weathering trend of parent rocks,but the anthracite samples plot near the illite feld and are a bit ofset from the weathering trend.This may imply the plausible infuences of the potassium-metasomatism at post coalifcation stages,which is further supported by high K_(2)O/Na_(2)O ratio(29.88–80.13).The Fourier transform infrared spectra further reveal the hydroxyl stretching intensity of illite in the anthracite samples substantiating the efect of the epigenetic potassium-metasomatism.The decrease in total kaolinite intensity/compound intensity of quartz and feldspar may provide additional evidence towards this epigenetic event.