期刊文献+
共找到26,670篇文章
< 1 2 250 >
每页显示 20 50 100
Performance Analysis of Support Vector Machine (SVM) on Challenging Datasets for Forest Fire Detection
1
作者 Ankan Kar Nirjhar Nath +1 位作者 Utpalraj Kemprai   Aman 《International Journal of Communications, Network and System Sciences》 2024年第2期11-29,共19页
This article delves into the analysis of performance and utilization of Support Vector Machines (SVMs) for the critical task of forest fire detection using image datasets. With the increasing threat of forest fires to... This article delves into the analysis of performance and utilization of Support Vector Machines (SVMs) for the critical task of forest fire detection using image datasets. With the increasing threat of forest fires to ecosystems and human settlements, the need for rapid and accurate detection systems is of utmost importance. SVMs, renowned for their strong classification capabilities, exhibit proficiency in recognizing patterns associated with fire within images. By training on labeled data, SVMs acquire the ability to identify distinctive attributes associated with fire, such as flames, smoke, or alterations in the visual characteristics of the forest area. The document thoroughly examines the use of SVMs, covering crucial elements like data preprocessing, feature extraction, and model training. It rigorously evaluates parameters such as accuracy, efficiency, and practical applicability. The knowledge gained from this study aids in the development of efficient forest fire detection systems, enabling prompt responses and improving disaster management. Moreover, the correlation between SVM accuracy and the difficulties presented by high-dimensional datasets is carefully investigated, demonstrated through a revealing case study. The relationship between accuracy scores and the different resolutions used for resizing the training datasets has also been discussed in this article. These comprehensive studies result in a definitive overview of the difficulties faced and the potential sectors requiring further improvement and focus. 展开更多
关键词 support vector machine Challenging Datasets Forest Fire Detection CLASSIFICATION
下载PDF
Active Fault Tolerant Nonsingular Terminal Sliding Mode Control for Electromechanical System Based on Support Vector Machine
2
作者 Jian Hu Zhengyin Yang Jianyong Yao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期189-203,共15页
Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant no... Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant nonsingular terminal sliding mode control method based on support vector machine(SVM)is proposed.A SVM is designed to estimate the fault by off-line learning from small sample data with solving convex quadratic programming method and is introduced into a high-gain observer,so as to improve the state estimation and fault detection accuracy when the fault occurs.The state estimation value of the observer is used for state reconfiguration.A novel nonsingular terminal sliding mode surface is designed,and Lyapunov theorem is used to derive a parameter adaptation law and a control law.It is guaranteed that the proposed controller can achieve asymptotical stability which is superior to many advanced fault-tolerant controllers.In addition,the parameter estimation also can help to diagnose the system faults because the faults can be reflected by the parameters variation.Extensive comparative simulation and experimental results illustrate the effectiveness and advancement of the proposed controller compared with several other main-stream controllers. 展开更多
关键词 Aeronautics electromechanical actuator Fault tolerant control support vector machine State observer Parametric uncertainty
下载PDF
Improved Twin Support Vector Machine Algorithm and Applications in Classification Problems
3
作者 Sun Yi Wang Zhouyang 《China Communications》 SCIE CSCD 2024年第5期261-279,共19页
The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will resu... The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will result in rising outlier values and noise.Therefore,the speed and performance of classification could be greatly affected.Given the above problems,this paper starts with the motivation and mathematical representing of classification,puts forward a new classification method based on the relationship between different classification formulations.Combined with the vector characteristics of the actual problem and the choice of matrix characteristics,we firstly analyze the orderly regression to introduce slack variables to solve the constraint problem of the lone point.Then we introduce the fuzzy factors to solve the problem of the gap between the isolated points on the basis of the support vector machine.We introduce the cost control to solve the problem of sample skew.Finally,based on the bi-boundary support vector machine,a twostep weight setting twin classifier is constructed.This can help to identify multitasks with feature-selected patterns without the need for additional optimizers,which solves the problem of large-scale classification that can’t deal effectively with the very low category distribution gap. 展开更多
