期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Using Audiometric Data to Weigh and Prioritize Factors that Affect Workers’ Hearing Loss through Support Vector Machine (SVM) Algorithm 被引量:3
1
作者 Hossein ElahiShirvan MohammadReza Ghotbi-Ravandi +1 位作者 Sajad Zare Mostafa Ghazizadeh Ahsaee 《Sound & Vibration》 EI 2020年第2期99-112,共14页
Workers’exposure to excessive noise is a big universal work-related challenges.One of the major consequences of exposure to noise is permanent or transient hearing loss.The current study sought to utilize audiometric... Workers’exposure to excessive noise is a big universal work-related challenges.One of the major consequences of exposure to noise is permanent or transient hearing loss.The current study sought to utilize audiometric data to weigh and prioritize the factors affecting workers’hearing loss based using the Support Vector Machine(SVM)algorithm.This cross sectional-descriptive study was conducted in 2017 in a mining industry in southeast Iran.The participating workers(n=150)were divided into three groups of 50 based on the sound pressure level to which they were exposed(two experimental groups and one control group).Audiometric tests were carried out for all members of each group.The study generally entailed the following steps:(1)selecting predicting variables to weigh and prioritize factors affecting hearing loss;(2)conducting audiometric tests and assessing permanent hearing loss in each ear and then evaluating total hearing loss;(3)categorizing different types of hearing loss;(4)weighing and prioritizing factors that affect hearing loss based on the SVM algorithm;and(5)assessing the error rate and accuracy of the models.The collected data were fed into SPSS 18,followed by conducting linear regression and paired samples t-test.It was revealed that,in the first model(SPL<70 dBA),the frequency of 8 KHz had the greatest impact(with a weight of 33%),while noise had the smallest influence(with a weight of 5%).The accuracy of this model was 100%.In the second model(70<SPL<80 dBA),the frequency of 4 KHz had the most profound effect(with a weight of 21%),whereas the frequency of 250 Hz had the lowest impact(with a weight of 6%).The accuracy of this model was 100%too.In the third model(SPL>85 dBA),the frequency of 4 KHz had the highest impact(with a weight of 22%),while the frequency of 250 Hz had the smallest influence(with a weight of 3%).The accuracy of this model was 100%too.In the fourth model,the frequency of 4 KHz had the greatest effect(with a weight of 24%),while the frequency of 500 Hz had the smallest effect(with a weight of 4%).The accuracy of this model was found to be 94%.According to the modeling conducted using the SVM algorithm,the frequency of 4 KHz has the most profound effect on predicting changes in hearing loss.Given the high accuracy of the obtained model,this algorithm is an appropriate and powerful tool to predict and model hearing loss. 展开更多
关键词 Noise modeling hearing loss data mining support vector machine algorithm
下载PDF
Nonlinear model predictive control based on support vector machine and genetic algorithm 被引量:5
2
作者 冯凯 卢建刚 陈金水 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期2048-2052,共5页
This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used ... This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used to approximate each output of the controlled plant Then the model is used in MPC control scheme to predict the outputs of the controlled plant.The optimal control sequence is calculated using GA with elite preserve strategy.Simulation results of a typical MIMO nonlinear system show that this method has a good ability of set points tracking and disturbance rejection. 展开更多
关键词 support vector machine Genetic algorithm Nonlinear model predictive control Neural network Modeling
下载PDF
Automatic target recognition of moving target based on empirical mode decomposition and genetic algorithm support vector machine 被引量:4
3
作者 张军 欧建平 占荣辉 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1389-1396,共8页
In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(S... In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively. 展开更多
关键词 automatic target recognition(ATR) moving target empirical mode decomposition genetic algorithm support vector machine
下载PDF
Enhanced Wolf Pack Algorithm (EWPA) and Dense-kUNet Segmentation for Arterial Calcifications in Mammograms
4
作者 Afnan M.Alhassan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2207-2223,共17页
Breast Arterial Calcification(BAC)is a mammographic decision dissimilar to cancer and commonly observed in elderly women.Thus identifying BAC could provide an expense,and be inaccurate.Recently Deep Learning(DL)method... Breast Arterial Calcification(BAC)is a mammographic decision dissimilar to cancer and commonly observed in elderly women.Thus identifying BAC could provide an expense,and be inaccurate.Recently Deep Learning(DL)methods have been introduced for automatic BAC detection and quantification with increased accuracy.Previously,classification with deep learning had reached higher efficiency,but designing the structure of DL proved to be an extremely challenging task due to overfitting models.It also is not able to capture the patterns and irregularities presented in the images.To solve the overfitting problem,an optimal