期刊文献+
共找到7,607篇文章
< 1 2 250 >
每页显示 20 50 100
Poor development of spike differentiation triggered by lower photosynthesis and carbon partitioning reduces summer maize yield after waterlogging 被引量:1
1
作者 Juan Hu Baizhao Ren +3 位作者 Shuting Dong Peng Liu Bin Zhao Jiwang Zhang 《The Crop Journal》 SCIE CSCD 2022年第2期478-489,共12页
Stable yield of staple grains must be ensured to satisfy food demands for daily dietary energy requirements against the backdrop of global climate change. Summer maize, a staple crop, suffers severe yield losses due t... Stable yield of staple grains must be ensured to satisfy food demands for daily dietary energy requirements against the backdrop of global climate change. Summer maize, a staple crop, suffers severe yield losses due to extreme rainfall events, threatening food security. A randomized block experiment with four treatments: control, no water stress(CK);waterlogging for 6 days at the third leaf, sixth leaf stage,and 10 th day after tasseling, was conducted to investigate the mechanism of waterlogging-induced yield losses of summer maize. Waterlogging delayed plant growth and impaired tassel and ear differentiation,leading to high grain yield losses of Denghai 605(DH605). Waterlogging at third leaf(V3) stage reduced the photosynthesis of DH605, reducing total dry matter weight. Waterlogging at V3 stage reduced sucrose-cleaving enzymes activities in spike nodes and ears, reducing the carbon partitioned to ears(–53.1%), shanks(–46.5%), and ear nodes(–71.5%) but increasing the carbon partitioned to ear leaves(9.6%) and tassels(43.9%) in comparison with CK. The reductions in total carbon assimilate together with the reduced carbon partitioning to ears resulted in poor development of spikes(with respectively 15.2%and 20.6% reductions in total florets and fertilized florets) and lengthened the anthesis–silking interval by around 1 day, leading to high yield losses. 展开更多
关键词 summer maize WATERLOGGING Tassel and ear differentiation yield Anthesis–silking interval
下载PDF
Temporal Dynamics of Standardized Precipitation Evapotranspiration Index and Its Influence to Summer Maize Yield from Kaifeng Region in He’nan Province
2
作者 Kunyu Peng Jianfeng Peng 《Journal of Geoscience and Environment Protection》 2017年第12期80-89,共10页
Many quantitative studies get more and more attention on drought occurrence and monitoring trends of drought change using different methods;however few studies involve correlation between drought and crop yield especi... Many quantitative studies get more and more attention on drought occurrence and monitoring trends of drought change using different methods;however few studies involve correlation between drought and crop yield especially drought index. This study analyzed the climate change about annual mean SPEI-3, SPEI-6 and SPEI-12, of Kaifeng region in the period of 1961-2013. The SPEI-3 and SPEI-6 seasonal short timescales showed a decreasing tendency, especially rapidly a decline since 2004, and high-frequency alternate dry/wet periods occurred during 1961-2013. However, the annual timescale SPEI-12 showed almost no evidently rise/decline tendency but severity events of dry/wet episode aggravated in terms of duration and magnitude and remarkable low-frequency change. Correlation analysis results between maize yield from Kaifeng region and multi-month scale annual SPEI showed a high negative significant correlation with -0.689 (ρ ρ < 0.001) in June SPEI-3. Further analysis between maize yield and temperature, precipitation and light during June-September found that precipitation in June and August was the main limiting factor to maize yield and their correlation values were well below the correlation of SPEI-3 of June. Finally, the reconstruction equation found that there was a better change consistency between the maize yield reconstruction and actual production but more error in extremely high and low annual yield. This study provides a reliable analysis of climate change to corn yield and basic data support for services of grain production and food security in the future. 展开更多
关键词 SPEI Dry/Wet PERIODS maize yield Correlation Analysis Kaifeng REGION
下载PDF
Manure substitution improves maize yield by promoting soil fertility and mediating the microbial community in lime concretion black soil
3
作者 Minghui Cao Yan Duan +6 位作者 Minghao Li Caiguo Tang Wenjie Kan Jiangye Li Huilan Zhang Wenling Zhong Lifang Wu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期698-710,共13页
Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidif... Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidification,groundwater contamination and biodiversity reduction.Meanwhile,organic substitution has received increasing attention for its ecologically and environmentally friendly and productivity benefits.However,the linkages between manure substitution,crop yield and the underlying microbial mechanisms remain uncertain.To bridge this gap,a three-year field experiment was conducted with five fertilization regimes:i)Control,non-fertilization;CF,conventional synthetic fertilizer application;CF_(1/2)M_(1/2),1/2 N input via synthetic fertilizer and 1/2 N input via manure;CF_(1/4)M_(3/4),1/4 N input synthetic fertilizer and 3/4 N input via manure;M,manure application.All fertilization treatments were designed to have equal N input.Our results showed that all manure substituted treatments achieved high soil fertility indexes(SFI)and productivities by increasing the soil organic carbon(SOC),total N(TN)and available phosphorus(AP)concentrations,and by altering the bacterial community diversity and composition compared with CF.SOC,AP,and the soil C:N ratio were mainly responsible for microbial community variations.The co-occurrence network revealed that SOC and AP had strong positive associations with Rhodospirillales and Burkholderiales,while TN and C:N ratio had positive and negative associations with Micromonosporaceae,respectively.These specific taxa are implicated in soil macroelement turnover.Random Forest analysis predicted that both biotic(bacterial composition and Micromonosporaceae)and abiotic(AP,SOC,SFI,and TN)factors had significant effects on crop yield.The present work strengthens our understanding of the effects of manure substitution on crop yield and provides theoretical support for optimizing fertilization strategies. 展开更多