关键词 FUZZY ordered regression(OR) relaxing variables twin support vector machine
下载PDF
Differentially Private Support Vector Machines with Knowledge Aggregation
4
作者 Teng Wang Yao Zhang +2 位作者 Jiangguo Liang Shuai Wang Shuanggen Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3891-3907,共17页
With the widespread data collection and processing,privacy-preserving machine learning has become increasingly important in addressing privacy risks related to individuals.Support vector machine(SVM)is one of the most... With the widespread data collection and processing,privacy-preserving machine learning has become increasingly important in addressing privacy risks related to individuals.Support vector machine(SVM)is one of the most elementary learning models of machine learning.Privacy issues surrounding SVM classifier training have attracted increasing attention.In this paper,we investigate Differential Privacy-compliant Federated Machine Learning with Dimensionality Reduction,called FedDPDR-DPML,which greatly improves data utility while providing strong privacy guarantees.Considering in distributed learning scenarios,multiple participants usually hold unbalanced or small amounts of data.Therefore,FedDPDR-DPML enables multiple participants to collaboratively learn a global model based on weighted model averaging and knowledge aggregation and then the server distributes the global model to each participant to improve local data utility.Aiming at high-dimensional data,we adopt differential privacy in both the principal component analysis(PCA)-based dimensionality reduction phase and SVM classifiers training phase,which improves model accuracy while achieving strict differential privacy protection.Besides,we train Differential privacy(DP)-compliant SVM classifiers by adding noise to the objective function itself,thus leading to better data utility.Extensive experiments on three high-dimensional datasets demonstrate that FedDPDR-DPML can achieve high accuracy while ensuring strong privacy protection. 展开更多
关键词 Differential privacy support vector machine knowledge aggregation data utility
下载PDF
Comparison of debris flow susceptibility assessment methods:support vector machine,particle swarm optimization,and feature selection techniques
5
作者 ZHAO Haijun WEI Aihua +3 位作者 MA Fengshan DAI Fenggang JIANG Yongbing LI Hui 《Journal of Mountain Science》 SCIE CSCD 2024年第2期397-412,共16页
The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques we... The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events. 展开更多
关键词 Chengde Feature selection support vector machine Particle swarm optimization Principal component analysis Debris flow susceptibility
原文传递
Enhanced Steganalysis for Color Images Using Curvelet Features and Support Vector Machine
6
作者 Arslan Akram Imran Khan +4 位作者 Javed Rashid Mubbashar Saddique Muhammad Idrees Yazeed Yasin Ghadi Abdulmohsen Algarni 《Computers, Materials & Continua》 SCIE EI 2024年第1期1311-1328,共18页
Algorithms for steganography are methods of hiding data transfers in media files.Several machine learning architectures have been presented recently to improve stego image identification performance by using spatial i... Algorithms for steganography are methods of hiding data transfers in media files.Several machine learning architectures have been presented recently to improve stego image identification performance by using spatial information,and these methods have made it feasible to handle a wide range of problems associated with image analysis.Images with little information or low payload are used by information embedding methods,but the goal of all contemporary research is to employ high-payload images for classification.To address the need for both low-and high-payload images,this work provides a machine-learning approach to steganography image classification that uses Curvelet transformation to efficiently extract characteristics from both type of images.Support Vector Machine(SVM),a commonplace classification technique,has been employed to determine whether the image is a stego or cover.The Wavelet Obtained Weights(WOW),Spatial Universal Wavelet Relative Distortion(S-UNIWARD),Highly Undetectable Steganography(HUGO),and Minimizing the Power of Optimal Detector(MiPOD)steganography techniques are used in a variety of experimental scenarios to evaluate the performance of the proposedmethod.Using WOW at several payloads,the proposed approach proves its classification accuracy of 98.60%.It exhibits its superiority over SOTA methods. 展开更多
关键词 CURVELETS fast fourier transformation support vector machine high pass filters STEGANOGRAPHY
下载PDF
HHO optimized support vector machine classifier for traditional Chinese medicine syndrome differentiation of diabetic retinopathy
7
作者 Li Xiao Cheng-Wu Wang +4 位作者 Ying Deng Yi-Jing Yang Jing Lu Jun-Feng Yan Qing-Hua Peng 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第6期991-1000,共10页
