期刊文献+
共找到75篇文章
< 1 2 4 >
每页显示 20 50 100
Establishment and Optimization of Ablation Surrogate Model for Thermal Protection Material
1
作者 Weizhen Pan Bo Gao 《Journal of Beijing Institute of Technology》 EI CAS 2023年第4期477-493,共17页
The temperature response calculation of thermal protection materials,especially ablative thermal protection materials,usually adopts the ablation model,which is complicated in process and requires a large amount of ca... The temperature response calculation of thermal protection materials,especially ablative thermal protection materials,usually adopts the ablation model,which is complicated in process and requires a large amount of calculation.Especially in the process of optimization calculation and parameter identification,the ablation model needs to be called many times,so it is necessary to construct an ablation surrogate model to improve the computational efficiency under the premise of ensuring the accuracy.In this paper,the Gaussian process model method is used to construct a thermal protection material ablation surrogate model,and the prediction accuracy of the surrogate model is improved through optimization. 展开更多
关键词 ablation surrogate model thermal protection material
下载PDF
Optimization on the Crosswind Stability of Trains Using Neural Network Surrogate Model 被引量:4
2
作者 Le Zhang Tian Li +1 位作者 Jiye Zhang Ronghuan Piao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第4期208-224,共17页
Under the influence of crosswinds,the running safety of trains will decrease sharply,so it is necessary to optimize the suspension parameters of trains.This paper studies the dynamic performance of high-speed trains u... Under the influence of crosswinds,the running safety of trains will decrease sharply,so it is necessary to optimize the suspension parameters of trains.This paper studies the dynamic performance of high-speed trains under cross-wind conditions,and optimizes the running safety of train.A computational fluid dynamics simulation was used to determine the aerodynamic loads and moments experienced by a train.A series of dynamic models of a train,with different dynamic parameters were constructed,and analyzed,with safety metrics for these being determined.Finally,a surrogate model was built and an optimization algorithm was used upon this surrogate model,to find the minimum possible values for:derailment coefficient,vertical wheel-rail contact force,wheel load reduction ratio,wheel lateral force and overturning coefficient.There were 9 design variables,all associated with the dynamic parameters of the bogie.When the train was running with the speed of 350 km/h,under a crosswind speed of 15 m/s,the benchmark dynamic model performed poorly.The derailment coefficient was 1.31.The vertical wheel-rail contact force was 133.30 kN.The wheel load reduction rate was 0.643.The wheel lateral force was 85.67 kN,and the overturning coefficient was 0.425.After optimization,under the same running conditions,the metrics of the train were 0.268,100.44 kN,0.474,34.36 kN,and 0.421,respectively.This paper show that by combining train aerodynamics,vehicle system dynamics and many-objective optimization theory,a train’s stability can be more comprehensively analyzed,with more safety metrics being considered. 展开更多
关键词 SAFETY surrogate model OPTIMIZATION High-speed train CROSSWIND
下载PDF
Random dynamic analysis of vertical train–bridge systems under small probability by surrogate model and subset simulation with splitting 被引量:8
3
作者 Huoyue Xiang Ping Tang +1 位作者 Yuan Zhang Yongle Li 《Railway Engineering Science》 2020年第3期305-315,共11页
The response of the train–bridge system has an obvious random behavior.A high traffic density and a long maintenance period of a track will result in a substantial increase in the number of trains running on a bridge... The response of the train–bridge system has an obvious random behavior.A high traffic density and a long maintenance period of a track will result in a substantial increase in the number of trains running on a bridge,and there is small likelihood that the maximum responses of the train and bridge happen in the total maintenance period of the track.Firstly,the coupling model of train–bridge systems is reviewed.Then,an ensemble method is presented,which can estimate the small probabilities of a dynamic system with stochastic excitations.The main idea of the ensemble method is to use the NARX(nonlinear autoregressive with exogenous input)model to replace the physical model and apply subset simulation with splitting to obtain the extreme distribution.Finally,the efficiency of the suggested method is compared with the direct Monte Carlo simulation method,and the probability exceedance of train responses under the vertical track irregularity is discussed.The results show that when the small probability of train responses under vertical track irregularity is estimated,the ensemble method can reduce both the calculation time of a single sample and the required number of samples. 展开更多
