Surface metallization of glass fiber(GF)/polyetheretherketone(PEEK)[GF/PEEK] is conducted by coating copper using electroplating and magnetron sputtering and the properties are determined by X-ray diffraction(XRD), sc...Surface metallization of glass fiber(GF)/polyetheretherketone(PEEK)[GF/PEEK] is conducted by coating copper using electroplating and magnetron sputtering and the properties are determined by X-ray diffraction(XRD), scanning electron microscopy(SEM), and electron backscatter diffraction(EBSD).The coating bonding strength is assessed by pull-out tests and scribing in accordance with GB/T 9286-1998.The results show that the Cu coating with a thickness of 30 μm deposited on GF/PEEK by magnetron sputtering has lower roughness, finer grain size, higher crystallinity, as well as better macroscopic compressive stress,bonding strength, and electrical conductivity than the Cu coating deposited by electroplating.展开更多
Polytetrafluoroethylene(PTFE)is a low-background polymer that is applied to several applications in rare-event detection and underground low-background experiments.PTFE-based electronic substrates are important for re...Polytetrafluoroethylene(PTFE)is a low-background polymer that is applied to several applications in rare-event detection and underground low-background experiments.PTFE-based electronic substrates are important for reducing the detection limit of high-purity germanium detectors and scintillator calorimeters,which are widely applied in dark matter and 0υββdetection experiments.The traditional adhesive bonding method between PTFE and copper is not conducive to working in liquid nitrogen and extremely low-temperature environments.To avoid adhesive bonding,PTFE must be processed for surface metallization owing to the mismatch between the PTFE and copper conductive layer.Low-background PTFE matrix composites(m-PTFE)were selected to improve the electrical and mechanical properties of PTFE by introducing SiO_(2)/TiO_(2) particles.The microstructures,surface elements,and electrical properties of PTFE and m-PTFE were characterized and analyzed following ion implantation.PTFE and m-PTFE surfaces were found to be broken,degraded,and cross-linked by ion implantation,resulting in C=C conjugated double bonds,increased surface energy,and increased surface roughness.Comparably,the surface roughness,bond strength,and conjugated double bonds of m-PTFE were significantly more intense than those of PTFE.Moreover,the interface bonding theory between PTFE and the metal copper foil was analyzed using the direct metallization principle.Therefore,the peel strength of the optimized electronic substrates was higher than that of the industrial standard at extremely low temperatures,while maintaining excellent electrical properties.展开更多
A novel method for preparing metalllzed film has been studied.The reduction process and properties of the poly(vinyl alcohol)(PVA)were probed by several analytic means.According to the etudies,a mechanism for the poly...A novel method for preparing metalllzed film has been studied.The reduction process and properties of the poly(vinyl alcohol)(PVA)were probed by several analytic means.According to the etudies,a mechanism for the polymer surface reduction metallization was proposed and proved.展开更多
Cr3 C2-NiCr particles were injected into the melted surface of Q235 low carbon steel to make a surface metal matrix composite (MMC) layer by gas tungsten are melt injection (GTAMI) process. Hardness of the surface...Cr3 C2-NiCr particles were injected into the melted surface of Q235 low carbon steel to make a surface metal matrix composite (MMC) layer by gas tungsten are melt injection (GTAMI) process. Hardness of the surface MMC layer was tested. Wear resistance of the surface MMC was investigated with a ball-on-disk dry sliding setup. Microstrnetures of the surface MMC layer and morphology of the worn surfaces were investigated with scanning electron microscopy (SEM). The results showed that the hardness of the MMC was as high as 1 960. 7 HV. Wear loss of the upper part of the MMC layer is onlyO. 8% of that of the substrate under the dry sliding condition given. Wear loss of the bottom part is 2. 5 % of that of the substrate.展开更多
The monomolecular surface layer of acceptor doped CeO_(2) may become neutral and metallic or charged and semiconducting.This is revealed in the theoretical analysis of the oxygen pressure dependence of the surface def...The monomolecular surface layer of acceptor doped CeO_(2) may become neutral and metallic or charged and semiconducting.This is revealed in the theoretical analysis of the oxygen pressure dependence of the surface defects concentration in acceptor doped ceria with two different dopant types and operated under different oxygen pressures.Recently published experimental data for highly reduced Sm0.2Ce0.8O1.9-x(SDC)containing a fixed valence dopant Sm3+are very different from those published for Pr0.1Ce0.9O_(2)-x(PCO) with the variable valence dopant Pr4+/Pr3+being reduced under milder conditions.The theoretical analysis of these experimental results fits very well the experimental results of SDC and PCO.It leads to the following predictions:the highly reduced surface of SDC is metallic and neutral,the metallic surface electron density of state is gs=0.9×10^(38)J-1·m^(-2)(1.4×1015eV^(-1)·cm^(-2)),the electron effective mass is meff,s=3.3me,and the phase diagram of the reduced surface has theα(fcc)structure as in the bulk.In PCO a double layer is predicted to be formed between the surface and the bulk with the surface being negatively charged and semiconducting.The surface of PCO maintains high Pr^(3+) defect concentration as well as relative high oxygen vacancy concentration at oxygen pressures higher than in the bulk.The reasons for the difference between a metallic and semiconducting surface layer of acceptor doped CeO_(2) are reviewed,as well as the key theoretical considerations applied in coping with this problem.For that we make use of the experimental data and theoretical analysis available for acceptor doped ceria.展开更多