AIM:To develop a classifier for traditional Chinese medicine(TCM)syndrome differentiation of diabetic retinopathy(DR),using optimized machine learning algorithms,which can provide the basis for TCM objective and intel... AIM:To develop a classifier for traditional Chinese medicine(TCM)syndrome differentiation of diabetic retinopathy(DR),using optimized machine learning algorithms,which can provide the basis for TCM objective and intelligent syndrome differentiation.METHODS:Collated data on real-world DR cases were collected.A variety of machine learning methods were used to construct TCM syndrome classification model,and the best performance was selected as the basic model.Genetic Algorithm(GA)was used for feature selection to obtain the optimal feature combination.Harris Hawk Optimization(HHO)was used for parameter optimization,and a classification model based on feature selection and parameter optimization was constructed.The performance of the model was compared with other optimization algorithms.The models were evaluated with accuracy,precision,recall,and F1 score as indicators.RESULTS:Data on 970 cases that met screening requirements were collected.Support Vector Machine(SVM)was the best basic classification model.The accuracy rate of the model was 82.05%,the precision rate was 82.34%,the recall rate was 81.81%,and the F1 value was 81.76%.After GA screening,the optimal feature combination contained 37 feature values,which was consistent with TCM clinical practice.The model based on optimal combination and SVM(GA_SVM)had an accuracy improvement of 1.92%compared to the basic classifier.SVM model based on HHO and GA optimization(HHO_GA_SVM)had the best performance and convergence speed compared with other optimization algorithms.Compared with the basic classification model,the accuracy was improved by 3.51%.CONCLUSION:HHO and GA optimization can improve the model performance of SVM in TCM syndrome differentiation of DR.It provides a new method and research idea for TCM intelligent assisted syndrome differentiation. 展开更多
关键词 traditional Chinese medicine diabetic retinopathy Harris Hawk Optimization support vector machine syndrome differentiation
原文传递
Predicting Turbidite Channel in Deep-Water Canyon Based on Grey Relational Analysis-Support Vector Machine Model:A Case Study of the Lingshui Depression in Qiongdongnan Basin,South China Sea
8
作者 Haichen Li Jianghai Li +1 位作者 Li Li Zhandong Li 《Energy Engineering》 EI 2024年第9期2435-2447,共13页
The turbidite channel of South China Sea has been highly concerned.Influenced by the complex fault and the rapid phase change of lithofacies,predicting the channel through conventional seismic attributes is not accura... The turbidite channel of South China Sea has been highly concerned.Influenced by the complex fault and the rapid phase change of lithofacies,predicting the channel through conventional seismic attributes is not accurate enough.In response to this disadvantage,this study used a method combining grey relational analysis(GRA)and support vectormachine(SVM)and established a set of prediction technical procedures suitable for reservoirs with complex geological conditions.In the case study of the Huangliu Formation in Qiongdongnan Basin,South China Sea,this study first dimensionalized the conventional seismic attributes of Gas Layer Group I and then used the GRA method to obtain the main relational factors.A higher relational degree indicates a higher probability of responding to the attributes of the turbidite channel.This study then accumulated the optimized attributes with the highest relational factors to obtain a first-order accumulated sequence,which was used as the input training sample of the SVM model,thus successfully constructing the SVM turbidite channel model.Drilling results prove that the GRA-SVMmethod has a high drilling coincidence rate.Utilizing the core and logging data and taking full use of the advantages of seismic inversion in predicting the sand boundary of water channels,this study divides the sedimentary microfacies of the Huangliu Formation in the Lingshui 17-2 Gas Field.This comprehensive study has shown that the GRA-SVM method has high accuracy for predicting turbidite channels and can be used as a superior turbidite channel prediction method under complex geological conditions. 展开更多
关键词 support vector machine CHANNEL Huangliu Formation Qiongdongnan Basin
下载PDF
Resting-state functional magnetic resonance imaging and support vector machines for the diagnosis of major depressive disorder in adolescents
9
作者 Zhi-Hui Yu Ren-Qiang Yu +6 位作者 Xing-Yu Wang Wen-Yu Ren Xiao-Qin Zhang Wei Wu Xiao Li Lin-Qi Dai Ya-Lan Lv 《World Journal of Psychiatry》 SCIE 2024年第11期1696-1707,共12页
BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers base... BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers based on amygdala functional connectivity(FC).AIM To investigate the analysis of neuroimaging biomarkers as a streamlined approach for the diagnosis of MDD in adolescents.METHODS Forty-four adolescents diagnosed with MDD and 43 healthy controls were enrolled in the study.Using resting-state functional magnetic resonance imaging,the FC was compared between the adolescents with MDD and the healthy controls,with the bilateral amygdala serving as the seed point,followed by statistical analysis of the results.The support vector machine(SVM)method was then applied to classify functional connections in various brain regions and to evaluate the neurophysiological characteristics associated with MDD.RESULTS Compared to the controls and using the bilateral amygdala as the region of interest,patients with MDD showed significantly lower FC values in the left inferior temporal gyrus,bilateral calcarine,right lingual gyrus,and left superior occipital gyrus.However,there was an increase in the FC value in Vermis-10.The SVM analysis revealed that the reduction in the FC value in the right lingual gyrus could effectively differentiate patients with MDD from healthy controls,achieving a diagnostic accuracy of 83.91%,sensitivity of 79.55%,specificity of 88.37%,and an area under the curve of 67.65%.CONCLUSION The results showed that an abnormal FC value in the right lingual gyrus was effective as a neuroimaging biomarker to distinguish patients with MDD from healthy controls. 展开更多
关键词 Major depressive disorder ADOLESCENT support vector machine machine learning Resting-state functional magnetic resonance imaging NEUROIMAGING BIOMARKER
下载PDF
POSITIVE DEFINITE KERNEL IN SUPPORT VECTOR MACHINE(SVM) 被引量:3
10
作者 谢志鹏 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第2期114-121,共8页
The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used t... The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used to confirm the positive definiteness and their construction. Based on the Bochner theorem, some translation invariant kernels are checked in their Fourier domain. Some rotation invariant radial kernels are inspected according to the Schoenberg theorem. Finally, the construction of discrete scaling and wavelet kernels, the kernel selection and the kernel parameter learning are discussed. 展开更多
关键词 support vector machines(svms) mercer kernel reproducing kernel positive definite kernel scaling and wavelet kernel
下载PDF
Machine learning model based on non-convex penalized huberized-SVM
11
作者 Peng Wang Ji Guo Lin-Feng Li 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第1期81-94,共14页
The support vector machine(SVM)is a classical machine learning method.Both the hinge loss and least absolute shrinkage and selection operator(LASSO)penalty are usually used in traditional SVMs.However,the hinge loss i... The support vector machine(SVM)is a classical machine learning method.Both the hinge loss and least absolute shrinkage and selection operator(LASSO)penalty are usually used in traditional SVMs.However,the hinge loss is not differentiable,and the LASSO penalty does not have the Oracle property.In this paper,the huberized loss is combined with non-convex penalties to obtain a model that has the advantages of both the computational simplicity and the Oracle property,contributing to higher accuracy than traditional SVMs.It is experimentally demonstrated that the two non-convex huberized-SVM methods,smoothly clipped absolute deviation huberized-SVM(SCAD-HSVM)and minimax concave penalty huberized-SVM(MCP-HSVM),outperform the traditional SVM method in terms of the prediction accuracy and classifier performance.They are also superior in terms of variable selection,especially when there is a high linear correlation between the variables.When they are applied to the prediction of listed companies,the variables that can affect and predict financial distress are accurately filtered out.Among all the indicators,the indicators per share have the greatest influence while those of solvency have the weakest influence.Listed companies can assess the financial situation with the indicators screened by our algorithm and make an early warning of their possible financial distress in advance with higher precision. 展开更多
关键词 Huberized loss machine learning Non-convex penalties support vector machine(svm)
下载PDF
Stability prediction of hard rock pillar using support vector machine optimized by three metaheuristic algorithms 被引量:6
12
作者 Chuanqi Li Jian Zhou +1 位作者 Kun Du Daniel Dias 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第8期1019-1036,共18页
Hard rock pillar is one of the important structures in engineering design and excavation in underground mines.Accurate and convenient prediction of pillar stability is of great significance for underground space safet... Hard rock pillar is one of the important structures in engineering design and excavation in underground mines.Accurate and convenient prediction of pillar stability is of great significance for underground space safety.This paper aims to develop hybrid support vector machine(SVM)models improved by three metaheuristic algorithms known as grey wolf optimizer(GWO),whale optimization algorithm(WOA)and sparrow search algorithm(SSA)for predicting the hard rock pillar stability.An integrated dataset containing 306 hard rock pillars was established to generate hybrid SVM models.Five parameters including pillar height,pillar width,ratio of pillar width to height,uniaxial compressive strength and pillar stress were set as input parameters.Two global indices,three local indices and the receiver operating characteristic(ROC)curve with the area under the ROC curve(AUC)were utilized to evaluate all hybrid models’performance.The results confirmed that the SSA-SVM model is the best prediction model with the highest values of all global indices and local indices.Nevertheless,the performance of the SSASVM model for predicting the unstable pillar(AUC:0.899)is not as good as those for stable(AUC:0.975)and failed pillars(AUC:0.990).To verify the effectiveness of the proposed models,5 field cases were investigated in a metal mine and other 5 cases were collected from several published works.The validation results indicated that the SSA-SVM model obtained a considerable accuracy,which means that the combination of SVM and metaheuristic algorithms is a feasible approach to predict the pillar stability. 展开更多
