As a promising energy-storage device,the hybrid lithium-ion capacitor coupling with both a large energy density battery-type anode and a high power density capacitor-type cathode is attracting great attention.For the ...As a promising energy-storage device,the hybrid lithium-ion capacitor coupling with both a large energy density battery-type anode and a high power density capacitor-type cathode is attracting great attention.For the sake of improving the energy density of hybrid lithium-ion capacitor,the free-standing anodes with good electrochemical performance are essential.Herein,we design an effective electrospinning strategy to prepare free-standing MnS/Co4S3/Ni3S2/Ni/C-nanofibers(TMSs/Ni/C-NFs)film and firstly use it as a binder-free anode for hybrid lithium-ion capacitor.We find that the carbon nanofibers can availably prevent MnS/Co4S3/Ni3S2/Ni nanoparticles from aggregation as well as significantly improve the electrochemical performance.Therefore,the binder-free TMSs/Ni/C-NFs membrane displays an ultrahigh reversible capacity of 1246.9 m Ah g-1at 100 m A g-1,excellent rate capability(398 mAh g-1 at2000 mA g-1),and long-term cyclic endurance.Besides,we further assemble the hybrid lithium-ion capacitor,which exhibits a high energy density of 182.0 Wh kg-1at 121.1 W kg-1(19.0 Wh kg-1 at 3512.5 W kg-1)and remarkable cycle life.展开更多
Ultrafine Milling technology is used to treat gold-bearingsulphides and to investigate the effects of minerals size, millingtime, liquid/solid ratio, NaCN consumption and leaching aid onleaching rate of gold. The resu...Ultrafine Milling technology is used to treat gold-bearingsulphides and to investigate the effects of minerals size, millingtime, liquid/solid ratio, NaCN consumption and leaching aid onleaching rate of gold. The results indicate that shorter treatingtime, decrease of NaCN consumption of 60/100 and increase of goldleaching rate of 15/100 can be ob- tained by the ultrafine millingtechnology compared with traditional cyanide leaching. Potentialexists for the new pro- cess to form the basis for an economicallyprocess for treatment of gold-bearing sulphides.展开更多
The bacteria used in the experiment are Thiobacillus Ferrooxidans separated from acidic mine water in sulphide deposits. The chemoautotrophic bacteria can act directly on sulphides and accelerate the oxidation of sulp...The bacteria used in the experiment are Thiobacillus Ferrooxidans separated from acidic mine water in sulphide deposits. The chemoautotrophic bacteria can act directly on sulphides and accelerate the oxidation of sulphides. The experiment shows that the bacteria, as an important microbial factor of gold's supergenous enrichment within the oxidized zones of sulphide deposits, are helpful to dissolve gold and silver in ferric sulphate. In the bacterial oxidation process, the precipitation of goethite is concerned both with the lower activity of ferric ions and with the existence of carbonates in solution. Meanwhile, the acid-resisting and oxidizing ability of the bacteria will certainly lead up to a microbial way of treating the acidic mine water.展开更多
Mafic and ultramafic intrusions observed in the Archean formations of the Sipilou region exhibit occurrences of polymetallic sulphide. Mapping, petrographic and geochemical studies have defined magnetic facies associa...Mafic and ultramafic intrusions observed in the Archean formations of the Sipilou region exhibit occurrences of polymetallic sulphide. Mapping, petrographic and geochemical studies have defined magnetic facies associated with the various geological units. The results of this work reveal that cupronickel sulphides, olivines and pyroxenes as well as spinels are related to ultrabasic formations where strong magnetic facies prevail. Iron sulphides and magnetite are linked to quartzo-feldspathic and jotunite-enderbite formations, which are characterised by moderate magnetic facies. The latter are thought to be derived from anatexite remobilisation within Archean granulites, which have weak magnetic facies.展开更多
Mineral sulphide (MS)-lime (CaO) ion exchange reactions (MS + CaO = MO + CaS) and the effect of CaO/C mole ratio during carbothermic reduction (MS + CaO + C = M + CaS + CO(g)) were investigated for com...Mineral sulphide (MS)-lime (CaO) ion exchange reactions (MS + CaO = MO + CaS) and the effect of CaO/C mole ratio during carbothermic reduction (MS + CaO + C = M + CaS + CO(g)) were investigated for complex froth flotation mineral sulphide concentrates. Phases in the partially and fully reacted samples were characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The primary phases during mineral sulphide-lime ion exchange reactions are Fe304, CaSO4 Cu2S, and CaS. A complex liquid phase of Ca2CuFeO3S forms during mineral sulphide-lime exchange reactions above 1173 K. The formation mechanisms of Ca2CuFeO3S liquid phase are determined by characterising the partially reacted samples. The reduction rate and extent of mineral sulphides in the presence of CaO and C increase with the increase in CaO/C ratio. The metallic phases are surrounded by the CaS rich phase at CaO/C 〉 1, but the metallic phases and CaS are found as separate phases at CaO/C 〈 1. Experimental results show that the stoichiometric ratio of carbon should be slightly higher than that of CaO. The reactions between CaO and gangue minerals (SiO2 and A1203) are only observed at CaO/C 〉 1 and the reacted samples are excessively sintered.展开更多
Gold leaching was influenced in association with silver and polymetal sulphide minerals.A packed bed was adopted to single out the galvanic and passivation effects with four sets of minerals:pyrite?silica,chalcopyrite...Gold leaching was influenced in association with silver and polymetal sulphide minerals.A packed bed was adopted to single out the galvanic and passivation effects with four sets of minerals:pyrite?silica,chalcopyrite?silica,sphalerite?silica and stibnite?silica.Pyrargyrite enhanced Au recovery to 77.3%and 51.2%under galvanic and passivation effects from pyrite(vs 74.6%and 15.8%).Pyrargyrite in association with sphalerite also enhanced Au recovery to 6.6%and 51.9%(vs 1.6%and 15.6%)under galvanic and passivation effects from sphalerite.Pyrargyrite associated with chalcopyrite retarded gold recovery to 38.0%and 12.1%(vs 57%and 14.1%)under galvanic and passivation effects.Accumulative silver minerals enhanced Au recovery to 90.6%and 81.1%(vs 74.6%and 15.8%)under galvanic and passivation impacts from pyrite.Silver minerals with sphalerite under galvanic and passivation effects enhanced Au recovery to 71.1%and 80.5%(vs 1.6%and 15.6%).Silver minerals associated with chalcopyrite retarded Au recovery to 10.2%and 4.5%under galvanic and passivation impacts(vs 57%and 14.1%).Stibnite retarded Au dissolution with pyrargyrite and accumulative silver minerals.Pyrargyrite and accumulative silver enhanced gold dissolution for free gold and gold associated with pyrite and sphalerite.Gold dissolution was retarded for gold and silver minerals associated with chalcopyrite and stibnite.展开更多