关键词 FERTILIZATION manure substitution soil fertility maize yield bacterial community
下载PDF
Grain yield and N uptake of maize in response to increased plant density under reduced water and nitrogen supply conditions
4
作者 Jingui Wei Qiang Chai +5 位作者 Wen Yin Hong Fan Yao Guo Falong Hu Zhilong Fan QimingWang 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期122-140,共19页
The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.H... The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.However,whether an increased maize density can compensate for the negative effects of reduced water and N supply on grain yield and N uptake in the arid irrigated areas remains unknown.This study is part of a long-term positioning trial that started in 2016.A split-split plot field experiment of maize was implemented in the arid irrigated area of northwestern China in 2020 to 2021.The treatments included two irrigation levels:local conventional irrigation reduced by 20%(W1,3,240 m^(3)ha^(-1))and local conventional irrigation(W2,4,050 m^(3)ha^(-1));two N application rates:local conventional N reduced by 25%(N1,270 kg ha^(-1))and local conventional N(360 kg ha^(-1));and three planting densities:local conventional density(D1,75,000 plants ha^(-1)),density increased by 30%(D2,97,500 plants ha-1),and density increased by 60%(D3,120,000 plants ha^(-1)).Our results showed that the grain yield and aboveground N accumulation of maize were lower under the reduced water and N inputs,but increasing the maize density by 30% can compensate for the reductions of grain yield and aboveground N accumulation caused by the reduced water and N supply.When water was reduced while the N application rate remained unchanged,increasing the planting density by 30% enhanced grain yield by 13.9% and aboveground N accumulation by 15.3%.Under reduced water and N inputs,increasing the maize density by 30% enhanced N uptake efficiency and N partial factor productivity,and it also compensated for the N harvest index and N metabolic related enzyme activities.Compared with W2N2D1,the N uptake efficiency and N partial factor productivity increased by 28.6 and 17.6%under W1N1D2.W1N2D2 had 8.4% higher N uptake efficiency and 13.9% higher N partial factor productivity than W2N2D1.W1N2D2 improved urease activity and nitrate reductase activity by 5.4% at the R2(blister)stage and 19.6% at the V6(6th leaf)stage,and increased net income and the benefit:cost ratio by 22.1 and 16.7%,respectively.W1N1D2 and W1N2D2 reduced the nitrate nitrogen and ammoniacal nitrogen contents at the R6 stage in the 40-100 cm soil layer,compared with W2N2D1.In summary,increasing the planting density by 30% can compensate for the loss of grain yield and aboveground N accumulation under reduced water and N inputs.Meanwhile,increasing the maize density by 30% improved grain yield and aboveground N accumulation when water was reduced by 20% while the N application rate remained constant in arid irrigation areas. 展开更多
关键词 water and N reduction plant density maize grain yield N uptake compensation effect
下载PDF
Combined effects of high temperature and waterlogging on yield and stem development of summer maize 被引量:1
5
作者 Jingyi Shao Peng Liu +3 位作者 Bin Zhao Jiwang Zhang Xiangyu Zhao Baizhao Ren 《The Crop Journal》 SCIE CSCD 2023年第2期651-660,共10页
The purpose of this study was to identify the physiological mechanism underlying the effects of high temperature and waterlogging on summer maize.The stem development and yield of the maize hybrid Denghai 605 in respo... The purpose of this study was to identify the physiological mechanism underlying the effects of high temperature and waterlogging on summer maize.The stem development and yield of the maize hybrid Denghai 605 in response to high-temperature stress,waterlogging stress,and their combination applied for six days at the third-leaf,sixth-leaf,and tasseling stages were recorded.The combined stresses reduced lignin biosynthetic enzyme activity and lignin accumulation,leading to abnormal stem development.Reduction of the area and number of vascular bundles in stems led to reduced dry matter accumulation and allocation.Decreased grain dry weight at all three stages reduced grain yield relative to a control.In summary,high temperature,waterlogging,and their combined stress impaired stem development and grain yield of summer maize.The combined stresses were more damaging than either stress alone. 展开更多
关键词 summer maize LIGNIN Stem microstructure Dry matter accumulation and distribution yield
下载PDF
Plastic-film-side seeding,as an alternative to traditional film mulching,improves yield stability and income in maize production in semi-arid regions 被引量:1
6
作者 ZHANG Bing-chao HU Han +6 位作者 GUO Zheng-yu GONG Shuai SHEN Si LIAO Shu-hua WANG Xin ZHOU Shun-li ZHANG Zhong-dong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第4期1021-1034,共14页