关键词 Underground pillar stability Hard rock support vector machine Metaheuristic algorithms
下载PDF
Facial Expression Recognition Model Depending on Optimized Support Vector Machine 被引量:1
13
作者 Amel Ali Alhussan Fatma M.Talaat +4 位作者 El-Sayed M.El-kenawy Abdelaziz A.Abdelhamid Abdelhameed Ibrahim Doaa Sami Khafaga Mona Alnaggar 《Computers, Materials & Continua》 SCIE EI 2023年第7期499-515,共17页
In computer vision,emotion recognition using facial expression images is considered an important research issue.Deep learning advances in recent years have aided in attaining improved results in this issue.According t... In computer vision,emotion recognition using facial expression images is considered an important research issue.Deep learning advances in recent years have aided in attaining improved results in this issue.According to recent studies,multiple facial expressions may be included in facial photographs representing a particular type of emotion.It is feasible and useful to convert face photos into collections of visual words and carry out global expression recognition.The main contribution of this paper is to propose a facial expression recognitionmodel(FERM)depending on an optimized Support Vector Machine(SVM).To test the performance of the proposed model(FERM),AffectNet is used.AffectNet uses 1250 emotion-related keywords in six different languages to search three major search engines and get over 1,000,000 facial photos online.The FERM is composed of three main phases:(i)the Data preparation phase,(ii)Applying grid search for optimization,and(iii)the categorization phase.Linear discriminant analysis(LDA)is used to categorize the data into eight labels(neutral,happy,sad,surprised,fear,disgust,angry,and contempt).Due to using LDA,the performance of categorization via SVM has been obviously enhanced.Grid search is used to find the optimal values for hyperparameters of SVM(C and gamma).The proposed optimized SVM algorithm has achieved an accuracy of 99%and a 98%F1 score. 展开更多
关键词 Facial expression recognition machine learning linear dis-criminant analysis(LDA) support vector machine(svm) grid search
下载PDF
NEW HYBRID AI-SVM ALGORITHM: COMBINATION OF SUPPORT VECTOR MACHINES AND ARTIFICIAL IMMUNE NETWORKS
14
作者 张焕萍 王惠南 宋晓峰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第4期272-277,共6页
Support vector machines (SVMs) are combined with the artificial immune network (aiNet), thus forming a new hybrid ai-SVM algorithm. The algorithm is used to reduce the number of samples and the training time of SV... Support vector machines (SVMs) are combined with the artificial immune network (aiNet), thus forming a new hybrid ai-SVM algorithm. The algorithm is used to reduce the number of samples and the training time of SVM on large datasets, aiNet is an artificial immune system (AIS) inspired method to perform the automatic data compression, extract the relevant information and retain the topology of the original sample distribution. The output of aiNet is a set of antibodies for representing the input dataset in a simplified way. Then the SVM model is built in the compressed antibody network instead of the original input data. Experimental results show that the ai-SVM algorithm is effective to reduce the computing time and simplify the SVM model, and the accuracy is not decreased. 展开更多
关键词 support vector machine artificial immune network sample reduction
下载PDF
Lung Cancer Detection Using Modified AlexNet Architecture and Support Vector Machine 被引量:1
15
作者 Iftikhar Naseer Tehreem Masood +3 位作者 Sheeraz Akram Arfan Jaffar Muhammad Rashid Muhammad Amjad Iqbal 《Computers, Materials & Continua》 SCIE EI 2023年第1期2039-2054,共16页