The U-Pb (on zircon) and Sm-Nd analysis is a popular isotope-geochronological tool for estimating the age of rocks from PGE mafic-ultramafic intrusions. Sulphides can be used to study the geochronology of ore processe...The U-Pb (on zircon) and Sm-Nd analysis is a popular isotope-geochronological tool for estimating the age of rocks from PGE mafic-ultramafic intrusions. Sulphides can be used to study the geochronology of ore processes as well, since they should indicate the time of ore mineralization. Gabbronorite has been sampled from the Passivaara reef at the Penikat layered intrusion (Finland) for U-Pb and Sm-Nd isotope single zircon analyses in order to separate sulphide minerals. The Sm-Nd isotope age of gabbronorite has been dated at 2426 ± 36 Ma;eNd(T) = −1.4 ± 0.4. The Sm-Nd isotope age on sulphides and rock-forming minerals reflects the crystallization time of the ore-bearing gabbronorite from the Passivaara reef of the Penikat layered intrusion. The mass-spectrometer analytical environment and modes of operation have been adjusted to detect REE in sulphide minerals on example of pyrite from the PGE Penikat layered intrusion (Finland) and chalcopyrite from the Talnakh deposit (Norilsk area, Russia) has been estimated. The total REE content in pyrite is ca. 3.5 ppm, which is enough to define the Sm-Nd age of pyrite. The study shows how to use the mineral/chondrite spectra to evaluate the accuracy of the REE analytical results on example of State Standard Sample 2463 (Russia).展开更多
Polymetallic sulphides have been consistent source of metals like iron, copper, zinc and lead. Apart from these they are also seen as economically viable resources of silver and gold. As the demand of these metals is ...Polymetallic sulphides have been consistent source of metals like iron, copper, zinc and lead. Apart from these they are also seen as economically viable resources of silver and gold. As the demand of these metals is showing an astoundingly increasing trend, the search for their resources has also increased in similar folds. This has resulted in many nations' focus on deep seabed resources of the polymetallic sulphides. Consequently, International Seabed Authority (ISBA) has provided 'Regulations' to obtain plan of work for exploration of polymetallic sulphide deposits in deep seabed 'Area'. Following the release of these Regulations, several countries are in the process of obtaining the licence for exploration of these metals from the deep seabed regions. Detailed information about the science and ISBA Regulations for exploration of polymetallic sulphide deposits is prerequisite to submit an application to ISBA for their exploration. The current contribution provides a comprehensive review of the science behind locating polymetallic sulphide deposits in geological setting of deep seabed as well as about the ISBA Regulations for their exploration.展开更多
Developing advanced battery-type materials with abundant active sites,high conductivity,versatile morphologies,and hierarchically porous structures is crucial for realizing high-quality hybrid supercapacitors.Herein,h...Developing advanced battery-type materials with abundant active sites,high conductivity,versatile morphologies,and hierarchically porous structures is crucial for realizing high-quality hybrid supercapacitors.Herein,heterogeneous FeS@NiS is synthesized by cationic Co doping via surface-structure engineering.The density functional theory(DFT)theoretical calculations are firstly performed to predict the advantages of Co dopant by improving the OH^(−)adsorption properties and adjusting electronic structure,benefiting ions/electron transfer.The dynamic surface evolution is further explored which demonstrates that CoFeS@CoNiS could be quickly reconstructed to Ni(Co)Fe_(2)O_(4)during the charging process,while the unstable structure of the amorphous Ni(Co)Fe_(2)O_(4)results in partial conversion to Ni/Co/FeOOH at high potentials,which contributes to the more reactive active site and good structural stability.Thus,the free-standing electrode reveals excellent electrochemical performance with a superior capacity(335.6 mA h g^(−1),2684 F g^(−1))at 3 A g^(−1).Furthermore,the as-fabricated device shows a quality energy density of 78.1 W h kg^(−1)at a power density of 750 W kg^(−1)and excellent cycle life of 92.1%capacitance retention after 5000 cycles.This work offers a facile strategy to construct versatile morphological structures using electrochemical activation and holds promising applications in energy-related fields.展开更多
Safe emplacement of high-level nuclear waste(HLNW)arising from the utilization of nuclear power is a frequently en-countered and considerably challenging issue.The widely accepted and feasible approach for the permane...Safe emplacement of high-level nuclear waste(HLNW)arising from the utilization of nuclear power is a frequently en-countered and considerably challenging issue.The widely accepted and feasible approach for the permanent disposal of HLNW involves housing it in a corrosion-resistant container and subsequently burying it deep in a geologic repository.The focus lies on ensuring the dur-ability and integrity of the container in this process.This review introduces various techniques and strategies employed in controlling the corrosion of used fuel containers(UFCs)using copper(Cu)as corrosion barrier in the context of deep geological disposal.Overall,these corrosion prevention techniques and methods have been effectively implemented and employed to successfully mitigate the corrosion challenges encountered during the permanent disposal of Cu containers(e.g.,corrosion mechanisms and corrosion parameters)in deep geologic repositories.The primary objective of this review is to provide an extensive examination of the alteration in the corrosion envir-onment encountered by the UFCs when subjected to deep geologic repository conditions and focusing on addressing the potential corro-sion scenarios.展开更多
BASED on the study of the stratiform lead-zinc ore deposits of western Canada, the present paper aimsto discuss the significance of pressure solution to gold mobilisation during ductile shearing and that
We report the mineralogy and geochemistry of hydrothermal sulphide from the crater of a volcanic high near 18°36.4′S of the Central Lau Spreading Center.During 1990s,that volcanic structure was reported active a...We report the mineralogy and geochemistry of hydrothermal sulphide from the crater of a volcanic high near 18°36.4′S of the Central Lau Spreading Center.During 1990s,that volcanic structure was reported active and sulphide samples were collected by MIR submersible.A section of a chimney-like structure from the crater-floor was studied here.The Fe-depleted sphalerites,and Co-depleted pyrites in that chimney were similar to those commonly found in low to moderate temperature(<300℃)sulphides from sediment-starved hydrothermal systems.Bulk analyses of three parts of that chimney section showed substantial enrichment of Zn(18%–20%)and Fe(14%–27%)but depletion of Cu(0.8%–1.3%).In chondrite-normalized rare earth element-patterns,the significant negative Ce-anomalies(Ce/Ce*=0.27–0.39)and weakly positive Eu-anomalies(Eu/Eu*=1.60–1.68)suggested sulphide mineralisation took place from reduced low-temperature fluid.The depleted concentration of lithophiles in this sulphide indicates restricted contribution of sub-ducting plate in genesis of source fluid as compared to those from other parts of Lau Spreading Centre.Uniform mineralogy and bulk composition of subsamples across the chimney section suggests barely any alteration of fluid composition and/or mode of mineralisation occurred during its growth.展开更多