feature set has been formed by Enhanced Wolf Pack Algorithm(EWPA),and their irregularities are identified by Dense-kUNet segmentation.In this paper,Dense-kUNet for segmentation and optimal feature has been introduced for classification(severe,mild,light)that integrates DenseUNet and kU-Net.Longer bound links exist among adjacent modules,allowing relatively rough data to be sent to the following component and assisting the system in finding higher qualities.The major contribution of the work is to design the best features selected by Enhanced Wolf Pack Algorithm(EWPA),and Modified Support Vector Machine(MSVM)based learning for classification.k-Dense-UNet is introduced which combines the procedure of Dense-UNet and kU-Net for image segmentation.Longer bound associations occur among nearby sections,allowing relatively granular data to be sent to the next subsystem and benefiting the system in recognizing smaller characteristics.The proposed techniques and the performance are tested using several types of analysis techniques 826 filled digitized mammography.The proposed method achieved the highest precision,recall,F-measure,and accuracy of 84.4333%,84.5333%,84.4833%,and 86.8667%when compared to other methods on the Digital Database for Screening Mammography(DDSM). 展开更多
关键词 Breast arterial calcification cardiovascular disease semantic segmentation transfer learning enhanced wolf pack algorithm and modified support vector machine
下载PDF
Improved scheme to accelerate sparse least squares support vector regression
5
作者 Yongping Zhao Jianguo Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期312-317,共6页
The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in p... The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in performing the pruning process, which is not favorable for their applications. To this end, an im- proved scheme is proposed to accelerate sparse least squares support vector regression machine. A major advantage of this new scheme is based on the iterative methodology, which uses the previous training results instead of retraining, and its feasibility is strictly verified theoretically. Finally, experiments on bench- mark data sets corroborate a significant saving of the training time with the same number of support vectors and predictive accuracy compared with the original pruning algorithms, and this speedup scheme is also extended to classification problem. 展开更多
关键词 least squares support vector regression machine pruning algorithm iterative methodology classification.
下载PDF
Word Sense Disambiguation Based Sentiment Classification Using Linear Kernel Learning Scheme
6
作者 P.Ramya B.Karthik 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2379-2391,共13页
Word Sense Disambiguation has been a trending topic of research in Natural Language Processing and Machine Learning.Mining core features and performing the text classification still exist as a challenging task.Here the... Word Sense Disambiguation has been a trending topic of research in Natural Language Processing and Machine Learning.Mining core features and performing the text classification still exist as a challenging task.Here the features of the context such as neighboring words like adjective provide the evidence for classification using machine learning approach.This paper presented the text document classification that has wide applications in information retrieval,which uses movie review datasets.Here the document indexing based on controlled vocabulary,adjective,word sense disambiguation,generating hierarchical cate-gorization of web pages,spam detection,topic labeling,web search,document summarization,etc.Here the kernel support vector machine learning algorithm helps to classify the text and feature extract is performed by cuckoo search opti-mization.Positive review and negative review of movie dataset is presented to get the better classification accuracy.Experimental results focused with context mining,feature analysis and classification.By comparing with the previous work,proposed work designed to achieve the efficient results.Overall design is per-formed with MATLAB 2020a tool. 展开更多
关键词 Text classification word sense disambiguation kernel support vector machine learning algorithm cuckoo search optimization feature extraction
下载PDF
Epithelial-mesenchymal transition status of circulating tumor cells in breast cancer and its clinical relevance 被引量:3
7
作者 Jiaojiao Zhou Xuan Zhu +8 位作者 Shijie Wu Jingxin Guo Kun Zhang Chunjing Xu Huihui Chen Yuxi Jin Yuting Sun Shu Zheng Yiding Chen 《Cancer Biology & Medicine》 SCIE CAS CSCD 2020年第1期169-180,共12页