Recent advances in utilizing ^(17)O isotopic labeling methods for solid-state nuclear magnetic resonance(NMR)investigations of metal oxides for lithium-ion batteries have yielded extensive insights into their structur...Recent advances in utilizing ^(17)O isotopic labeling methods for solid-state nuclear magnetic resonance(NMR)investigations of metal oxides for lithium-ion batteries have yielded extensive insights into their structural and dynamic details.Herein,we commence with a brief introduction to recent research on lithium-ion battery oxide materials studied using ^(17)O solid-state NMR spectroscopy.Then we delve into a review of ^(17)O isotopic labeling methods for tagging oxygen sites in both the bulk and surfaces of metal oxides.At last,the unresolved problems and the future research directions for advancing the ^(17)O labeling technique are discussed.展开更多
The poly-ether-ether-ketone(PEEK)polymer is a semi-crystalline aromatic thermoplastic with outstanding features,such as superior mechanical properties,thermal stability,radiation resistance and excellent chemical and ...The poly-ether-ether-ketone(PEEK)polymer is a semi-crystalline aromatic thermoplastic with outstanding features,such as superior mechanical properties,thermal stability,radiation resistance and excellent chemical and hydrolysis resistance.However,PEEK exhibits a high volume resistivity(1014Ω·m)and surface resistance(1015Ω).This limits its use in the electronics and electromagnetic field.To decrease the resistivity and reduce the thermal expansion of composite materials,this paper modified the PEEK with carbon fiber(CF)and metalized the composites with the electroless Ni-P alloy plating through self-catalyzed deposition,which brings about high conductivity,thermal conductivity,high-temperature weldability resistance and high-low temperature resistance property.The composites and metal coatings were characterized by metallurgical microscope,SEM,and resistance tester.The metal coatings have a uniform surface and low surface resistance less than 10 mΩ~20 mΩ.The thermal shock test at 250°C and the-70°C^100°C high-low temperature environment test were measured.Compared with the electroless plating on unmodified peek,there is no bump and crack,etc.after testing,which shows a good adhesion between the metal coatings and PEEK-CF,high-low temperature resistance as well as high temperature weldability.The researches on the modification of PEEK by carbon fiber and its surface metallization provide technical support for the application of PEEK Composites in radar antenna and other electronic fields.展开更多
The influence of electric field on the photodetachment of H- near a metal surface is investigated based on the closed-orbit theory. It is found that the photodetachment of H- near a metal surface is not only related t...The influence of electric field on the photodetachment of H- near a metal surface is investigated based on the closed-orbit theory. It is found that the photodetachment of H- near a metal surface is not only related to the electric field strength but also to the electric field direction. If the electric field is along the +z axis, it can strengthen the oscillation in the photodetachment cross section. However, if the electric field is along the -z axis, since the direction of electric field force is opposite to that of static-image force caused by the metal surface, the situation becomes much more complicated. When the electric field is very weak, its influence can be neglected. The photodetachment cross section is nearly the same as that when a single metal surface exists. When the electric field strength is strong enough, the electric field force is able to counteract the metallic attraction, therefore no closed orbit is formed. If the electric field continues to increase until its influence becomes dominant, the photodetachment cross section approaches the case of the photodetachment of H^- in an electric field. Our results may be useful for guiding future experimental studies on the photodetachment of negative ions near surfaces.展开更多
Based on the closed-orbit theory, the magnetic field effect in the photodetachment of negative ion in the electric field near a metal surface is studied for the first time. The results show that the magnetic field can...Based on the closed-orbit theory, the magnetic field effect in the photodetachment of negative ion in the electric field near a metal surface is studied for the first time. The results show that the magnetic field can produce a significant effect on the photodetachment of negative ion near a metal surface. Besides the closed orbits previously found by Duet al. for the H in the electric field near a metal surface (J. Phys. B 43 035002 (2010)), some additional closed orbits are produced due to the effect of magnetic field. For a given ion surface distance and an electric field strength, the cross section depends sensitively on the magnetic field strength. As the magnetic field strength is very small, its influence can be neglected. With the increase of the magnetic field strength, the number of the closed orbits increases greatly and the oscillation in the cross section becomes much more complex. Therefore we can control the photodetachment cross section of the negative ion by changing the magnetic field strength. We hope that our results may guide future experimental studies for the photodetachment process of negative ion in the presence of external fields and surfaces.展开更多