The leaching behavior of main metallic sulphides in zinc concentrate under atmospheric oxygen-rich direct leaching conditions was studied through mineralogical analysis. The results show that the sulphides dissolve ob...The leaching behavior of main metallic sulphides in zinc concentrate under atmospheric oxygen-rich direct leaching conditions was studied through mineralogical analysis. The results show that the sulphides dissolve obviously except pyrite. Based on the relationship between elemental sulfur and the residual sulphides in the leaching residue, the dissolution of sphalerite, chalcopyrite, covellite and galena is assumed to follow the indirect oxidation reactions, where the acidic dissolution takes place firstly and then the released H2S transfers from the mineral surface into bulk solution and is further oxidized into elemental sulfur. The interface chemical reaction is further supposed as the controlling step in the leaching of these sulphides. The direct electrochemical oxidation reactions are assumed to contribute to the dissolution of pyrrhotite, which is controlled by the diffusion through elemental sulfur layer.展开更多
The Jinchuan Ni-Cu-PGE deposit(〉500 Mt @1.2%Ni,0.7%Cu,~0.4 g/t PGE),one of the largest magmatic sulphide deposits in the world,is located within the westernmost terrane of the North China Craton.It is hosted withi...The Jinchuan Ni-Cu-PGE deposit(〉500 Mt @1.2%Ni,0.7%Cu,~0.4 g/t PGE),one of the largest magmatic sulphide deposits in the world,is located within the westernmost terrane of the North China Craton.It is hosted within the 6.5 km long,Neoproterozoic(~0.83 Ga) Jinchuan ultramafic intrusion,emplaced as a sill-like body into a Palaeoproterozoic suite of gneisses,migmatites,marbles and amphibolites,below an active intracratonic rift.The parental magma was high-Mg basalt,generated through melting of subcrustal lithospheric mantle by a mantle plume during the initiation of Rodinia supercontinent breakup.The lower Palaeozoic collision of the exotic Qilian Block with the breakup-related southern margin of the craton accreted a subduction complex,and emplaced voluminous granitic intrusions and foreland basin sequences within the craton,to as far north as Jinchuan.During the Cainozoic,allochthonous lower Palaeozoic rocks were thrust up to 300 km to the northeast over cratonic basement,to within 25 km of the Jinchuan deposit.The Jinchuan ultramafic intrusion was injected into three interconnected sub-chambers,each containing a separate orebody.It essentially comprises an olivine-orthopyroxene-chromite cumulate,with interstitial orthopyroxene,clinopyroxene,plagioclase and phlogopite,and is predominantly composed of lherzolite(~80%),with an outer rim of olivine pyroxenite and cores of mineralised dunite.Mineralisation occurs as disseminated and net-textured sulphides,predominantly within the dunite,with lesser,PGE rich lenses,late massive sulphide accumulations,small copper rich pods and limited mineralised diopside skarn in wall rock marbles.The principal ore minerals are pyrrhotite(the dominant sulphide),pentlandite,chalcopyrite,cubanite,mackinawite and pyrite,with a variety of platinum group minerals and minor gold.The deposit underwent significant post-magmatic tremolite-actinolite,chlorite,serpentine and magnetite alteration.The volume of thejinchuan intrusion accounts for 〈3% of the total parental magma required to generate the contained olivine and sulphide.It is postulated that mafic melt,intruded into the lower crust,hydraulically supported by density contrast buoyancy from below the Moho,ponded in a large staging chamber,where crystallisation and settling formed a lower sulphide rich mush.This mush was subsequently injected into nearby shallow dipping faults to form the Jinchuan intrusion.展开更多
Metavolcanic rocks hosting base metal sulphide mineralization, and belonging to the Kid Metamorphic Complex, are exposed in the Samra-Tarr area, Southern Sinai. The rocks consist of slightly metamorphosed varicolored ...Metavolcanic rocks hosting base metal sulphide mineralization, and belonging to the Kid Metamorphic Complex, are exposed in the Samra-Tarr area, Southern Sinai. The rocks consist of slightly metamorphosed varicolored porphyritic lavas of rhyolite-to-andesite composition, and their equivalent pyroclastics. Geochemically, these metavolcanics are classified as high-K calc-alkaline, metaluminous andesites, trachyandesites, dacites, and rhyolites. The geochemical characteristics of these metavolcanics strongly point to their derivation from continental crust in an active continental margin. The sulphide mineralization in these metavolcanics occurs in two major ore zones, and is represented by four distinct styles of mineralization. The mineralization occurs either as low-grade disseminations or as small massive pockets. The associated hydrothermal alterations include carbonatization, silicification, sericitization and argillic alterations. The base metal sulphide mineralization is epigenetic and was formed by hvdrothermal solutions associated with subduction-related volcanic activity.展开更多
Orthognathic surgery is frequently accompanied by intermaxillary fixation. Intermaxillary fixation impedes the maintenance of effective oral hygiene and prolonged fixation can result in periodontal disease. A potentia...Orthognathic surgery is frequently accompanied by intermaxillary fixation. Intermaxillary fixation impedes the maintenance of effective oral hygiene and prolonged fixation can result in periodontal disease. A potential shorter term effect is the generation of oral malodour. It is unclear, however, as to how the production of malodorous compounds in the oral cavity is altered post-surgery. Oral air concentration of sulphur containing compounds, short chain organic acids, ammonia, isoprene and acetone were measured using selected ion flow tube-mass spectrometry in a patient who had undergone orthognathic surgery with subsequent intermaxillary fixation. Total sulphide levels rose approximately 5-fold during fixation with metal ties, with smaller increases recorded for the other compounds measured with the exception of isoprene which remained close to baseline levels. Organic acid levels declined markedly once elastic ties had replaced metal ties, with a lesser reduction being observed in sulphide levels, with both declining further after the commencement of a chlorhexidinecontaining mouthwash. These data suggest that bacterial generation of a variety of malodorous compounds increases markedly following intermaxillary fixation. This single case also suggests that the use of elastic ties and effective oral hygiene techniques, including the use of chlorhexidine mouthwash, may help ameliorate such post-surgical effects.展开更多