Planting under plastic-film mulches is widely used in spring maize production in arid-cold regions for water conservation and warming the soil.To ameliorate the associated issues such as plastic-film residues and addi... Planting under plastic-film mulches is widely used in spring maize production in arid-cold regions for water conservation and warming the soil.To ameliorate the associated issues such as plastic-film residues and additional labor during the“seedling release”in spring maize production,we have developed a plastic-film-side seeding(PSS)technology with the supporting machinery.In the semi-arid regions of Northwest China,a 7-year trial demonstrated that PSS increased plant number per hectare by 6547 and maize yield by 1686 kg ha–1compared with the traditional method of seeding under plastic-film mulch(PM).Two-year experiments were conducted in two semi-arid regions to further understand the effects of PSS on three important aspects of production:(i)the moisture and temperature of soil,(ii)maize development,yield output,and water use efficiency(WUE),and(iii)the revenue and plastic-film residuals in comparison with that of flat planting(CK)and PM.Continuous monitoring of the soil status demonstrated that,compared with CK,the PSS treatment significantly increased the temperature and moisture of the 0–20 cm soil in the seeding row at the early stage of maize development,and it also promoted grain yield(at 884–1089 kg ha^(–1))and WUE,achieving a similar effect as the PM treatment.Economically,the labor inputs of PSS were equal to CK,whereas the PM cost an additional 960 CNY ha–1in labor for releasing the seedlings from below the film.Overall,the PSS system increased profits by 5.83%(547 CNY ha^(–1)yr^(–1))and 8.16%(748 CNY ha^(–1)yr^(–1))compared with CK and PM,respectively.Environmentally,PSS achieved a residual film recovery rate of nearly 100%and eliminated 96 to 130 kg ha^(–1)of residual plastic-film in PM in 3–5 years of maize production.Collectively,these results show that PSS is an eco-friendly technique for improving yield stability and incomes for the sustainable production of maize in semi-arid regions. 展开更多
关键词 maize soil water content soil temperature yield plastic-film plastic-film-side seeding semi-arid region
下载PDF
Increased plant density and reduced N rate lead to more grain yield and higher resource utilization in summer maize 被引量:11
7
作者 SHI De-yang LI Yan-hong +3 位作者 ZHANG Ji-wang LIU Peng ZHAO Bin DONG Shu-ting 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第11期2515-2528,共14页
Planting at an optimum density and supplying adequate nitrogen(N) to achieve higher yields is a common practice in crop production, especially for maize(Zea mays L.); however, excessive N fertilizer supply in maize pr... Planting at an optimum density and supplying adequate nitrogen(N) to achieve higher yields is a common practice in crop production, especially for maize(Zea mays L.); however, excessive N fertilizer supply in maize production results in reduced N use efficiency(NUE) and severe negative impacts on the environment. This research was conducted to determine the effects of increased plant density and reduced N rate on grain yield, total N uptake, NUE, leaf area index(LAI), intercepted photosynthetically active radiation(IPAR), and resource use efficiency in maize. Field experiments were conducted using a popular maize hybrid Zhengdan 958(ZD958) under different combinations of plant densities and N rates to determine an effective approach for maize production with high yield and high resource use efficiency. Increasing plant density was clearly able to promote N absorption and LAI during the entire growth stage, which allowed high total N uptake and interception of radiation to achieve high dry matter accumulation(DMA), grain yield, NUE, and radiation use efficiency(RUE). However, with an increase in plant density, the demand of N increased along with grain yield. Increasing N rate can significantly increase the DMA, grain yield, LAI, IPAR, and RUE. However, this increase was non-linear and due to the input of too much N fertilizers, the efficiency of N use at NCK(320 kg ha^(–1)) was low. An appropriate reduction in N rate can therefore lead to higher NUE despite a slight loss in grain production. Taking into account both the need for high grain yield and resource use efficiency, a 30% reduction in N supply, and an increase in plant density of 3 plants m^(–2), compared to LD(5.25 plants m^(–2)), would lead to an optimal balance between yield and resource use efficiency. 展开更多
关键词 summer maize increased plant density reduced N rate N use efficiency resource use efficiency
下载PDF
Identifying the critical phosphorus balance for optimizing phosphorus input and regulating soil phosphorus effectiveness in a typical winter wheat-summer maize rotation system in North China
8
作者 XU Meng-ze WANG Yu-hong +6 位作者 NIE Cai-e SONG Gui-pei XIN Su-ning LU Yan-li BAI You-lu ZHANG Yin-jie WANG Lei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第12期3769-3782,共14页
Phosphorus(P)is a nonrenewable resource and a critical element for plant growth that plays an important role in improving crop yield.Excessive P fertilizer application is widespread in agricultural production,which no... Phosphorus(P)is a nonrenewable resource and a critical element for plant growth that plays an important role in improving crop yield.Excessive P fertilizer application is widespread in agricultural production,which not only wastes phosphate resources but also causes P accumulation and groundwater pollution.Here,we hypothesized that the apparent P balance of a crop system could be used as an indicator for identifying the critical P input in order to obtain a high yield with high phosphorus use efficiency(PUE).A 12-year field experiment with P fertilization rates of 0,45,90,135,180,and 225 kg P_(2)O_(5)ha^(-1)was conducted to determine the crop yield,PUE,and soil Olsen-P value response to P balance,and to optimize the P input.Annual yield stagnation occurred when the P fertilizer application exceeded a certain level,and high yield and PUE levels were achieved with annual P fertilizer application rates of 90-135 kg P_(2)O_(5)ha^(-1).A critical P balance range of 2.15-4.45 kg P ha^(-1)was recommended to achieve optimum yield with minimal environmental risk.The critical P input range estimated from the P balance was 95.7-101 kg P_(2)O_(5)ha^(-1),which improved relative yield(>90%)and PUE(90.0-94.9%).In addition,the P input-output balance helps in assessing future changes in Olsen-P values,which increased by 4.07 mg kg^(-1)of P for every 100 kg of P surplus.Overall,the P balance can be used as a critical indicator for P management in agriculture,providing a robust reference for limiting P excess and developing a more productive,efficient and environmentally friendly P fertilizer management strategy. 展开更多