Using the closed orbit theory, we study the classical motion and calculatethe photoabsorption spectra of Rydberg hydrogen atom between two parallel metallic surfaces. The results show that the metallic surfaces have a...Using the closed orbit theory, we study the classical motion and calculatethe photoabsorption spectra of Rydberg hydrogen atom between two parallel metallic surfaces. The results show that the metallic surfaces have a significant effect on the photoabsorption process. When the distances between the hydrogen atom and the two metallic surfaces are close to a critical value dc, the number of the closed orbits is the greatest. When the distance larger or smaller than dc, the number of the closed orbits decreases and the absorption spectra are shown to exhibit a damping oscillation. This work is an interesting new application of closed-orbit theory and is of potential experimental interest.展开更多
Based on closed-orbit theory, the photodetachment of H- in a gradient electric field near a metal surface is studied. It is demonstrated that the gradient electric field has a significant influence on the photodetachm...Based on closed-orbit theory, the photodetachment of H- in a gradient electric field near a metal surface is studied. It is demonstrated that the gradient electric field has a significant influence on the photodetachment of negative ions near a metal surface. With the increase of the gradient of the electric field, the oscillation in the photodetachment cross section becomes strengthened. Besides, in contrast to the photodetachment of H- near a metal surface in a uniform electric field, the oscillating amplitude and the oscillating region in the cross section of a gradient electric field also become enlarged. Therefore, we can use the gradient electric field to control the photodetachment of negative ions near a metal surface. We hope that our results will be useful for understanding the photodetachment of negative ions in the vicinity of surfaces, cavities, and ion traps.展开更多
We predict ultrafast modulation of the pure molten metal surface stress fields under the irradiation of the single femtosecond laser pulse through the two-temperature model molecular-dynamics simulations. High-resolut...We predict ultrafast modulation of the pure molten metal surface stress fields under the irradiation of the single femtosecond laser pulse through the two-temperature model molecular-dynamics simulations. High-resolution and precision calculations are used to resolve the ultrafast laser-induced anisotropic relaxations of the pressure components on the time-scale comparable to the intrinsic liquid density relaxation time. The magnitudes of the dynamic surface tensions are found being modulated sharply within picoseconds after the irradiation, due to the development of the nanometer scale non-hydrostatic regime behind the exterior atomic layer of the liquid surfaces.The reported novel regulation mechanism of the liquid surface stress field and the dynamic surface tension hints at levitating the manipulation of liquid surfaces, such as ultrafast steering the surface directional transport and patterning.展开更多
The enrichment of nutrients (Noa-, Noa-, PO43-), suspended particles, organic matter (POC, PON,DOC) , and trace metals (Cu, Ni, Cd) was determined in the sea surface microlayer of Xiamen Bay and Jiulong Estuary. The m...The enrichment of nutrients (Noa-, Noa-, PO43-), suspended particles, organic matter (POC, PON,DOC) , and trace metals (Cu, Ni, Cd) was determined in the sea surface microlayer of Xiamen Bay and Jiulong Estuary. The mean enrichment factors ([Xi]microlayer/[Xi ]15cm in depth) mostly ranged between 1 . 0 and 2. 0. The dissolved forms were the major forms of the components measured, the enrichment of dissolved organic matter and suspended particles could lead to the changes in the total amount and speciation of nutrients and trace metals. No correlation was observed between sample concentrations, speciation, enrichment factors and sample locations. However, some evidence shows that these parameters are correlated with sea state, indicating the complexity and dynamic nature of the sea surface microlayer.展开更多
Periodic density functional theory calculations have been performed to investigate the chemisorption behavior of COz molecule on a series of surface alloys that are built by dispersing individual middle-late transitio...Periodic density functional theory calculations have been performed to investigate the chemisorption behavior of COz molecule on a series of surface alloys that are built by dispersing individual middle-late transition metal (TM) atoms (TM = Fe, Co, Ni, Ru, Rh, Pd, Ag, Os, lr, Pt, Au) on the Cu(100) and Cu(lll) surfaces. The most stable configurations of CO2 chemisorbed on different TM/Cu surfaces are determined, and the results show that among the late transition metals, Co, Ru, and Os are potentially good dopants to enhance the chemisorption and activation of CO2 on copper surfaces. To obtain a deep understanding of the adsorption property, the bonding characteristics of the adsorption bonds are carefully examined by the crystal orbital Hamilton population technique, which reveals that the TM atom primarily provides d orbitals with z-component, namely dz2, dxz, and dvz orbitals to interact with the adsorbate.展开更多