Objective:Circulating tumor cells(CTCs)play a critical role in cancer metastasis,but their prevalence and significance remain unclear.This study attempted to track the epithelial-mesenchymal transition(EMT)status of C... Objective:Circulating tumor cells(CTCs)play a critical role in cancer metastasis,but their prevalence and significance remain unclear.This study attempted to track the epithelial-mesenchymal transition(EMT)status of CTCs in breast cancer patients and investigate their clinical relevance.Methods:In this study,the established negFACS-IF:E/M platform was applied to isolate rare CTCs and characterize their EMT status in breast cancer.A total of 89 breast cancer patients were recruited,including stage 0–III(n=60)and late stage(n=29)cases.Results:Using the negFACS-IF:E/M platform,it was found that in human epidermal growth factor receptor 2(HER2)+patients,mesenchymal CTCs usually exhibited a high percentage of HER2+cells.Stage IV breast cancer patients had considerably more CTCs than stage 0–III patients.Among stage 0–III breast cancers,the HER2 subtype included a significantly higher percentage of mesenchymal and biphenotypic(epithelial and mesenchymal)CTCs than the luminal A or B subtypes.Among stage IV patients,CTCs were predominantly epithelial in cases with local recurrence and were more mesenchymal in cases with distant metastasis.By applying a support vector machine(SVM)algorithm,the EMT status of CTCs could distinguish between breast cancer cases with metastasis/local recurrence and those without recurrence.Conclusions:The negFACS-IF:E/M platform provides a flexible and generally acceptable method for the highly sensitive and specific detection of CTCs and their EMT traits in breast cancer.This study demonstrated that the EMT status of CTCs had high clinical relevance in breast cancer,especially in predicting the distant metastasis or local recurrence of breast cancer. 展开更多
关键词 Circulating tumor cells breast cancer epithelial-to-mesenchymal transition estrogen receptor/human epidermal growth factor receptor 2 expression support vector machine algorithm
下载PDF
Combined forecast method of HMM and LS-SVM about electronic equipment state based on MAGA 被引量:1
8
作者 Jianzhong Zhao Jianqiu Deng +1 位作者 Wen Ye Xiaofeng Lü 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第3期730-738,共9页
For the deficiency that the traditional single forecast methods could not forecast electronic equipment states, a combined forecast method based on the hidden Markov model(HMM) and least square support vector machin... For the deficiency that the traditional single forecast methods could not forecast electronic equipment states, a combined forecast method based on the hidden Markov model(HMM) and least square support vector machine(LS-SVM) is presented. The multi-agent genetic algorithm(MAGA) is used to estimate parameters of HMM to overcome the problem that the Baum-Welch algorithm is easy to fall into local optimal solution. The state condition probability is introduced into the HMM modeling process to reduce the effect of uncertain factors. MAGA is used to estimate parameters of LS-SVM. Moreover, pruning algorithms are used to estimate parameters to get the sparse approximation of LS-SVM so as to increase the ranging performance. On the basis of these, the combined forecast model of electronic equipment states is established. The example results show the superiority of the combined forecast model in terms of forecast precision,calculation speed and stability. 展开更多
关键词 parameter estimation hidden Markov model(HMM) least square support vector machine(LS-SVM) multi-agent genetic algorithm(MAGA) state forecast
下载PDF
Non-Destructive Crack Detection of Preserved Eggs Using a Machine Vision and Multivariate Analysis 被引量:3
9
作者 WANG Fang ZHANG Shu TAN Zuojun 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2017年第3期257-262,共6页
Pidan or century egg, also known as preserved egg, is one of the most traditional and popular egg products in China. The crack detection of preserved eggshell is very important to guarantee its quality. In this study,... Pidan or century egg, also known as preserved egg, is one of the most traditional and popular egg products in China. The crack detection of preserved eggshell is very important to guarantee its quality. In this study, we develop an image algorithm for preserved eggshell's crack detection by using natural light and polarized image. Four features including crack length, crack state coefficient, maximum projection and angular point are extracted from the natural light image by morphology calculus algorithms. The support vector machines(SVM) model with radial basis kernel function is established using the four features with an accuracy of about 92%. The detection accuracy is improved to 94% by using a new characteristic parameter of crack length on polarization image. The Multi-information fusion analysis indicates the potential for cracks detection by a real-time synthesis imaging system. 展开更多
关键词 preserved egg crack morphology calculus algorithms polarized light support vector machines(SVM) model
原文传递
Simultaneous characterization of multiple properties of solid and liquid phases in crystallization processes using NIR 被引量:7
10
作者 Chao Y. Ma Xue Z. Wang 《Particuology》 SCIE EI CAS CSCD 2011年第6期589-597,共9页