关键词 yield of winter wheat and summer maize phosphorus balance phosphorus use efficiency OLSEN-P critical phosphorus application rate
下载PDF
The effect of elevating temperature on the growth and development of reproductive organs and yield of summer maize 被引量:4
9
作者 SHAO Rui-xin YU Kang-ke +5 位作者 LI Hong-wei JIA Shuang-jie YANG Qing-hua ZHAO Xia ZHAO Ya-li LIU Tian-xue 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第7期1783-1795,共13页
Compared to other crops,maize production demands relatively high temperatures.However,temperatures exceeding 35℃lead to adverse effects on maize yield.High temperatures(≥35℃)are consistently experienced by summer m... Compared to other crops,maize production demands relatively high temperatures.However,temperatures exceeding 35℃lead to adverse effects on maize yield.High temperatures(≥35℃)are consistently experienced by summer maize during its reproductive growth stage in the North China Plain,which is likely to cause irreversible crop damage.This study investigated the effects of elevating temperature(ET)treatment on the yield component of summer maize,beginning at the 9th unfolding leaf stage and ending at the tasseling stage.Results demonstrated that continuous ET led to a decrease in the elongation rate and activity of silks and an elongated interval between anthesis and silking stages,and eventually decreased grain number at ear tip and reduced yield.Although continuous ET before tasseling damaged the anther structure,reduced pollen activity,delayed the start of the pollen shedding stage,and shortened the pollen shedding time,it was inferred,based on phenotypical and physiological traits,that continuous ET after the 9th unfolding leaf stage influenced ears and therefore may have more significant impacts.Overall,when maize plants were exposed to ET treatment in the ear reproductive development stage,the growth of ears and tassels was blocked,which increased the occurrence of barren ear tips and led to large yield losses. 展开更多
关键词 summer maize North China Plain elevating temperatures reproductive stage barren ear tip yield
下载PDF
Modified fertilization management of summer maize(Zea mays L.) in northern China improves grain yield and efficiency of nitrogen use 被引量:9
10
作者 CHENG Yi ZHAO Jie +5 位作者 LIU Zhen-xiang HUO Zhi-jin LIU Peng DONG Shu-ting ZHANG Ji-wang ZHAO Bin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第8期1644-1657,共14页
Improving the yield of maize grain per unit area is needed to meet the growing demand for it in China, where the availability of fertile land is very limited.Modified fertilization management and planting density are ... Improving the yield of maize grain per unit area is needed to meet the growing demand for it in China, where the availability of fertile land is very limited.Modified fertilization management and planting density are efficient methods for increasing crop yield.Field experiments were designed to investigate the influence of modified fertilization management and planting density on grain yield and nitrogen use efficiency of the popular maize variety Zhengdan 958, in four treatments including local farmer's practice(FP), high-yielding and high efficiency cultivation(HH), super high-yielding cultivation(SH), and the control(CK).Trials were conducted in three locations of the Huang-Huai-Hai Plain in northern China.Compared with FP, SH was clearly able to promote N absorption and dry matter accumulation in post-anthesis, and achieve high yield and N use efficiency by increasing planting density and postponing the supplementary application of fertilizers.However, with an increase in planting density, the demand of N increased along with grain yield.Due to the input of too much N fertilizer, the efficiency of N use in SH was low.Applying less total N, ameliorating cultivation and cropping management practices should be considered as priority strategies to augment production potential and finally achieve synchronization between high yield and high N efficiency in fertile soils.However, in situations where soil fertility is low, achieving high yield and high N use efficiency in maize will likely depend on increased planting density and appropriate application of supplementary fertilizers postpone to the grain-filling stage. 展开更多
关键词 氮素利用效率 粮食产量 施肥管理 中国北部 夏玉米 高产高效栽培 种植密度 改良
下载PDF
Extreme Climatic Characteristics and Their Effects on Maize Yield in Hei-longjiang Province from 1961 to 2020
11
作者 Zhao Chang-shuai Fu Hong-tai +2 位作者 Yuan Ying-ying Li Xin-li Sun Yan-kun 《Journal of Northeast Agricultural University(English Edition)》 CAS 2023年第3期44-59,共16页