For Li^+ and Na^+ ions scattered from high work function metal surfaces, efficient neutralization is observed, and it cannot be explained by the conventional free electron model. In order to explain these experiment...For Li^+ and Na^+ ions scattered from high work function metal surfaces, efficient neutralization is observed, and it cannot be explained by the conventional free electron model. In order to explain these experimental data, we investigate the velocity-dependent neutral fraction with the modified Brako–Newns(BN) model. The calculated results are in agreement with the experimental data. We find that the parallel velocity effect plays an important role in neutralizing the Li^+ and Na^+ ions for large angle scattering. The nonmonotonic velocity behavior of neutral fraction is strongly related to the distance-dependent coupling strength between the atomic level and metal states.展开更多
In this paper, it is shown that the laser radiation intensity required for complete ionization of vapors produced on an irradiated metal surface can be reduced by more than an order of magnitude through using pulsed l...In this paper, it is shown that the laser radiation intensity required for complete ionization of vapors produced on an irradiated metal surface can be reduced by more than an order of magnitude through using pulsed laser radiation in combination with microwave radiation.展开更多
Using closed orbit theory, we give a clear physical picture description of the Rydberg hydrogen atom near a metal surface and calculate the Fourier transformed recurrence spectra of this system at different scaled ene...Using closed orbit theory, we give a clear physical picture description of the Rydberg hydrogen atom near a metal surface and calculate the Fourier transformed recurrence spectra of this system at different scaled energies below ionization threshold. The results show that with the increase of the scaled energy, the number of the closed orbit increases greatly. Some of the orbits are created by the bifurcation of the perpendicular orbit. This case is quite similar to the Rydberg atom in an electric field. When the scaled energy increases furthermore, chaotic orbits appear. This study provides a different perspective on the dynamical behavior of the Rydberg atom near a metal surface.展开更多
Multielectron to theoretical treatments atoms near a metal surface are essentially more complicated than hydrogen atom with regard By using the semicalssical dosed orbit theory generalized to the multielecton atoms, w...Multielectron to theoretical treatments atoms near a metal surface are essentially more complicated than hydrogen atom with regard By using the semicalssical dosed orbit theory generalized to the multielecton atoms, we study the dynamical properties of the Rydberg lithium atom near a metal surface. The photoabsorption spectra and recurrence spectra of this system have also been calculated. Considering the effect of the ionic core potential of the Rydberg lithium atom, the number of the closed orbits increases, which leads to more peaks in the recurrence spectra than the case of hydrogen atom near a metal surface. This result shows that the core-scattered effects play an important role in nonhydrogenic atoms. This study is a new application of the closed-orbit theory and is of potential experimental interest.展开更多
Consistency between density functional theory calculations and X-ray photoelectron spectroscopy measurements confirms our predications on the undercoordination-induced local bond relaxation and core level shift of alk...Consistency between density functional theory calculations and X-ray photoelectron spectroscopy measurements confirms our predications on the undercoordination-induced local bond relaxation and core level shift of alkali metal,which determine the surface,size and thermal properties of materials.Zone-resolved photoelectron spectroscopyanalysis method and bond order-length-strength theory can be utilized to quantify the physical parameters regarding bonding identities and electronic property of metal surfaces,which allows for the study of the core-electron binding-energy shifts in alkali metals.By employing these methods and first principle calculation in this work,we can obtain the information of bond and atomic cohesive energy of under-coordinated atoms at the alkali metal surface.In addition,the effect of size and temperature towards the binding-energy in the surface region can be seen from the view point of Hamiltonian perturbation by atomic relaxation with atomic bonding.展开更多
基金Funded by Shenzhen-Hong Kong Innovative Collaborative Research and Development Program (Nos.SGLH20181109 110802117, CityU 9240014)Innovation Project of Southwestern Institute of Physics (Nos.202001XWCXYD002, 202301XWCX003)CNNC Young Talent Program (No.2023JZYF-01)。
文摘Surface metallization of glass fiber(GF)/polyetheretherketone(PEEK)[GF/PEEK] is conducted by coating copper using electroplating and magnetron sputtering and the properties are determined by X-ray diffraction(XRD), scanning electron microscopy(SEM), and electron backscatter diffraction(EBSD).The coating bonding strength is assessed by pull-out tests and scribing in accordance with GB/T 9286-1998.The results show that the Cu coating with a thickness of 30 μm deposited on GF/PEEK by magnetron sputtering has lower roughness, finer grain size, higher crystallinity, as well as better macroscopic compressive stress,bonding strength, and electrical conductivity than the Cu coating deposited by electroplating.