Natural gas containing hydrogen sulphide (H2S) has been found in several petroliferous basins in China, such as the Sichuan Basin, Bohai Bay Basin, Ordos Basin, Tarim Basin, etc. Natural gas with higher HES contents...Natural gas containing hydrogen sulphide (H2S) has been found in several petroliferous basins in China, such as the Sichuan Basin, Bohai Bay Basin, Ordos Basin, Tarim Basin, etc. Natural gas with higher HES contents (HES 〉5 % mol.) is mostly distributed in both the gas reservoirs of Dukouhe, Luojiazhai, Puguang and Tieshanpo, which belong to the Triassic Feixianguan Formation in the northeastern Sichuan Basin and those of the Kongdian-Shahejie formations in the northeastern Jinxian Sag of the Jizhong Depression, Bohai Bay Basin. In the Sichuan Basin, the HES contents of natural gas average over 9% and some can be 17 %, while those of the Bohai Bay Basin range from 40 % to 92 %, being then one of the gas reservoirs with the highest H2S contents in the world. Based on detailed observation and sample analysis results of a total 5000 m of core from over 70 wells in the above-mentioned two basins, especially sulfur isotopic analysis of gypsum, brimstone, pyrite and natural gas, also with integrated study of the geochemical characteristics of hydrocarbons, it is thought that the natural gas with high HES contents resulted from thermochemical sulfate reduction (TSR) reactions. Among them, the natural gas in the Feixianguan Formation resulted from TSR reactions participated by hydrocarbon gas, while that in the Zhaolanzhuang of the Jinxian Sag being the product of TSR participated by crude oil. During the consumption process of hydrocarbons due to TSR, the heavy hydrocarbons were apt to react with sulfate, which accordingly resulted in the dry coefficient of natural gas increasing and the carbon isotopes becoming heavier.展开更多
A logic fault tree of mine spontaneous combustion of sulphide ores was built by the fault tree analysis (FTA) based on a lot of mechanism investigation of sulphide ore spontaneous combustion in more than ten mines an...A logic fault tree of mine spontaneous combustion of sulphide ores was built by the fault tree analysis (FTA) based on a lot of mechanism investigation of sulphide ore spontaneous combustion in more than ten mines and review of a great amount of relevant展开更多
The Lower Triassic Jialingjiang Formation reservoirs are distributed widely in the East Sichuan Basin, which are composed mainly of fractured reservoirs. However, natural gas with high concentration of H2S, ranging fr...The Lower Triassic Jialingjiang Formation reservoirs are distributed widely in the East Sichuan Basin, which are composed mainly of fractured reservoirs. However, natural gas with high concentration of H2S, ranging from 4% to 7%, was discovered in the Wolonghe Gas pool consisting primarily of porous reservoirs, while the other over 20 fractured gas reservoirs have comparatively low, tiny and even no H2S within natural gases. Researches have proved the H2S of the above reservoirs are all from the TSR origin. Most of the Jialingjiang Formation natural gases are mainly generated from Lower Permian carbonate rocks, the Wolonghe gas pool's natural gases are from the Upper Permian Longtan Formation, and the natural gases of the Huangcaoxia and Fuchengzhai gas pools are all from Lower Silurian mudstone. The formation of H2S is controlled by the characteristics and temperature of reservoirs, and is not necessarily related with gas sources. The Jialingjiang Formation in East Sichuan is buried deeply and its reservoir temperature has ever attained the condition of the TSR reaction. Due to poor reservoir potential, most of the gas pools do not have enough room for hydrocarbon reaction except for the Wolonghe gas pool, and thus natural gases with high H2S concentration are difficult to be generated abundantly. The south part of East Sichuan did not generate natural gases with high H2S concentration because the reservoir was buried relatively shallow, and did not suffer high temperature. Hence, while predicting the distribution of H2S, the characteristics and temperature of reservoirs are the necessary factors to be considerd besides the existence of anhydrite.展开更多
The Oyu Tolgoi cluster of seven porphyry Cu-Au-Mo deposits in southern Mongolia,define a narrow,linear,12 km long,almost continuously mineralised trend,which contains in excess of 42 Mt of Cu and1850 t of Au,and is am...The Oyu Tolgoi cluster of seven porphyry Cu-Au-Mo deposits in southern Mongolia,define a narrow,linear,12 km long,almost continuously mineralised trend,which contains in excess of 42 Mt of Cu and1850 t of Au,and is among the largest high grade porphyry Cu-Au deposits in the world.These deposits lie within the Gurvansayhan island-arc terrane,a fault bounded segment of the broader Silurian to Carboniferous Kazakh-Mongol arc,located towards the southern margin of the Central Asian Orogenic Belt,a collage of magmatic arcs that were periodically active from the late Neoproterozoic to PermoTriassic,extending from the Urals Mountains to the Pacific Ocean.Mineralisation at Oyu Tolgoi is associated with multiple,overlapping,intrusions of late Devonian(~372 to 370 Ma) quartzmonzodiorite intruding Devonian(or older) juvenile,probably intra-oceanic arc-related,basaltic lavas and lesser volcaniclastic rocks,unconformably overlain by late Devonian(~370 Ma) basaltic to dacitic pyroclastic and volcano sedimentary rocks.These quartz-monzodiorite intrusions range from earlymineral porphyritic dykes,to larger,linear,syn-,late- and post-mineral dykes and stocks.Ore was deposited within syn-mineral quartz-monzodiorites,but is dominantly hosted by augite basalts and to a lesser degree by overlying dacitic pyroclastic rocks.Following ore deposition,an allochthonous plate of older Devonian(or pre-Devonian) rocks was overthrust and a post-ore biotite granodiorite intruded at~365 Ma.Mineralisation is characterised by varying,telescoped stages of intrusion and alteration.Early A-type quartz veined dykes were followed by Cu-Au mineralisation associated with potassic alteration,mainly K-feldspar in quartz-monzodiorite and biotite-magnetite in basaltic hosts.Downward reflux of cooled,late-magmatic hydrothermal fluid resulted in intense quartz-sericite retrograde alteration in the upper parts of the main syn-mineral intrusions,and an equivalent chlorite-muscovite/illite-hematite assemblage in basaltic host rocks.Uplift,facilitated by syn-mineral longitudinal faulting,brought sections of the porphyry deposit to shallower depths,to be overprinted and upgraded by late stage,shallower,advanced argillic alteration and high sulphidation mineralisation.Key controls on the location,size and grade of the deposit cluster include(i) a long-lived,narrow faulted corridor;(ii) multiple pulses of overlapping intrusion within the same structure;and(iii) enclosing reactive,mafic dominated wall rocks,focussing ore.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51072173, 51272221 and 51302239)Specialized Research Fund for the Doctoral Program of Higher Education (Grant Nos. 20134301130001)the Natural Science Foundation of Hunan Province, China (Grant Nos. 13JJ4051).
