为了进一步提高电动汽车轮毂电机轴承状态识别技术的高效可靠性,提出一种基于双核支持向量数据描述(double kernel based support vector data description,简称DK-SVDD)的轮毂电机轴承状态识别方法。首先,针对轮毂电机轴承样本数据结...为了进一步提高电动汽车轮毂电机轴承状态识别技术的高效可靠性,提出一种基于双核支持向量数据描述(double kernel based support vector data description,简称DK-SVDD)的轮毂电机轴承状态识别方法。首先,针对轮毂电机轴承样本数据结构混杂致使SVDD识别率较低问题,通过一定的比例权重将径向基(radial basis function,简称RBF)核函数和高斯差分(difference of Gaussians,简称DOG)核函数结合构建DK核函数;其次,根据最优二叉树原理逐层设计状态识别分类器,并搭建DK-SVDD轮毂电机轴承状态识别模型,同时使用粒子群优化算法对模型参数寻优以提高DK-SVDD的学习能力和泛化能力;最后,基于轮毂电机轴承台架试验数据,验证所提方法的有效性和优越性。结果表明:针对轮毂电机轴承目标状态识别,DK-SVDD方法平均训练时间为0.0655 s,平均状态识别率为97.06%;与采用RBF或DOG核函数相比,DK-SVDD方法在多种工况下可以有效提高状态识别率并降低训练时间。展开更多
提出了应用光谱和纹理特征的高光谱成像技术早期检测番茄叶片早疫病的方法。利用高光谱图像采集系统获取380~1 030nm范围内71个染病和88个健康番茄叶片的高光谱图像,同时采用主成分分析法(PCA)对高光谱图像进行处理。选取染病和健康叶...提出了应用光谱和纹理特征的高光谱成像技术早期检测番茄叶片早疫病的方法。利用高光谱图像采集系统获取380~1 030nm范围内71个染病和88个健康番茄叶片的高光谱图像,同时采用主成分分析法(PCA)对高光谱图像进行处理。选取染病和健康叶片感兴趣区域(region of interest,ROI)的光谱反射率值,同时分别从前8个主成分的每幅主成分图像的ROI中提取对比度(Contrast)、相关性(Correlation)、熵(En-tropy)和同质性(Homogeneity)4个灰度共生矩阵的纹理特征值,再通过PCA和连续投影算法(SPA)结合最小二乘支持向量机(LS-SVM)构建番茄叶片早疫病的早期鉴别模型。建立的6个模型中,采用光谱反射率值的LS-SVM模型对番茄叶片早疫病的识别率最高,达到100%。结果表明,应用高光谱成像技术检测番茄叶片早疫病是可行的。展开更多
文摘为了进一步提高电动汽车轮毂电机轴承状态识别技术的高效可靠性,提出一种基于双核支持向量数据描述(double kernel based support vector data description,简称DK-SVDD)的轮毂电机轴承状态识别方法。首先,针对轮毂电机轴承样本数据结构混杂致使SVDD识别率较低问题,通过一定的比例权重将径向基(radial basis function,简称RBF)核函数和高斯差分(difference of Gaussians,简称DOG)核函数结合构建DK核函数;其次,根据最优二叉树原理逐层设计状态识别分类器,并搭建DK-SVDD轮毂电机轴承状态识别模型,同时使用粒子群优化算法对模型参数寻优以提高DK-SVDD的学习能力和泛化能力;最后,基于轮毂电机轴承台架试验数据,验证所提方法的有效性和优越性。结果表明:针对轮毂电机轴承目标状态识别,DK-SVDD方法平均训练时间为0.0655 s,平均状态识别率为97.06%;与采用RBF或DOG核函数相比,DK-SVDD方法在多种工况下可以有效提高状态识别率并降低训练时间。
文摘提出了应用光谱和纹理特征的高光谱成像技术早期检测番茄叶片早疫病的方法。利用高光谱图像采集系统获取380~1 030nm范围内71个染病和88个健康番茄叶片的高光谱图像,同时采用主成分分析法(PCA)对高光谱图像进行处理。选取染病和健康叶片感兴趣区域(region of interest,ROI)的光谱反射率值,同时分别从前8个主成分的每幅主成分图像的ROI中提取对比度(Contrast)、相关性(Correlation)、熵(En-tropy)和同质性(Homogeneity)4个灰度共生矩阵的纹理特征值,再通过PCA和连续投影算法(SPA)结合最小二乘支持向量机(LS-SVM)构建番茄叶片早疫病的早期鉴别模型。建立的6个模型中,采用光谱反射率值的LS-SVM模型对番茄叶片早疫病的识别率最高,达到100%。结果表明,应用高光谱成像技术检测番茄叶片早疫病是可行的。