基金supported by the National Natural Science Foundation of China(Nos.12141502 and 12005017).
文摘Polytetrafluoroethylene(PTFE)is a low-background polymer that is applied to several applications in rare-event detection and underground low-background experiments.PTFE-based electronic substrates are important for reducing the detection limit of high-purity germanium detectors and scintillator calorimeters,which are widely applied in dark matter and 0υββdetection experiments.The traditional adhesive bonding method between PTFE and copper is not conducive to working in liquid nitrogen and extremely low-temperature environments.To avoid adhesive bonding,PTFE must be processed for surface metallization owing to the mismatch between the PTFE and copper conductive layer.Low-background PTFE matrix composites(m-PTFE)were selected to improve the electrical and mechanical properties of PTFE by introducing SiO_(2)/TiO_(2) particles.The microstructures,surface elements,and electrical properties of PTFE and m-PTFE were characterized and analyzed following ion implantation.PTFE and m-PTFE surfaces were found to be broken,degraded,and cross-linked by ion implantation,resulting in C=C conjugated double bonds,increased surface energy,and increased surface roughness.Comparably,the surface roughness,bond strength,and conjugated double bonds of m-PTFE were significantly more intense than those of PTFE.Moreover,the interface bonding theory between PTFE and the metal copper foil was analyzed using the direct metallization principle.Therefore,the peel strength of the optimized electronic substrates was higher than that of the industrial standard at extremely low temperatures,while maintaining excellent electrical properties.
基金The project surported by State"863"PlanNational Natural science fund.
文摘A novel method for preparing metalllzed film has been studied.The reduction process and properties of the poly(vinyl alcohol)(PVA)were probed by several analytic means.According to the etudies,a mechanism for the polymer surface reduction metallization was proposed and proved.
文摘Cr3 C2-NiCr particles were injected into the melted surface of Q235 low carbon steel to make a surface metal matrix composite (MMC) layer by gas tungsten are melt injection (GTAMI) process. Hardness of the surface MMC layer was tested. Wear resistance of the surface MMC was investigated with a ball-on-disk dry sliding setup. Microstrnetures of the surface MMC layer and morphology of the worn surfaces were investigated with scanning electron microscopy (SEM). The results showed that the hardness of the MMC was as high as 1 960. 7 HV. Wear loss of the upper part of the MMC layer is onlyO. 8% of that of the substrate under the dry sliding condition given. Wear loss of the bottom part is 2. 5 % of that of the substrate.
基金financially supported by the Technion V.P.for Research Fund(No.2023320)。
文摘The monomolecular surface layer of acceptor doped CeO_(2) may become neutral and metallic or charged and semiconducting.This is revealed in the theoretical analysis of the oxygen pressure dependence of the surface defects concentration in acceptor doped ceria with two different dopant types and operated under different oxygen pressures.Recently published experimental data for highly reduced Sm0.2Ce0.8O1.9-x(SDC)containing a fixed valence dopant Sm3+are very different from those published for Pr0.1Ce0.9O_(2)-x(PCO) with the variable valence dopant Pr4+/Pr3+being reduced under milder conditions.The theoretical analysis of these experimental results fits very well the experimental results of SDC and PCO.It leads to the following predictions:the highly reduced surface of SDC is metallic and neutral,the metallic surface electron density of state is gs=0.9×10^(38)J-1·m^(-2)(1.4×1015eV^(-1)·cm^(-2)),the electron effective mass is meff,s=3.3me,and the phase diagram of the reduced surface has theα(fcc)structure as in the bulk.In PCO a double layer is predicted to be formed between the surface and the bulk with the surface being negatively charged and semiconducting.The surface of PCO maintains high Pr^(3+) defect concentration as well as relative high oxygen vacancy concentration at oxygen pressures higher than in the bulk.The reasons for the difference between a metallic and semiconducting surface layer of acceptor doped CeO_(2) are reviewed,as well as the key theoretical considerations applied in coping with this problem.For that we make use of the experimental data and theoretical analysis available for acceptor doped ceria.