文摘As a promising energy-storage device,the hybrid lithium-ion capacitor coupling with both a large energy density battery-type anode and a high power density capacitor-type cathode is attracting great attention.For the sake of improving the energy density of hybrid lithium-ion capacitor,the free-standing anodes with good electrochemical performance are essential.Herein,we design an effective electrospinning strategy to prepare free-standing MnS/Co4S3/Ni3S2/Ni/C-nanofibers(TMSs/Ni/C-NFs)film and firstly use it as a binder-free anode for hybrid lithium-ion capacitor.We find that the carbon nanofibers can availably prevent MnS/Co4S3/Ni3S2/Ni nanoparticles from aggregation as well as significantly improve the electrochemical performance.Therefore,the binder-free TMSs/Ni/C-NFs membrane displays an ultrahigh reversible capacity of 1246.9 m Ah g-1at 100 m A g-1,excellent rate capability(398 mAh g-1 at2000 mA g-1),and long-term cyclic endurance.Besides,we further assemble the hybrid lithium-ion capacitor,which exhibits a high energy density of 182.0 Wh kg-1at 121.1 W kg-1(19.0 Wh kg-1 at 3512.5 W kg-1)and remarkable cycle life.
基金This project is financially supported by the Excellent Doctoral Dissertation Foundation of Hunan Province(No.200114)
文摘Ultrafine Milling technology is used to treat gold-bearingsulphides and to investigate the effects of minerals size, millingtime, liquid/solid ratio, NaCN consumption and leaching aid onleaching rate of gold. The results indicate that shorter treatingtime, decrease of NaCN consumption of 60/100 and increase of goldleaching rate of 15/100 can be ob- tained by the ultrafine millingtechnology compared with traditional cyanide leaching. Potentialexists for the new pro- cess to form the basis for an economicallyprocess for treatment of gold-bearing sulphides.
文摘The bacteria used in the experiment are Thiobacillus Ferrooxidans separated from acidic mine water in sulphide deposits. The chemoautotrophic bacteria can act directly on sulphides and accelerate the oxidation of sulphides. The experiment shows that the bacteria, as an important microbial factor of gold's supergenous enrichment within the oxidized zones of sulphide deposits, are helpful to dissolve gold and silver in ferric sulphate. In the bacterial oxidation process, the precipitation of goethite is concerned both with the lower activity of ferric ions and with the existence of carbonates in solution. Meanwhile, the acid-resisting and oxidizing ability of the bacteria will certainly lead up to a microbial way of treating the acidic mine water.
文摘Mafic and ultramafic intrusions observed in the Archean formations of the Sipilou region exhibit occurrences of polymetallic sulphide. Mapping, petrographic and geochemical studies have defined magnetic facies associated with the various geological units. The results of this work reveal that cupronickel sulphides, olivines and pyroxenes as well as spinels are related to ultrabasic formations where strong magnetic facies prevail. Iron sulphides and magnetite are linked to quartzo-feldspathic and jotunite-enderbite formations, which are characterised by moderate magnetic facies. The latter are thought to be derived from anatexite remobilisation within Archean granulites, which have weak magnetic facies.
基金the financial support by the Copperbelt University in Zambia and the Institute of Materials,Minerals and Mining(IOM~3)
文摘Mineral sulphide (MS)-lime (CaO) ion exchange reactions (MS + CaO = MO + CaS) and the effect of CaO/C mole ratio during carbothermic reduction (MS + CaO + C = M + CaS + CO(g)) were investigated for complex froth flotation mineral sulphide concentrates. Phases in the partially and fully reacted samples were characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The primary phases during mineral sulphide-lime ion exchange reactions are Fe304, CaSO4 Cu2S, and CaS. A complex liquid phase of Ca2CuFeO3S forms during mineral sulphide-lime exchange reactions above 1173 K. The formation mechanisms of Ca2CuFeO3S liquid phase are determined by characterising the partially reacted samples. The reduction rate and extent of mineral sulphides in the presence of CaO and C increase with the increase in CaO/C ratio. The metallic phases are surrounded by the CaS rich phase at CaO/C 〉 1, but the metallic phases and CaS are found as separate phases at CaO/C 〈 1. Experimental results show that the stoichiometric ratio of carbon should be slightly higher than that of CaO. The reactions between CaO and gangue minerals (SiO2 and A1203) are only observed at CaO/C 〉 1 and the reacted samples are excessively sintered.