Lung cancer is the most dangerous and death-causing disease indicated by the presence of pulmonary nodules in the lung.It is mostly caused by the instinctive growth of cells in the lung.Lung nodule detection has a sig... Lung cancer is the most dangerous and death-causing disease indicated by the presence of pulmonary nodules in the lung.It is mostly caused by the instinctive growth of cells in the lung.Lung nodule detection has a significant role in detecting and screening lung cancer in Computed tomography(CT)scan images.Early detection plays an important role in the survival rate and treatment of lung cancer patients.Moreover,pulmonary nodule classification techniques based on the convolutional neural network can be used for the accurate and efficient detection of lung cancer.This work proposed an automatic nodule detection method in CT images based on modified AlexNet architecture and Support vector machine(SVM)algorithm namely LungNet-SVM.The proposed model consists of seven convolutional layers,three pooling layers,and two fully connected layers used to extract features.Support vector machine classifier is applied for the binary classification of nodules into benign andmalignant.The experimental analysis is performed by using the publicly available benchmark dataset Lung nodule analysis 2016(LUNA16).The proposed model has achieved 97.64%of accuracy,96.37%of sensitivity,and 99.08%of specificity.A comparative analysis has been carried out between the proposed LungNet-SVM model and existing stateof-the-art approaches for the classification of lung cancer.The experimental results indicate that the proposed LungNet-SVM model achieved remarkable performance on a LUNA16 dataset in terms of accuracy. 展开更多
关键词 Lung cancer alexnet luna16 computed tomography support vector machine
下载PDF
Enhanced Nature Inspired-Support Vector Machine for Glaucoma Detection 被引量:1
16
作者 Jahanzaib Latif Shanshan Tu +3 位作者 Chuangbai Xiao Anas Bilal Sadaqat Ur Rehman Zohaib Ahmad 《Computers, Materials & Continua》 SCIE EI 2023年第7期1151-1172,共22页
Glaucoma is a progressive eye disease that can lead to blindness if left untreated.Early detection is crucial to prevent vision loss,but current manual scanning methods are expensive,time-consuming,and require special... Glaucoma is a progressive eye disease that can lead to blindness if left untreated.Early detection is crucial to prevent vision loss,but current manual scanning methods are expensive,time-consuming,and require specialized expertise.This study presents a novel approach to Glaucoma detection using the Enhanced Grey Wolf Optimized Support Vector Machine(EGWO-SVM)method.The proposed method involves preprocessing steps such as removing image noise using the adaptive median filter(AMF)and feature extraction using the previously processed speeded-up robust feature(SURF),histogram of oriented gradients(HOG),and Global features.The enhanced Grey Wolf Optimization(GWO)technique is then employed with SVM for classification.To evaluate the proposed method,we used the online retinal images for glaucoma analysis(ORIGA)database,and it achieved high accuracy,sensitivity,and specificity rates of 94%,92%,and 92%,respectively.The results demonstrate that the proposed method outperforms other current algorithms in detecting the presence or absence of Glaucoma.This study provides a novel and effective approach to Glaucoma detection that can potentially improve the detection process and outcomes. 展开更多
关键词 Glaucoma detection grey golf optimization support vector machine feature extraction image classification
下载PDF
Least Squares One-Class Support Tensor Machine
17
作者 Kaiwen Zhao Yali Fan 《Journal of Computer and Communications》 2024年第4期186-200,共15页
One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification ... One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification problem for second-order tensor data. Traditional vector-based one-class classification methods such as one-class support vector machine (OCSVM) and least squares one-class support vector machine (LSOCSVM) have limitations when tensor is used as input data, so we propose a new tensor one-class classification method, LSOCSTM, which directly uses tensor as input data. On one hand, using tensor as input data not only enables to classify tensor data, but also for vector data, classifying it after high dimensionalizing it into tensor still improves the classification accuracy and overcomes the over-fitting problem. On the other hand, different from one-class support tensor machine (OCSTM), we use squared loss instead of the original loss function so that we solve a series of linear equations instead of quadratic programming problems. Therefore, we use the distance to the hyperplane as a metric for classification, and the proposed method is more accurate and faster compared to existing methods. The experimental results show the high efficiency of the proposed method compared with several state-of-the-art methods. 展开更多
关键词 Least Square One-Class support Tensor machine One-Class Classification Upscale Least Square One-Class support vector machine One-Class support Tensor machine
下载PDF
A new hybrid approach to assessing soil quality using neutrosophic fuzzy-AHP and support vector machine algorithm in sub-humid ecosystem
18
作者 ÖZKAN Barış DENGIZ Orhan +1 位作者 ALABOZ Pelin KAYA NursaçSerda 《Journal of Mountain Science》 SCIE CSCD 2023年第11期3186-3202,共17页