This paper analyzed the extreme climatic characteristics of maize in Heilongjiang Province during different growth periods using the climate data and maize yield data from 1961 to 2020,and applied the principal compon... This paper analyzed the extreme climatic characteristics of maize in Heilongjiang Province during different growth periods using the climate data and maize yield data from 1961 to 2020,and applied the principal component analysis to analyze the extent of different extreme climatic events affecting maize yield.The results showed that the extreme cold events showed a decreasing trend,and the extreme warm events showed an increasing trend,and the trend of extreme precipitation change was not obvious.Maize yield was negatively correlated with TN10p(cold nights),TX10p(warm days)and T8(days below the lower temperature limit),and positively correlated with TN90p(warm nights).T34(days above the upper temperature limit)and TX90p(warm days)during the tasseling-milking period were negatively correlated with the maize yield,and this part was concentrated in the southern part of Heilongjiang Province.The maize yield was positively correlated with the extreme precipitation during the seedling period and negatively correlated with the extreme precipitation during the filling-maturity period of maize,but the correlations were not significant.The effects of extreme weather events on maize yield were higher during the seedling and the filling-maturity periods than those during the jointing-tasseling and the tasseling-milking periods.The effects of extreme precipitation on the maize yield were less than those of the extreme temperature during different growth periods in all regions,but the effects of the extreme precipitation on maize yield were significantly higher in the Songnen Plain than those in other regions.There were regional differences in the impact of climate extremes on maize during different growth periods.The area with the greater impact of climate extremes during the seedling period was the Songnen Plain,the areas with the greater impact of climate extremes during the jointing-tasseling period were the northern part of the Sanjiang Plain,and the areas with the greater impact of climate extremes during the filling-maturity period were the Lesser Khingan Mountains and the semi-mountainous areas of Mudanjiang. 展开更多
关键词 extreme temperature extreme precipitation maize yield maize growth period
下载PDF
Influence of Straw Incorporation on Maize Yield,N Accumulation and Remobilization on Slope Farmland in Northeast China
12
作者 Dai Jian-jun Liu Hong-fei +2 位作者 Li Hang Liu Zhao-ting Wu Hai-feng 《Journal of Northeast Agricultural University(English Edition)》 CAS 2023年第2期55-67,共13页
Slope farmland is a main type of agricultural land throughout northeast China.Long-term high intensity utilization and unreasonable farming have caused the deterioration of soil resources and a decrease in crop produc... Slope farmland is a main type of agricultural land throughout northeast China.Long-term high intensity utilization and unreasonable farming have caused the deterioration of soil resources and a decrease in crop production.Here,it was hypothesized that crop straw incorporation might help to reduce nutrient losses and increase maize yields across time and space.A field experiment for testing straw management practices on maize across three slope positions(top,back and bottom slopes)was conducted in Northeast China in 2018 and 2019.In this study,the dry matter accumulation(DMA),N accumulation(NA),N remobilization,postsilking N uptake and grain yield were measured under SI(straw incorporation)and NSI(no straw incorporation)across three slope positions of 100-m-long consecutive black soil slope farmland during the maize(Zea mays L.)growth stages.Compared with NSI,SI significantly increased DMA and NA at the silking and maturity stages.SI typically increased the N remobilization in all slope positions,and significantly increased N remobilization efficiency and contribution of N remobilization to grain on the back and bottom slopes.However,post-silking N uptake was only increased by SI on the top slope.SI generally increased the crop yield in three slope positions.In the SI treatments,the bottom slope was the highest yield position,followed by the top,and then the back slopes,suggesting that the bottom slope position of regularly incorporated straw might have increased the potential for boosting maize yield.Overall,the study demonstrated the outsized potential of straw incorporation to enhance maize NA and then increase the grain yield in black soil slope farmland. 展开更多
关键词 dry matter N accumulation N remobilization crop yield black soil slope farmland maize
下载PDF
Hole fertilization in the root zone facilitates maize yield and nitrogen utilization by mitigating potential N loss and improving mineral N accumulation
13
作者 SHI Wen-xuan ZHANG Qian +3 位作者 LI Lan-tao TAN Jin-fang XIE Ruo-han WANG Yi-lun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第4期1184-1198,共15页
Reducing environmental impacts and improving N utilization are critical to ensuring food security in China.Although root-zone fertilization has been considered an effective strategy to improve nitrogen use efficiency ... Reducing environmental impacts and improving N utilization are critical to ensuring food security in China.Although root-zone fertilization has been considered an effective strategy to improve nitrogen use efficiency (NUE),the effect of controlled-release urea (CRU) applied in conjunction with normal urea in this mode is unclear.Therefore,a 3-year field experiment was conducted using a no-N-added as a control and two fertilization modes (FF,furrow fertilization by manual trenching,i.e.,farmer fertilizer practice;HF:root-zone hole fertilization by point broadcast manually) at 210 kg N ha^(–1) (controlled-release:normal fertilizer=5:5),along with a 1-year in-situ microplot experiment.Maize yield,NUE and N loss were investigated under different fertilization modes.The results showed that compared with FF,HF improved the average yield and N recovery efficiency