基金Financial support from the Natural Sciences and Engineering Research Council through its Cooperative Research & Development grants program
文摘Gold leaching was influenced in association with silver and polymetal sulphide minerals.A packed bed was adopted to single out the galvanic and passivation effects with four sets of minerals:pyrite?silica,chalcopyrite?silica,sphalerite?silica and stibnite?silica.Pyrargyrite enhanced Au recovery to 77.3%and 51.2%under galvanic and passivation effects from pyrite(vs 74.6%and 15.8%).Pyrargyrite in association with sphalerite also enhanced Au recovery to 6.6%and 51.9%(vs 1.6%and 15.6%)under galvanic and passivation effects from sphalerite.Pyrargyrite associated with chalcopyrite retarded gold recovery to 38.0%and 12.1%(vs 57%and 14.1%)under galvanic and passivation effects.Accumulative silver minerals enhanced Au recovery to 90.6%and 81.1%(vs 74.6%and 15.8%)under galvanic and passivation impacts from pyrite.Silver minerals with sphalerite under galvanic and passivation effects enhanced Au recovery to 71.1%and 80.5%(vs 1.6%and 15.6%).Silver minerals associated with chalcopyrite retarded Au recovery to 10.2%and 4.5%under galvanic and passivation impacts(vs 57%and 14.1%).Stibnite retarded Au dissolution with pyrargyrite and accumulative silver minerals.Pyrargyrite and accumulative silver enhanced gold dissolution for free gold and gold associated with pyrite and sphalerite.Gold dissolution was retarded for gold and silver minerals associated with chalcopyrite and stibnite.
文摘The U-Pb (on zircon) and Sm-Nd analysis is a popular isotope-geochronological tool for estimating the age of rocks from PGE mafic-ultramafic intrusions. Sulphides can be used to study the geochronology of ore processes as well, since they should indicate the time of ore mineralization. Gabbronorite has been sampled from the Passivaara reef at the Penikat layered intrusion (Finland) for U-Pb and Sm-Nd isotope single zircon analyses in order to separate sulphide minerals. The Sm-Nd isotope age of gabbronorite has been dated at 2426 ± 36 Ma;eNd(T) = −1.4 ± 0.4. The Sm-Nd isotope age on sulphides and rock-forming minerals reflects the crystallization time of the ore-bearing gabbronorite from the Passivaara reef of the Penikat layered intrusion. The mass-spectrometer analytical environment and modes of operation have been adjusted to detect REE in sulphide minerals on example of pyrite from the PGE Penikat layered intrusion (Finland) and chalcopyrite from the Talnakh deposit (Norilsk area, Russia) has been estimated. The total REE content in pyrite is ca. 3.5 ppm, which is enough to define the Sm-Nd age of pyrite. The study shows how to use the mineral/chondrite spectra to evaluate the accuracy of the REE analytical results on example of State Standard Sample 2463 (Russia).
文摘Polymetallic sulphides have been consistent source of metals like iron, copper, zinc and lead. Apart from these they are also seen as economically viable resources of silver and gold. As the demand of these metals is showing an astoundingly increasing trend, the search for their resources has also increased in similar folds. This has resulted in many nations' focus on deep seabed resources of the polymetallic sulphides. Consequently, International Seabed Authority (ISBA) has provided 'Regulations' to obtain plan of work for exploration of polymetallic sulphide deposits in deep seabed 'Area'. Following the release of these Regulations, several countries are in the process of obtaining the licence for exploration of these metals from the deep seabed regions. Detailed information about the science and ISBA Regulations for exploration of polymetallic sulphide deposits is prerequisite to submit an application to ISBA for their exploration. The current contribution provides a comprehensive review of the science behind locating polymetallic sulphide deposits in geological setting of deep seabed as well as about the ISBA Regulations for their exploration.
基金financial support from the Chang Jiang Scholars Program (51073047)the National Natural Science Foundation of China (51773049)+5 种基金the China Aerospace Science and Technology Corporation-Harbin Institute of Technology Joint Center for Technology Innovation Fund (HIT15-1A01)the Harbin City Science and Technology Projects (2013DB4BP031 and RC2014QN017035)the Natural Science Foundation of Shandong Province of China (ZR2023QE071)the College Students’ Innovation and Entrepreneurship Training Program Projects of Shandong Province (S202211065048)the Scientific Research Foundation of Qingdao University (DC1900009425)the China Postdoctoral Science Foundation (2022TQ0282)
文摘Developing advanced battery-type materials with abundant active sites,high conductivity,versatile morphologies,and hierarchically porous structures is crucial for realizing high-quality hybrid supercapacitors.Herein,heterogeneous FeS@NiS is synthesized by cationic Co doping via surface-structure engineering.The density functional theory(DFT)theoretical calculations are firstly performed to predict the advantages of Co dopant by improving the OH^(−)adsorption properties and adjusting electronic structure,benefiting ions/electron transfer.The dynamic surface evolution is further explored which demonstrates that CoFeS@CoNiS could be quickly reconstructed to Ni(Co)Fe_(2)O_(4)during the charging process,while the unstable structure of the amorphous Ni(Co)Fe_(2)O_(4)results in partial conversion to Ni/Co/FeOOH at high potentials,which contributes to the more reactive active site and good structural stability.Thus,the free-standing electrode reveals excellent electrochemical performance with a superior capacity(335.6 mA h g^(−1),2684 F g^(−1))at 3 A g^(−1).Furthermore,the as-fabricated device shows a quality energy density of 78.1 W h kg^(−1)at a power density of 750 W kg^(−1)and excellent cycle life of 92.1%capacitance retention after 5000 cycles.This work offers a facile strategy to construct versatile morphological structures using electrochemical activation and holds promising applications in energy-related fields.
基金study received financial support from the National Natural Science Foundation of China(No.U22B2065),EditChecks(https://editchecks.com.cn/)for providing linguistic assistance during the preparation of this manuscript.
文摘Safe emplacement of high-level nuclear waste(HLNW)arising from the utilization of nuclear power is a frequently en-countered and considerably challenging issue.The widely accepted and feasible approach for the permanent disposal of HLNW involves housing it in a corrosion-resistant container and subsequently burying it deep in a geologic repository.The focus lies on ensuring the dur-ability and integrity of the container in this process.This review introduces various techniques and strategies employed in controlling the corrosion of used fuel containers(UFCs)using copper(Cu)as corrosion barrier in the context of deep geological disposal.Overall,these corrosion prevention techniques and methods have been effectively implemented and employed to successfully mitigate the corrosion challenges encountered during the permanent disposal of Cu containers(e.g.,corrosion mechanisms and corrosion parameters)in deep geologic repositories.The primary objective of this review is to provide an extensive examination of the alteration in the corrosion envir-onment encountered by the UFCs when subjected to deep geologic repository conditions and focusing on addressing the potential corro-sion scenarios.