关键词 Train–bridge system Ensemble method surrogate model Nonlinear autoregressive with exogenous input Subset simulation with splitting Small probability
下载PDF
Uncertain Multidisciplinary Design Optimization on Next Generation Subsea Production System by Using Surrogate Model and Interval Method 被引量:1
4
作者 WU Jia-hao ZHEN Xing-wei +1 位作者 LIU Gang HUANG Yi 《China Ocean Engineering》 SCIE EI CSCD 2021年第4期609-621,共13页
The innovative Next Generation Subsea Production System(NextGen SPS)concept is a newly proposed petroleum development solution in ultra-deep water areas.The definition of NextGen SPS involves several disciplines,which... The innovative Next Generation Subsea Production System(NextGen SPS)concept is a newly proposed petroleum development solution in ultra-deep water areas.The definition of NextGen SPS involves several disciplines,which makes the design process difficult.In this paper,the definition of NextGen SPS is modeled as an uncertain multidisciplinary design optimization(MDO)problem.The deterministic optimization model is formulated,and three concerning disciplines—cost calculation,hydrodynamic analysis and global performance analysis are presented.Surrogate model technique is applied in the latter two disciplines.Collaborative optimization(CO)architecture is utilized to organize the concerning disciplines.A deterministic CO framework with two disciplinelevel optimizations is proposed firstly.Then the uncertainties of design parameters and surrogate models are incorporated by using interval method,and uncertain CO frameworks with triple loop and double loop optimization structure are established respectively.The optimization results illustrate that,although the deterministic MDO result achieves higher reduction in objective function than the uncertain MDO result,the latter is more reliable than the former. 展开更多
关键词 next generation subsea production system multidisciplinary design optimization uncertain optimization collaborative optimization surrogate model interval method
下载PDF
Optimization Design of High-speed Interior Permanent Magnet Motor with High Torque Performance Based on Multiple Surrogate Models 被引量:1
5
作者 Shengnan Wu Xiangde Sun Wenming Tong 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第3期235-240,共6页
In order to obtain better torque performance of high-speed interior permanent magnet motor(HSIPMM) and solve the problem that electromagnetic optimization design is seriously limited by its mechanical strength, a comp... In order to obtain better torque performance of high-speed interior permanent magnet motor(HSIPMM) and solve the problem that electromagnetic optimization design is seriously limited by its mechanical strength, a complete optimization design method is proposed in this paper. The object of optimization design is a 15 kW、20000 r/min HSIPMM whose permanent magnets in rotor is segmented. Eight structural dimensions are selected as its optimization variables. After design of experiment(DOE), multiple surrogate models are fitted, a set of surrogate models with minimum error is selected by using error evaluation indexes to optimize, the NSGA-II algorithm is used to get the optimal solution. The optimal solution is verified by load test on a 15 kW, 20000 r/min HSIPMM prototype. This paper can be used as a reference for the optimization design of HSIPMM. 展开更多
关键词 High-speed interior permanent magnet motor Segmented magnets Multi-objective optimization Multiple surrogate models
下载PDF
Optimal Design of Electrical Machines Assisted by Hybrid Surrogate Model Based Algorithm 被引量:1
6
作者 Ziyan Ren Yuan Sun +2 位作者 Baoyang Peng Bin Xia Xia Li 《CES Transactions on Electrical Machines and Systems》 CSCD 2020年第1期13-19,共7页
In this paper,for design of large-scale electromagnetic problems,a novel robust global optimization algorithm based on surrogate models is presented.The proposed algorithm can automatically select a proper meta-model ... In this paper,for design of large-scale electromagnetic problems,a novel robust global optimization algorithm based on surrogate models is presented.The proposed algorithm can automatically select a proper meta-model technique among multiple alternatives.In this paper,three representative meta-modeling techniques including ordinary Kriging,universal Kriging,and response surface method with multi-quadratic radial basis functions are applied.In each optimization iteration,the above three models are used for parallel calculation.The proposed hybrid surrogate model optimization algorithm synthesizes advantages of these different meta-models.Without verification of a specific meta-model,a suitable one for the engineering problem to be analyzed is automatically selected.Therefore,the proposed algorithm intends to make a better trade-off between numerical efficiency and searching accuracy for solving engineering problems,which are characterized by stronger non-linearity,higher complexity,non-convex feasible region,and expensive performance analysis. 展开更多
关键词 Electromagnetic problem global optimization hybrid surrogate model.