by 8.5 and 22.3%over three years,respectively.HF had a greater potential for application than FF treatment,which led to increases in dry matter accumulation,total N uptake,SPAD value and LAI.In addition,HF remarkably enhanced the accumulation of ^(15)N derived from fertilizer by 17.2%compared with FF,which in turn reduced the potential loss of^(15)N by 43.8%.HF increased the accumulation of N in the tillage layer of soils at harvest for potential use in the subsequent season relative to FF.Hence,HF could match the N requirement of summer maize,sustain yield,improve NUE and reduce environmental N loss simultaneously.Overall,root-zone hole fertilization with blended CRU and normal urea can represent an effective and promising practice to achieve environmental integrity and food security on the North China Plain,which deserves further application and investigation. 展开更多
关键词 maize yield hole fertilization NUE ^(15)N-labeled blended urea ^(15)N loss
下载PDF
Effects of saline irrigation on soil salt accumulation and grain yield in the winter wheat-summer maize double cropping system in the low plain of North China 被引量:13
14
作者 LIU Xiu-wei Til Feike +3 位作者 CHEN Su-ying SHAO Li-wei SUN Hong-yong ZHANG Xi-ying 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第12期2886-2898,共13页
In the dominant winter wheat(WW)-summer maize(SM) double cropping system in the low plain located in the North China, limited access to fresh water, especially during dry season, constitutes a major obstacle to realiz... In the dominant winter wheat(WW)-summer maize(SM) double cropping system in the low plain located in the North China, limited access to fresh water, especially during dry season, constitutes a major obstacle to realize high crop productivity. Using the vast water resources of the saline upper aquifer for irrigation during WW jointing stage, may help to bridge the peak of dry season and relieve the tight water situation in the region. A field experiment was conducted during 2009–2012 to investigate the effects of saline irrigation during WW jointing stage on soil salt accumulation and productivity of WW and SM. The experiment treatments comprised no irrigation(T1), fresh water irrigation(T2), slightly saline water irrigation(T3:2.8 dS m^(–1)), and strongly saline water irrigation(T4: 8.2 dS m^(–1)) at WW jointing stage. With regard to WW yields and aggregated annual WW-SM yields, clear benefits of saline water irrigation(T3 & T4) compared to no irrigation(T1), as well as insignificant yield losses compared to fresh water irrigation(T2) occurred in all three experiment years. However, the increased soil salinity in early SM season in consequence of saline irrigation exerted a negative effect on SM photosynthesis and final yield in two of three experiment years. To avoid the negative aftereffects of saline irrigation, sufficient fresh water irrigation during SM sowing phase(i.e., increase from 60 to 90 mm) is recommended to guarantee good growth conditions during the sensitive early growing period of SM. The risk of long-term accumulation of salts as a result of saline irrigation during the peak of dry season is considered low, due to deep leaching of salts during regularly occurring wet years, as demonstrated in the 2012 experiment year. Thus, applying saline water irrigation at jointing stage of WW and fresh water at sowing of SM is most promising to realize high yield and fresh irrigation water saving. 展开更多
关键词 微咸水灌溉 土壤盐分 粮食产量 轮作体系 华北地区 夏玉米 冬小麦 积累
下载PDF
The priority of management factors for reducing the yield gap of summer maize in the north of Huang-Huai-Hai region, China 被引量:1
15
作者 LIU Yue-e LI Yu-xin +6 位作者 LU Tian-fang XING Jin-feng XU Tian-jun CAI Wan-tao ZHANG Yong ZHAO Jiuran WANG Rong-huan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第2期450-459,共10页
Understanding yield potential, yield gap and the priority of management factors for reducing the yield gap in current intensive maize production is essential for meeting future food demand with the limited resources. ... Understanding yield potential, yield gap and the priority of management factors for reducing the yield gap in current intensive maize production is essential for meeting future food demand with the limited resources. In this study, we conducted field experiments using different planting modes, which were basic productivity(CK), farmer practice(FP), high yield and high efficiency(HH), and super high yield(SH), to estimate the yield gap. Different factorial experiments(fertilizer, planting density, hybrids, and irrigation) were also conducted to evaluate the priority of individual management factors for reducing the yield gap between the different planting modes. We found significant differences between the maize yields of different planting modes. The treatments of CK, FP, HH, and SH achieved 54.26, 58.76, 65.77, and 71.99% of the yield potential, respectively. The yield gaps between three pairs: CK and FP, FP and HH, and HH and SH, were 0.76, 1.23 and 0.85 t ha^(–1), respectively. By further analyzing the priority of management factors for reducing the yield gap between FP and HH, as well as HH and SH, we found that the priorities of the management factors(contribution rates) were plant density(13.29%)>fertilizer(11.95%)>hybrids(8.19%)>irrigation(4%) for FP to HH, and hybrids(8.94%)>plant density(4.84%)>fertilizer(1.91%) for HH to SH. Therefore, increasing the planting density of FP was the key factor for decreasing the yield gap between FP and HH, while choosing hybrids with density and lodging tolerance was the key factor for decreasing the yield gap between HH and SH. 展开更多
关键词 maize yield gap management factors priority hybrid plant density FERTILIZER IRRIGATION
下载PDF