文摘BASED on the study of the stratiform lead-zinc ore deposits of western Canada, the present paper aimsto discuss the significance of pressure solution to gold mobilisation during ductile shearing and that
文摘We report the mineralogy and geochemistry of hydrothermal sulphide from the crater of a volcanic high near 18°36.4′S of the Central Lau Spreading Center.During 1990s,that volcanic structure was reported active and sulphide samples were collected by MIR submersible.A section of a chimney-like structure from the crater-floor was studied here.The Fe-depleted sphalerites,and Co-depleted pyrites in that chimney were similar to those commonly found in low to moderate temperature(<300℃)sulphides from sediment-starved hydrothermal systems.Bulk analyses of three parts of that chimney section showed substantial enrichment of Zn(18%–20%)and Fe(14%–27%)but depletion of Cu(0.8%–1.3%).In chondrite-normalized rare earth element-patterns,the significant negative Ce-anomalies(Ce/Ce*=0.27–0.39)and weakly positive Eu-anomalies(Eu/Eu*=1.60–1.68)suggested sulphide mineralisation took place from reduced low-temperature fluid.The depleted concentration of lithophiles in this sulphide indicates restricted contribution of sub-ducting plate in genesis of source fluid as compared to those from other parts of Lau Spreading Centre.Uniform mineralogy and bulk composition of subsamples across the chimney section suggests barely any alteration of fluid composition and/or mode of mineralisation occurred during its growth.
基金Project (50964004) supported by the National Natural Science Foundation of China
文摘The leaching behavior of main metallic sulphides in zinc concentrate under atmospheric oxygen-rich direct leaching conditions was studied through mineralogical analysis. The results show that the sulphides dissolve obviously except pyrite. Based on the relationship between elemental sulfur and the residual sulphides in the leaching residue, the dissolution of sphalerite, chalcopyrite, covellite and galena is assumed to follow the indirect oxidation reactions, where the acidic dissolution takes place firstly and then the released H2S transfers from the mineral surface into bulk solution and is further oxidized into elemental sulfur. The interface chemical reaction is further supposed as the controlling step in the leaching of these sulphides. The direct electrochemical oxidation reactions are assumed to contribute to the dissolution of pyrrhotite, which is controlled by the diffusion through elemental sulfur layer.
文摘The Jinchuan Ni-Cu-PGE deposit(〉500 Mt @1.2%Ni,0.7%Cu,~0.4 g/t PGE),one of the largest magmatic sulphide deposits in the world,is located within the westernmost terrane of the North China Craton.It is hosted within the 6.5 km long,Neoproterozoic(~0.83 Ga) Jinchuan ultramafic intrusion,emplaced as a sill-like body into a Palaeoproterozoic suite of gneisses,migmatites,marbles and amphibolites,below an active intracratonic rift.The parental magma was high-Mg basalt,generated through melting of subcrustal lithospheric mantle by a mantle plume during the initiation of Rodinia supercontinent breakup.The lower Palaeozoic collision of the exotic Qilian Block with the breakup-related southern margin of the craton accreted a subduction complex,and emplaced voluminous granitic intrusions and foreland basin sequences within the craton,to as far north as Jinchuan.During the Cainozoic,allochthonous lower Palaeozoic rocks were thrust up to 300 km to the northeast over cratonic basement,to within 25 km of the Jinchuan deposit.The Jinchuan ultramafic intrusion was injected into three interconnected sub-chambers,each containing a separate orebody.It essentially comprises an olivine-orthopyroxene-chromite cumulate,with interstitial orthopyroxene,clinopyroxene,plagioclase and phlogopite,and is predominantly composed of lherzolite(~80%),with an outer rim of olivine pyroxenite and cores of mineralised dunite.Mineralisation occurs as disseminated and net-textured sulphides,predominantly within the dunite,with lesser,PGE rich lenses,late massive sulphide accumulations,small copper rich pods and limited mineralised diopside skarn in wall rock marbles.The principal ore minerals are pyrrhotite(the dominant sulphide),pentlandite,chalcopyrite,cubanite,mackinawite and pyrite,with a variety of platinum group minerals and minor gold.The deposit underwent significant post-magmatic tremolite-actinolite,chlorite,serpentine and magnetite alteration.The volume of thejinchuan intrusion accounts for 〈3% of the total parental magma required to generate the contained olivine and sulphide.It is postulated that mafic melt,intruded into the lower crust,hydraulically supported by density contrast buoyancy from below the Moho,ponded in a large staging chamber,where crystallisation and settling formed a lower sulphide rich mush.This mush was subsequently injected into nearby shallow dipping faults to form the Jinchuan intrusion.
基金supported and partly funded by a grant provided by the Administration of Postgraduate Studies and Research,Suez Canal University
文摘Metavolcanic rocks hosting base metal sulphide mineralization, and belonging to the Kid Metamorphic Complex, are exposed in the Samra-Tarr area, Southern Sinai. The rocks consist of slightly metamorphosed varicolored porphyritic lavas of rhyolite-to-andesite composition, and their equivalent pyroclastics. Geochemically, these metavolcanics are classified as high-K calc-alkaline, metaluminous andesites, trachyandesites, dacites, and rhyolites. The geochemical characteristics of these metavolcanics strongly point to their derivation from continental crust in an active continental margin. The sulphide mineralization in these metavolcanics occurs in two major ore zones, and is represented by four distinct styles of mineralization. The mineralization occurs either as low-grade disseminations or as small massive pockets. The associated hydrothermal alterations include carbonatization, silicification, sericitization and argillic alterations. The base metal sulphide mineralization is epigenetic and was formed by hvdrothermal solutions associated with subduction-related volcanic activity.
文摘Orthognathic surgery is frequently accompanied by intermaxillary fixation. Intermaxillary fixation impedes the maintenance of effective oral hygiene and prolonged fixation can result in periodontal disease. A potential shorter term effect is the generation of oral malodour. It is unclear, however, as to how the production of malodorous compounds in the oral cavity is altered post-surgery. Oral air concentration of sulphur containing compounds, short chain organic acids, ammonia, isoprene and acetone were measured using selected ion flow tube-mass spectrometry in a patient who had undergone orthognathic surgery with subsequent intermaxillary fixation. Total sulphide levels rose approximately 5-fold during fixation with metal ties, with smaller increases recorded for the other compounds measured with the exception of isoprene which remained close to baseline levels. Organic acid levels declined markedly once elastic ties had replaced metal ties, with a lesser reduction being observed in sulphide levels, with both declining further after the commencement of a chlorhexidinecontaining mouthwash. These data suggest that bacterial generation of a variety of malodorous compounds increases markedly following intermaxillary fixation. This single case also suggests that the use of elastic ties and effective oral hygiene techniques, including the use of chlorhexidine mouthwash, may help ameliorate such post-surgical effects.