基金supported by National Key R&D Program of China(2021YFA1502803)the National Natural Science Foundation of China(NSFC)(21972066,91745202)+3 种基金NSFC-Royal Society Joint Program(21661130149)L.P.thanks the Royal Society and Newton Fund for a Royal Society-Newton Advanced Fellowshipsupported by the Research Funds for the Frontiers Science Centre for Critical Earth Material Cycling,Nanjing Universitya Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Recent advances in utilizing ^(17)O isotopic labeling methods for solid-state nuclear magnetic resonance(NMR)investigations of metal oxides for lithium-ion batteries have yielded extensive insights into their structural and dynamic details.Herein,we commence with a brief introduction to recent research on lithium-ion battery oxide materials studied using ^(17)O solid-state NMR spectroscopy.Then we delve into a review of ^(17)O isotopic labeling methods for tagging oxygen sites in both the bulk and surfaces of metal oxides.At last,the unresolved problems and the future research directions for advancing the ^(17)O labeling technique are discussed.
文摘The poly-ether-ether-ketone(PEEK)polymer is a semi-crystalline aromatic thermoplastic with outstanding features,such as superior mechanical properties,thermal stability,radiation resistance and excellent chemical and hydrolysis resistance.However,PEEK exhibits a high volume resistivity(1014Ω·m)and surface resistance(1015Ω).This limits its use in the electronics and electromagnetic field.To decrease the resistivity and reduce the thermal expansion of composite materials,this paper modified the PEEK with carbon fiber(CF)and metalized the composites with the electroless Ni-P alloy plating through self-catalyzed deposition,which brings about high conductivity,thermal conductivity,high-temperature weldability resistance and high-low temperature resistance property.The composites and metal coatings were characterized by metallurgical microscope,SEM,and resistance tester.The metal coatings have a uniform surface and low surface resistance less than 10 mΩ~20 mΩ.The thermal shock test at 250°C and the-70°C^100°C high-low temperature environment test were measured.Compared with the electroless plating on unmodified peek,there is no bump and crack,etc.after testing,which shows a good adhesion between the metal coatings and PEEK-CF,high-low temperature resistance as well as high temperature weldability.The researches on the modification of PEEK by carbon fiber and its surface metallization provide technical support for the application of PEEK Composites in radar antenna and other electronic fields.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10604045)the University Science & Technology Planning Program of Shandong Province (Grant No. J09LA02)the Discipline Construction Fund of Ludong University
文摘The influence of electric field on the photodetachment of H- near a metal surface is investigated based on the closed-orbit theory. It is found that the photodetachment of H- near a metal surface is not only related to the electric field strength but also to the electric field direction. If the electric field is along the +z axis, it can strengthen the oscillation in the photodetachment cross section. However, if the electric field is along the -z axis, since the direction of electric field force is opposite to that of static-image force caused by the metal surface, the situation becomes much more complicated. When the electric field is very weak, its influence can be neglected. The photodetachment cross section is nearly the same as that when a single metal surface exists. When the electric field strength is strong enough, the electric field force is able to counteract the metallic attraction, therefore no closed orbit is formed. If the electric field continues to increase until its influence becomes dominant, the photodetachment cross section approaches the case of the photodetachment of H^- in an electric field. Our results may be useful for guiding future experimental studies on the photodetachment of negative ions near surfaces.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11074104 and 10604045)the University Science and Technology Planning Program of Shandong Province of China (Grant No. J09LA02)
文摘Based on the closed-orbit theory, the magnetic field effect in the photodetachment of negative ion in the electric field near a metal surface is studied for the first time. The results show that the magnetic field can produce a significant effect on the photodetachment of negative ion near a metal surface. Besides the closed orbits previously found by Duet al. for the H in the electric field near a metal surface (J. Phys. B 43 035002 (2010)), some additional closed orbits are produced due to the effect of magnetic field. For a given ion surface distance and an electric field strength, the cross section depends sensitively on the magnetic field strength. As the magnetic field strength is very small, its influence can be neglected. With the increase of the magnetic field strength, the number of the closed orbits increases greatly and the oscillation in the cross section becomes much more complex. Therefore we can control the photodetachment cross section of the negative ion by changing the magnetic field strength. We hope that our results may guide future experimental studies for the photodetachment process of negative ion in the presence of external fields and surfaces.