Effects of different ridge-furrow mulching systems on yield and water use efficiency of summer maize in the Loess Plateau of China 被引量:1
16
作者 CHEN Pengpeng GU Xiaobo +5 位作者 LI Yuannong QIAO Linran LI Yupeng FANG Heng YIN Minhua ZHOU Changming 《Journal of Arid Land》 SCIE CSCD 2021年第9期947-961,共15页
Ridge-furrow film mulching has been proven to be an effective water-saving and yield-improving planting pattern in arid and semi-arid regions.Drought is the main factor limiting the local agricultural production in th... Ridge-furrow film mulching has been proven to be an effective water-saving and yield-improving planting pattern in arid and semi-arid regions.Drought is the main factor limiting the local agricultural production in the Loess Plateau of China.In this study,we tried to select a suitable ridge-furrow mulching system to improve this situation.A two-year field experiment of summer maize(Zea mays L.)during the growing seasons of 2017 and 2018 was conducted to systematically analyze the effects of flat planting with no film mulching(CK),ridge-furrow with ridges mulching and furrows bare(RFM),and double ridges and furrows full mulching(DRFFM)on soil temperature,soil water storage(SWS),root growth,aboveground dry matter,water use efficiency(WUE),and grain yield.Both RFM and DRFFM significantly increased soil temperature in ridges,while soil temperature in furrows for RFM and DRFFM was similar to that for CK.The largest SWS was observed in DRFFM,followed by RFM and CK,with significant differences among them.SWS was lower in ridges than in furrows for RFM.DRFFM treatment kept soil water in ridges,resulting in higher SWS in ridges than in furrows after a period of no water input.Across the two growing seasons,compared with CK,RFM increased root mass by 10.2%and 19.3%at the jointing and filling stages,respectively,and DRFFM increased root mass by 7.9%at the jointing stage but decreased root mass by 6.0%at the filling stage.Over the two growing seasons,root length at the jointing and filling stages was respectively increased by 75.4%and 58.7%in DRFFM,and 20.6%and 30.2%in RFM.Relative to the jointing stage,the increased proportions of root mass and length at the filling stage were respectively 42.8%and 94.9%in DRFFM,63.2%and 115.1%in CK,and 76.7%and 132.1%in RFM,over the two growing seasons,showing that DRFFM slowed down root growth while RFM promoted root growth at the later growth stages.DRFFM treatment increased root mass and root length in ridges and decreased them in 0-30 cm soil layer,while RFM increased them in 0-30 cm soil layer.Compared with CK,DRFFM decreased aboveground dry matter while RFM increased it.Evapotranspiration was reduced by 9.8%and 7.1%in DRFFM and RFM,respectively,across the two growing seasons.Grain yield was decreased by 14.3%in DRFFM and increased by 13.6%in RFM compared with CK over the two growing seasons.WUE in CK was non-significantly 6.8%higher than that in DRFFM and significantly 22.5%lower than that in RFM across the two growing seasons.Thus,RFM planting pattern is recommended as a viable water-saving option for summer maize in the Loess Plateau of China. 展开更多
关键词 ridge-furrow mulching summer maize soil water storage soil temperature root mass root length
下载PDF
Modelling the Relationship Between Summer Maize NPK Uptake and Yield on the Basis of Soil Fertility Indices
17
作者 LIU Ming-qiang YU Zhen-rong LIU Yun-hui 《Agricultural Sciences in China》 CAS CSCD 2005年第10期774-780,共7页
Quantitative estimation of fertilizer requirements can help to increase maize (Zea mays L.) yields and improve the fertilizeruse efficiency. The model for the Quantitative Evaluation of the Fertility of Tropical Soils... Quantitative estimation of fertilizer requirements can help to increase maize (Zea mays L.) yields and improve the fertilizeruse efficiency. The model for the Quantitative Evaluation of the Fertility of Tropical Soils (QUEFTS) was calibrated formaize by use of soil fertility data and fertilizer trials at different sites of the Huang Huai Hai river plain in China. TheQUEFTS model accounts for interactions between nitrogen (N), phosphorus (P) and potassium (K). It describes theeffects of soil characteristics on maize yields in four steps: (1) assessment of the potential supply of N, P and K based onsoil chemical data; (2) calculation of the actual uptake of N, P and K, in function of the potential supply as determined instep 1; (3) draft the yield ranges as a function of the actual uptake of N, P and K as determined in step 2; (4) calculation ofthe maize yield based on the three yield ranges established in step 3. Data of field experiments with different fertilizationtreatments of various regions in China during the years of 1985 to 1995 were used to calibrate the QUEFTS model forsummer maize. In step 1 the N, P and K recovered from their amount applied were described by new equations. Theminimum and maximum accumulated N, P and K (kg grain kg-1) in summer maize were determined as (21-64), (126-384) and(20-90), respectively. The simulated yields were in good agreement with the observed ones. It was concluded that thecalibrated and adjusted QUEFTS model could be useful to improve fertilizer recommendations for maize in the Huang HuaiHai plain of China. 展开更多
关键词 夏玉米 土壤 营养需要 肥料
下载PDF
Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize 被引量:42
18
作者 Hongguang Cai Wei Ma +6 位作者 Xiuzhi Zhang Jieqing Ping Xiaogong Yan Jianzhao Liu Jingchao Yuan Lichun Wang Jun Ren 《The Crop Journal》 SCIE CAS 2014年第5期297-307,共11页