文摘Natural gas containing hydrogen sulphide (H2S) has been found in several petroliferous basins in China, such as the Sichuan Basin, Bohai Bay Basin, Ordos Basin, Tarim Basin, etc. Natural gas with higher HES contents (HES 〉5 % mol.) is mostly distributed in both the gas reservoirs of Dukouhe, Luojiazhai, Puguang and Tieshanpo, which belong to the Triassic Feixianguan Formation in the northeastern Sichuan Basin and those of the Kongdian-Shahejie formations in the northeastern Jinxian Sag of the Jizhong Depression, Bohai Bay Basin. In the Sichuan Basin, the HES contents of natural gas average over 9% and some can be 17 %, while those of the Bohai Bay Basin range from 40 % to 92 %, being then one of the gas reservoirs with the highest H2S contents in the world. Based on detailed observation and sample analysis results of a total 5000 m of core from over 70 wells in the above-mentioned two basins, especially sulfur isotopic analysis of gypsum, brimstone, pyrite and natural gas, also with integrated study of the geochemical characteristics of hydrocarbons, it is thought that the natural gas with high HES contents resulted from thermochemical sulfate reduction (TSR) reactions. Among them, the natural gas in the Feixianguan Formation resulted from TSR reactions participated by hydrocarbon gas, while that in the Zhaolanzhuang of the Jinxian Sag being the product of TSR participated by crude oil. During the consumption process of hydrocarbons due to TSR, the heavy hydrocarbons were apt to react with sulfate, which accordingly resulted in the dry coefficient of natural gas increasing and the carbon isotopes becoming heavier.
文摘A logic fault tree of mine spontaneous combustion of sulphide ores was built by the fault tree analysis (FTA) based on a lot of mechanism investigation of sulphide ore spontaneous combustion in more than ten mines and review of a great amount of relevant
基金This work was supported by the National Natural Science Foundation of China (Grant No. 40602016)the National Key Basic Research and Development Planning Project (2006CB202307).
文摘The Lower Triassic Jialingjiang Formation reservoirs are distributed widely in the East Sichuan Basin, which are composed mainly of fractured reservoirs. However, natural gas with high concentration of H2S, ranging from 4% to 7%, was discovered in the Wolonghe Gas pool consisting primarily of porous reservoirs, while the other over 20 fractured gas reservoirs have comparatively low, tiny and even no H2S within natural gases. Researches have proved the H2S of the above reservoirs are all from the TSR origin. Most of the Jialingjiang Formation natural gases are mainly generated from Lower Permian carbonate rocks, the Wolonghe gas pool's natural gases are from the Upper Permian Longtan Formation, and the natural gases of the Huangcaoxia and Fuchengzhai gas pools are all from Lower Silurian mudstone. The formation of H2S is controlled by the characteristics and temperature of reservoirs, and is not necessarily related with gas sources. The Jialingjiang Formation in East Sichuan is buried deeply and its reservoir temperature has ever attained the condition of the TSR reaction. Due to poor reservoir potential, most of the gas pools do not have enough room for hydrocarbon reaction except for the Wolonghe gas pool, and thus natural gases with high H2S concentration are difficult to be generated abundantly. The south part of East Sichuan did not generate natural gases with high H2S concentration because the reservoir was buried relatively shallow, and did not suffer high temperature. Hence, while predicting the distribution of H2S, the characteristics and temperature of reservoirs are the necessary factors to be considerd besides the existence of anhydrite.
文摘The Oyu Tolgoi cluster of seven porphyry Cu-Au-Mo deposits in southern Mongolia,define a narrow,linear,12 km long,almost continuously mineralised trend,which contains in excess of 42 Mt of Cu and1850 t of Au,and is among the largest high grade porphyry Cu-Au deposits in the world.These deposits lie within the Gurvansayhan island-arc terrane,a fault bounded segment of the broader Silurian to Carboniferous Kazakh-Mongol arc,located towards the southern margin of the Central Asian Orogenic Belt,a collage of magmatic arcs that were periodically active from the late Neoproterozoic to PermoTriassic,extending from the Urals Mountains to the Pacific Ocean.Mineralisation at Oyu Tolgoi is associated with multiple,overlapping,intrusions of late Devonian(~372 to 370 Ma) quartzmonzodiorite intruding Devonian(or older) juvenile,probably intra-oceanic arc-related,basaltic lavas and lesser volcaniclastic rocks,unconformably overlain by late Devonian(~370 Ma) basaltic to dacitic pyroclastic and volcano sedimentary rocks.These quartz-monzodiorite intrusions range from earlymineral porphyritic dykes,to larger,linear,syn-,late- and post-mineral dykes and stocks.Ore was deposited within syn-mineral quartz-monzodiorites,but is dominantly hosted by augite basalts and to a lesser degree by overlying dacitic pyroclastic rocks.Following ore deposition,an allochthonous plate of older Devonian(or pre-Devonian) rocks was overthrust and a post-ore biotite granodiorite intruded at~365 Ma.Mineralisation is characterised by varying,telescoped stages of intrusion and alteration.Early A-type quartz veined dykes were followed by Cu-Au mineralisation associated with potassic alteration,mainly K-feldspar in quartz-monzodiorite and biotite-magnetite in basaltic hosts.Downward reflux of cooled,late-magmatic hydrothermal fluid resulted in intense quartz-sericite retrograde alteration in the upper parts of the main syn-mineral intrusions,and an equivalent chlorite-muscovite/illite-hematite assemblage in basaltic host rocks.Uplift,facilitated by syn-mineral longitudinal faulting,brought sections of the porphyry deposit to shallower depths,to be overprinted and upgraded by late stage,shallower,advanced argillic alteration and high sulphidation mineralisation.Key controls on the location,size and grade of the deposit cluster include(i) a long-lived,narrow faulted corridor;(ii) multiple pulses of overlapping intrusion within the same structure;and(iii) enclosing reactive,mafic dominated wall rocks,focussing ore.