基金Project supported by the National Natural Science Foundation of China (Grant No 10604045) and the Doctorate Research Foundation of Ludong University, China (Grant No 202-23000301).
文摘Using the closed orbit theory, we study the classical motion and calculatethe photoabsorption spectra of Rydberg hydrogen atom between two parallel metallic surfaces. The results show that the metallic surfaces have a significant effect on the photoabsorption process. When the distances between the hydrogen atom and the two metallic surfaces are close to a critical value dc, the number of the closed orbits is the greatest. When the distance larger or smaller than dc, the number of the closed orbits decreases and the absorption spectra are shown to exhibit a damping oscillation. This work is an interesting new application of closed-orbit theory and is of potential experimental interest.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11074104 and 10604045)the Higher Education Science and Technology Program of Shandong Province, China (Grant No. J09LA02)the University Student's Science and Technology Innovation Fund of Ludong University, China (Grant No. 10g003)
文摘Based on closed-orbit theory, the photodetachment of H- in a gradient electric field near a metal surface is studied. It is demonstrated that the gradient electric field has a significant influence on the photodetachment of negative ions near a metal surface. With the increase of the gradient of the electric field, the oscillation in the photodetachment cross section becomes strengthened. Besides, in contrast to the photodetachment of H- near a metal surface in a uniform electric field, the oscillating amplitude and the oscillating region in the cross section of a gradient electric field also become enlarged. Therefore, we can use the gradient electric field to control the photodetachment of negative ions near a metal surface. We hope that our results will be useful for understanding the photodetachment of negative ions in the vicinity of surfaces, cavities, and ion traps.
基金the National Key R&D Program of China (Grant No. 2019YFA0705000)the National Natural Science Foundation of China (Grant Nos. 11874147, 11933005, and 12134001)+3 种基金the Science and Technology Commission of Shanghai Municipality (Grant No. 21DZ1101500)the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01)the Natural Science Foundation of Chongqing, China (Grant No. cstc2021jcyj-msxm X1144)the State Key Laboratory of Solidification Processing in NWPU (Grant No. SKLSP202105)。
文摘We predict ultrafast modulation of the pure molten metal surface stress fields under the irradiation of the single femtosecond laser pulse through the two-temperature model molecular-dynamics simulations. High-resolution and precision calculations are used to resolve the ultrafast laser-induced anisotropic relaxations of the pressure components on the time-scale comparable to the intrinsic liquid density relaxation time. The magnitudes of the dynamic surface tensions are found being modulated sharply within picoseconds after the irradiation, due to the development of the nanometer scale non-hydrostatic regime behind the exterior atomic layer of the liquid surfaces.The reported novel regulation mechanism of the liquid surface stress field and the dynamic surface tension hints at levitating the manipulation of liquid surfaces, such as ultrafast steering the surface directional transport and patterning.
文摘The enrichment of nutrients (Noa-, Noa-, PO43-), suspended particles, organic matter (POC, PON,DOC) , and trace metals (Cu, Ni, Cd) was determined in the sea surface microlayer of Xiamen Bay and Jiulong Estuary. The mean enrichment factors ([Xi]microlayer/[Xi ]15cm in depth) mostly ranged between 1 . 0 and 2. 0. The dissolved forms were the major forms of the components measured, the enrichment of dissolved organic matter and suspended particles could lead to the changes in the total amount and speciation of nutrients and trace metals. No correlation was observed between sample concentrations, speciation, enrichment factors and sample locations. However, some evidence shows that these parameters are correlated with sea state, indicating the complexity and dynamic nature of the sea surface microlayer.