Near infrared spectroscopy (NIR) is now probably the most popular process analytical technology (PAT) for pharmaceutical and some other industries. However, unlike mid-IR, NIR is known to have difficulties in moni... Near infrared spectroscopy (NIR) is now probably the most popular process analytical technology (PAT) for pharmaceutical and some other industries. However, unlike mid-IR, NIR is known to have difficulties in monitoring crystallization or precipitation processes because the existence of solids could cause distortion of the spectra. This phenomenon, seen as unfavorable previously, is however an indication that NIR spectra contain rich information about both solids and liquids, giving the possibility of using the same instrument for multiple property characterization. In this study, transflectance NIR calibration data was obtained using solutions and slurries of varied solution concentration, particle size, solid concentration and temperature. The data was used to build calibration models for prediction of the multiple properties of both phases. Predictive models were developed for this challenging application using an approach that combines genetic algorithm (GA) and support vector machine (SVM). GA is used for wavelength selection and SVM for mode building. The new GA-SVM approach is shown to outperform other methods including GA-PLS (partial least squares) and traditional SVM. NIR is thus successfully applied to monitoring seeded and unseeded cooling crystallization processes of L-glutamic acid. 展开更多
关键词 Process analytical technology Near infrared spectroscopy support vector machine Genetic algorithm Wavelength selection Cooling crystallization
原文传递
Application of a new SPA-SVM coupling method for QSPR study of electrophoretic mobilities of some organic and inorganic compounds 被引量:1
11
作者 Nasser Goudarzi Mohammad Goodarzi +1 位作者 M.Arab Chamjangali M.H.Fatemi 《Chinese Chemical Letters》 SCIE CAS CSCD 2013年第10期904-908,共5页
In this work, two chemometrics methods are applied for the modeling and prediction of electrophoretic mobilities of some organic and inorganic compounds. The successive projection algorithm, feature selection (SPA) ... In this work, two chemometrics methods are applied for the modeling and prediction of electrophoretic mobilities of some organic and inorganic compounds. The successive projection algorithm, feature selection (SPA) strategy, is used as the descriptor selection and model development method. Then, the support vector machine (SVM) and multiple linear regression (MLR) model are utilized to construct the non-linear and linear quantitative structure-property relationship models. The results obtained using the SVM model are compared with those obtained using MLR reveal that the SVM model is of much better predictive value than the MLR one. The root-mean-square errors for the training set and the test set for the SVM model were 0.1911 and 0.2569, respectively, while by the MLR model, they were 0.4908 and 0.6494, respectively. The results show that the SVM model drastically enhances the ability of prediction in QSPR studies and is superior to the MLR model. 展开更多
关键词 Quantitative structure-mobility relationship support vector machine Electrophoretic mobility Successive projection algorithm Multiple linear regression
原文传递
Anomaly detection of hot components in gas turbine based on frequent pattern extraction 被引量:2
12
作者 LIU JinFu ZHU LinHai +3 位作者 MA YuJia LIU Jiao ZHOU WeiXing YU DaRen 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2018年第4期567-586,共20页
Hot components operate in a high-temperature and high-pressure environment. The occurrence of a fault in hot components leads to high economic losses. In general, exhaust gas temperature(EGT) is used to monitor the pe... Hot components operate in a high-temperature and high-pressure environment. The occurrence of a fault in hot components leads to high economic losses. In general, exhaust gas temperature(EGT) is used to monitor the performance of hot components.However, during the early stages of a failure, the fault information is weak, and is simultaneously affected by various types of interference, such as the complex working conditions, ambient conditions, gradual performance degradation of the compressors and turbines, and noise. Additionally, inadequate effective information of the gas turbine also restricts the establishment of the detection model. To solve the above problems, this paper proposes an anomaly detection method based on frequent pattern extraction. A frequent pattern model(FPM) is applied to indicate the inherent regularity of change in EGT occurring from different types of interference. In this study, based on a genetic algorithm and support vector machine regression, the relationship model between the EGT and interference was tentatively built. The modeling accuracy was then further improved through the selection of the kernel function and training data. Experiments indicate that the optimal kernel function is linear and that the optimal training data should be balanced in addition to covering the appropriate range of operating conditions and ambient temperature. Furthermore, the thresholds based on the Pauta criterion that is automatically obtained during the modeling process, are used to determine whether hot components are operating abnormally. Moreover, the FPM is compared with the similarity theory, which demonstrates that the FPM can better suppress the effect of the component performance degradation and fuel heat value fluctuation. Finally, the effectiveness of the proposed method is validated on seven months of actual data obtained from a Titan130 gas turbine on an offshore oil platform. The results indicate that the proposed method can sensitively detect malfunctions in hot components during the early stages of a fault, and is robust to various types of interference. 展开更多
关键词 frequent pattern model(FPM) support vector machine regression(SVR) genetic algorithm(GA) gas turbine hot components anomaly detection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部