A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen(N), phosphorus(P), and potassium(K) uptake, and grain yield of spring maize. The results indicated ... A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen(N), phosphorus(P), and potassium(K) uptake, and grain yield of spring maize. The results indicated that subsoil tillage promoted root development,increased nutrient accumulation, and increased yield. Compared with conventional soil management(CK), root length, root surface area, and root dry weight at 0–80 cm soil depth under subsoil tillage to 30 cm(T1) and subsoil tillage to 50 cm(T2) were significantly increased, especially the proportions of roots in deeper soil. Root length, surface area, and dry weight differed significantly among three treatments in the order of T2 > T1 > CK at the12-leaf and early filling stages. The range of variation of root diameter in different soil layers in T2 treatment was the smallest, suggesting that roots were more likely to grow downwards with deeper subsoil tillage in soil. The accumulation of N, P, and K in subsoil tillage treatment was significantly increased, but the proportions of kernel and straw were different. In a comparison of T1 with T2, the grain accumulated more N and P, while K accumulation in kernel and straw varied in different years. Grain yield and biomass were increased by 12.8% and 14.6% on average in subsoil tillage treatments compared to conventional soil treatment. Although no significant differences between different subsoil tillage depths were observed for nutrient accumulation and grain yield, lodging resistance of plants was significantly improved in subsoil tillage to 50 cm, a characteristic that favors a high and stable yield under extreme environments. 展开更多
关键词 Spring maize SUBSOIL TILLAGE Root morphology GRAIN yield NUTRIENT ACCUMULATION
下载PDF
Research progress on reduced lodging of high-yield and-density maize 被引量:42
19
作者 XUE Jun XIE Rui-zhi +5 位作者 ZHANG Wang-feng WANG Ke-ru HOU Peng MING Bo GOU Ling LI Shao-kun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第12期2717-2725,共9页
Increasing plant density is an effective way to enhance maize yield, but often increases lodging rate and severity, significantly elevating the risk and cost of maize production. Therefore, lodging is a major factor r... Increasing plant density is an effective way to enhance maize yield, but often increases lodging rate and severity, significantly elevating the risk and cost of maize production. Therefore, lodging is a major factor restricting future increases in maize yield through high-density planting. This paper reviewed previous research on the relationships between maize lodging rate and plant morphology, mechanical strength of stalks, anatomical and biochemical characteristics of stalks, root characteristics, damage from pests and diseases, environmental factors, and genomic characteristics. The effects of planting density on these factors and explored possible ways to improve lodging resistance were also analyzed in this paper. The results provide a basis for future research on increasing maize lodging resistance under high-density planting conditions and can be used to develop maize cultivation practices and lodging-resistant maize cultivars. 展开更多
关键词 maize lodging resistance stalk strength high yield high plant density
下载PDF
Integrated agronomic practice increases maize grain yield and nitrogen use efficiency under various soil fertility conditions 被引量:5
20
作者 Baoyuan Zhou Xuefang Sun +4 位作者 Dan Wang Zaisong Ding Congfeng Li Wei Ma Ming Zhao 《The Crop Journal》 SCIE CAS CSCD 2019年第4期527-538,共12页
Crop yield potential can be increased through the use of appropriate agronomic practices. Integrated agronomic practice (IAP) is an effective way to increase maize (Zea mays L.) grain yield and nitrogen use efficiency... Crop yield potential can be increased through the use of appropriate agronomic practices. Integrated agronomic practice (IAP) is an effective way to increase maize (Zea mays L.) grain yield and nitrogen use efficiency (NUE);however, the physiological processes associated with gains in yield potential obtained from IAP, particularly the different under various soil fertility conditions, remain poorly understood. An IAP strategy including optimal planting density, split fertilizer application, and subsoiling tillage was evaluated over two growing seasons to determine whether the effects of IAP on maize yield and NUE differ under different levels of soil fertility. Compared to farmers' practices (FP), IAP increased maize grain yield in 2013 and 2014 by 25% and 28%, respectively, in low soil fertility (LSF) fields and by 36% and 37%, respectively, in high soil fertility (HSF) fields. The large yield gap was attributed mainly to greater dry matter (DM) and N accumulation with IAP than with FP owing to increased leaf area index (LAI) and DM accumulation rate, which were promoted by greater soil mineral N content (Nmin) and root length. Post-silking DM and N accumulation were also greater with IAP than with FP under HSF conditions, accounting for 60% and 43%, respectively, of total biomass and N accumulation;however, no significant differences were found for post-silking DM and N accumulation between IAP and FP under LSF conditions. Thus, the increase in grain yield with IAP was greater under HSF than under LSF. Because of greater grain yield and N uptake, IAP significantly increased N partial factor productivity, agronomic N efficiency, N recovery efficiency, and physiological efficiency of applied N compared to FP, particularly in the HSF fields. These results indicate that considerable further increases in yield and NUE can be obtained by increasing effective soil N content and maize root length to promote post-silking N and DM accumulation in maize planted at high plant density, especially in fields with low soil fertility. 展开更多
关键词 summer maize INTEGRATED AGRONOMIC PRACTICE Soil fertility Grain yield Nitrogen use efficiency
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部