Soil quality determination and estimation is an important issue not only for terrestrial ecosystems but also for sustainable management of soils.In this study,soil quality was determined by linear and nonlinear standa... Soil quality determination and estimation is an important issue not only for terrestrial ecosystems but also for sustainable management of soils.In this study,soil quality was determined by linear and nonlinear standard scoring function methods integrated with a neutrosophic fuzzy analytic hierarchy process in the micro catchment.In addition,soil quality values were estimated using a support vector machine(SVM)in machine learning algorithms.In order to generate spatial distribution maps of soil quality indice values,different interpolation methods were evaluated to detect the most suitable semivariogram model.While the soil quality index values obtained by the linear method were determined between 0.458-0.717,the soil quality index with the nonlinear method showed variability at the levels of 0.433-0.651.There was no statistical difference between the two methods,and they were determined to be similar.In the estimation of soil quality with SVM,the normalized root means square error(NRMSE)values obtained in the linear and nonlinear method estimation were determined as 0.057 and 0.047,respectively.The spherical model of simple kriging was determined as the interpolation method with the lowest RMSE value in the actual and predicted values of the linear method while,in the nonlinear method,the lowest error in the distribution maps was determined with exponential of the simple kriging. 展开更多
关键词 Soil quality support vector machine Neutrosophic fuzzy Humid ecosystem
原文传递
SCADA Data-Based Support Vector Machine for False Alarm Identification for Wind Turbine Management
19
作者 Ana María Peco Chacón Isaac Segovia Ramírez Fausto Pedro García Márquez 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2595-2608,共14页
Maintenance operations have a critical influence on power gen-eration by wind turbines(WT).Advanced algorithms must analyze large volume of data from condition monitoring systems(CMS)to determine the actual working co... Maintenance operations have a critical influence on power gen-eration by wind turbines(WT).Advanced algorithms must analyze large volume of data from condition monitoring systems(CMS)to determine the actual working conditions and avoid false alarms.This paper proposes different support vector machine(SVM)algorithms for the prediction and detection of false alarms.K-Fold cross-validation(CV)is applied to evaluate the classification reliability of these algorithms.Supervisory Control and Data Acquisition(SCADA)data from an operating WT are applied to test the proposed approach.The results from the quadratic SVM showed an accuracy rate of 98.6%.Misclassifications from the confusion matrix,alarm log and maintenance records are analyzed to obtain quantitative information and determine if it is a false alarm.The classifier reduces the number of false alarms called misclassifications by 25%.These results demonstrate that the proposed approach presents high reliability and accuracy in false alarm identification. 展开更多
关键词 machine learning classification support vector machine false alarm wind turbine cross-validation
下载PDF
Quantum Fuzzy Support Vector Machine for Binary Classification
20
作者 Xi Huang Shibin Zhang +1 位作者 Chen Lin Jinyue Xia 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期2783-2794,共12页
In the objective world,how to deal with the complexity and uncertainty of big data efficiently and accurately has become the premise and key to machine learning.Fuzzy support vector machine(FSVM)not only deals with th... In the objective world,how to deal with the complexity and uncertainty of big data efficiently and accurately has become the premise and key to machine learning.Fuzzy support vector machine(FSVM)not only deals with the classifi-cation problems for training samples with fuzzy information,but also assigns a fuzzy membership degree to each training sample,allowing different training samples to contribute differently in predicting an optimal hyperplane to separate two classes with maximum margin,reducing the effect of outliers and noise,Quantum computing has super parallel computing capabilities and holds the pro-mise of faster algorithmic processing of data.However,FSVM and quantum com-puting are incapable of dealing with the complexity and uncertainty of big data in an efficient and accurate manner.This paper research and propose an efficient and accurate quantum fuzzy support vector machine(QFSVM)algorithm based on the fact that quantum computing can efficiently process large amounts of data and FSVM is easy to deal with the complexity and uncertainty problems.The central idea of the proposed algorithm is to use the quantum algorithm for solving linear systems of equations(HHL algorithm)and the least-squares method to solve the quadratic programming problem in the FSVM.The proposed algorithm can deter-mine whether a sample belongs to the positive or negative class while also achiev-ing a good generalization performance.Furthermore,this paper applies QFSVM to handwritten character recognition and demonstrates that QFSVM can be run on quantum computers,and achieve accurate classification of handwritten characters.When compared to FSVM,QFSVM’s computational complexity decreases expo-nentially with the number of training samples. 展开更多
关键词 Quantum fuzzy support vector machine(QFsvm) fuzzy support vector machine(Fsvm) quantum computing
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部