基金supported by the National Natural Science Foundation of China(21373048,21203027,and 21371034)
文摘Periodic density functional theory calculations have been performed to investigate the chemisorption behavior of COz molecule on a series of surface alloys that are built by dispersing individual middle-late transition metal (TM) atoms (TM = Fe, Co, Ni, Ru, Rh, Pd, Ag, Os, lr, Pt, Au) on the Cu(100) and Cu(lll) surfaces. The most stable configurations of CO2 chemisorbed on different TM/Cu surfaces are determined, and the results show that among the late transition metals, Co, Ru, and Os are potentially good dopants to enhance the chemisorption and activation of CO2 on copper surfaces. To obtain a deep understanding of the adsorption property, the bonding characteristics of the adsorption bonds are carefully examined by the crystal orbital Hamilton population technique, which reveals that the TM atom primarily provides d orbitals with z-component, namely dz2, dxz, and dvz orbitals to interact with the adsorbate.
基金supported by the National Natural Science Foundation of China(Grant Nos.11405078 and 11474140)the Fundamental Research Funds for the Central Universities,China(Grant Nos.lzujbky-2014-169 and lzujbky-2015-244)+1 种基金sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholarsthe State Education Ministry,and the National Students’ Innovation and Entrepreneurship Training Program(Grant Nos.201410730069 and 201510730078)
文摘For Li^+ and Na^+ ions scattered from high work function metal surfaces, efficient neutralization is observed, and it cannot be explained by the conventional free electron model. In order to explain these experimental data, we investigate the velocity-dependent neutral fraction with the modified Brako–Newns(BN) model. The calculated results are in agreement with the experimental data. We find that the parallel velocity effect plays an important role in neutralizing the Li^+ and Na^+ ions for large angle scattering. The nonmonotonic velocity behavior of neutral fraction is strongly related to the distance-dependent coupling strength between the atomic level and metal states.
文摘In this paper, it is shown that the laser radiation intensity required for complete ionization of vapors produced on an irradiated metal surface can be reduced by more than an order of magnitude through using pulsed laser radiation in combination with microwave radiation.
基金supported by National Natural Science Foundation of China under Grant No.10604045the Doctoral Scientific Research Startup Foundation of Ludong University under Grant No.202-23000301
文摘Using closed orbit theory, we give a clear physical picture description of the Rydberg hydrogen atom near a metal surface and calculate the Fourier transformed recurrence spectra of this system at different scaled energies below ionization threshold. The results show that with the increase of the scaled energy, the number of the closed orbit increases greatly. Some of the orbits are created by the bifurcation of the perpendicular orbit. This case is quite similar to the Rydberg atom in an electric field. When the scaled energy increases furthermore, chaotic orbits appear. This study provides a different perspective on the dynamical behavior of the Rydberg atom near a metal surface.
基金National Natural Science Foundation of China under Grant No.10604045the Doctoral Scientific Research Startup Foundation of Ludong University under Grant No.202-23000301
文摘Multielectron to theoretical treatments atoms near a metal surface are essentially more complicated than hydrogen atom with regard By using the semicalssical dosed orbit theory generalized to the multielecton atoms, we study the dynamical properties of the Rydberg lithium atom near a metal surface. The photoabsorption spectra and recurrence spectra of this system have also been calculated. Considering the effect of the ionic core potential of the Rydberg lithium atom, the number of the closed orbits increases, which leads to more peaks in the recurrence spectra than the case of hydrogen atom near a metal surface. This result shows that the core-scattered effects play an important role in nonhydrogenic atoms. This study is a new application of the closed-orbit theory and is of potential experimental interest.
基金supported by the National Natural Science Foundation of China (No.11947205 and No.61504079)the China Postdoctoral Science Foundation (No.2019M663877XB)+2 种基金the Startup Fund for Youngman Research at Shanghai Jiao Tong University (No.19X100040004)The fund from the Chongqing Special Postdoctoral Science Foundation(No.XmT2019021)supported by the center for HPC,Shanghai Jiao Tong University
文摘Consistency between density functional theory calculations and X-ray photoelectron spectroscopy measurements confirms our predications on the undercoordination-induced local bond relaxation and core level shift of alkali metal,which determine the surface,size and thermal properties of materials.Zone-resolved photoelectron spectroscopyanalysis method and bond order-length-strength theory can be utilized to quantify the physical parameters regarding bonding identities and electronic property of metal surfaces,which allows for the study of the core-electron binding-energy shifts in alkali metals.By employing these methods and first principle calculation in this work,we can obtain the information of bond and atomic cohesive energy of under-coordinated atoms at the alkali metal surface.In addition,the effect of size and temperature towards the binding-energy in the surface region can be seen from the view point of Hamiltonian perturbation by atomic relaxation with atomic bonding.