下载PDF
Fluid Analysis and Structure Optimization of Impeller Based on Surrogate Model
7
作者 Huanwei Xu Wenzhang Wei +1 位作者 Hanjin He Xuerui Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第7期173-199,共27页
The surrogate model technology has a good performance in solving black-box optimization problems,which is widely used in multi-domain engineering optimization problems.The adaptive surrogate model is the mainstream re... The surrogate model technology has a good performance in solving black-box optimization problems,which is widely used in multi-domain engineering optimization problems.The adaptive surrogate model is the mainstream research direction of surrogate model technology,which can realize model fitting and global optimization of engineering problems by infilling criteria.Based on the idea of the adaptive surrogate model,this paper proposes an efficient global optimization algorithm based on the local remodeling method(EGO-LR),which aims at improving the accuracy and optimization efficiency of the model.The proposed algorithm firstly constructs the expectation improvement(EI)function in the local area and optimizes it to get the update points.Secondly,the obtained update points are added to the global region until the global accuracy of the model meets the requirements.Then the differential evolution algorithm is used for global optimization.Sixteen benchmark functions are used to compare the EGO-LR algorithm with the existing algorithms.The results show that the EGO-LR algorithm can quickly converge to the accuracy requirements of the model and find the optimal value efficiently when facing complex problems with many local extrema and large variable spaces.The proposed algorithm is applied to the optimization design of the structural parameter of the impeller,and the outflow field analysis of the impeller is realized through finite element analysis.The optimization with the maximum fluid pressure(MP value)of the impeller as the objective function is completed,which effectively reduces the pressure value of the impeller under load. 展开更多
关键词 The surrogate model EGO ADAPTIVE fluid analysis IMPELLER
下载PDF
Deep Learning-Based Surrogate Model for Flight Load Analysis
8
作者 Haiquan Li Qinghui Zhang Xiaoqian Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第8期605-621,共17页
Flight load computations(FLC)are generally expensive and time-consuming.This paper studies deep learning(DL)-based surrogate models of FLC to provide a reliable basis for the strength design of aircraft structures.We ... Flight load computations(FLC)are generally expensive and time-consuming.This paper studies deep learning(DL)-based surrogate models of FLC to provide a reliable basis for the strength design of aircraft structures.We mainly analyze the influence of Mach number,overload,angle of attack,elevator deflection,altitude,and other factors on the loads of key monitoring components,based on which input and output variables are set.The data used to train and validate the DL surrogate models are derived using aircraft flight load simulation results based on wind tunnel test data.According to the FLC features,a deep neural network(DNN)and a random forest(RF)are proposed to establish the surrogate models.The DNN meets the FLC accuracy requirement using rich data sources in the FLC;the RF can alleviate overfitting and evaluate the importance of flight parameters.Numerical experiments show that both the DNN-and RF-based surrogate models achieve high accuracy.The input variables importance analysis demonstrates that vertical overload and elevator deflection have a significant influence on the FLC.We believe that synthetic applications of these DL-based surrogate methods show a great promise in the field of FLC. 展开更多
关键词 Flight load surrogate model deep learning deep neural network random forest
下载PDF
Surrogate modeling for long-term and high-resolution prediction of building thermal load with a metric-optimized KNN algorithm 被引量:1
9
作者 Yumin Liang Yiqun Pan +2 位作者 Xiaolei Yuan Wenqi Jia Zhizhong Huang 《Energy and Built Environment》 2023年第6期709-724,共16页
During the pre-design stage of buildings,reliable long-term prediction of thermal loads is significant for cool-ing/heating system configuration and efficient operation.This paper proposes a surrogate modeling method ... During the pre-design stage of buildings,reliable long-term prediction of thermal loads is significant for cool-ing/heating system configuration and efficient operation.This paper proposes a surrogate modeling method to predict all-year hourly cooling/heating loads in high resolution for retail,hotel,and office buildings.16384 surrogate models are simulated in EnergyPlus to generate the load database,which contains 7 crucial building features as inputs and hourly loads as outputs.K-nearest-neighbors(KNN)is chosen as the data-driven algorithm to approximate the surrogates for load prediction.With test samples from the database,performances of five different spatial metrics for KNN are evaluated and optimized.Results show that the Manhattan distance is the optimal metric with the highest efficient hour rates of 93.57%and 97.14%for cooling and heating loads in office buildings.The method is verified by predicting the thermal loads of a given district in Shanghai,China.The mean absolute percentage errors(MAPE)are 5.26%and 6.88%for cooling/heating loads,respectively,and 5.63%for the annual thermal loads.The proposed surrogate modeling method meets the precision requirement of engineering in the building pre-design stage and achieves the fast prediction of all-year hourly thermal loads at the district level.As a data-driven approximation,it does not require as much detailed building information as the commonly used physics-based methods.And by pre-simulation of sufficient prototypical models,the method overcomes the gaps of data missing in current data-driven methods. 展开更多
关键词 Thermal load prediction surrogate modeling Pre-design K-nearest-neighbors Manhattan distance
下载PDF
Optimal design of double-layer barrel vaults using genetic and pattern search algorithms and optimized neural network as surrogate model
10
作者 Reza JAVANMARDI Behrouz AHMADI-NEDUSHAN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第3期378-395,共18页
This paper presents a combined method based on optimized neural networks and optimization algorithms to solve structural optimization problems.The main idea is to utilize an optimized artificial neural network(OANN)as... This paper presents a combined method based on optimized neural networks and optimization algorithms to solve structural optimization problems.The main idea is to utilize an optimized artificial neural network(OANN)as a surrogate model to reduce the number of computations for structural analysis.First,the OANN is trained appropriately.Subsequently,the main optimization problem is solved using the OANN and a population-based algorithm.The algorithms considered in this step are the arithmetic optimization algorithm(AOA)and genetic algorithm(GA).Finally,the abovementioned problem is solved using the optimal point obtained from the previous step and the pattern search(PS)algorithm.To evaluate the performance of the proposed method,two numerical examples are considered.In the first example,the performance of two algorithms,OANN+AOA+PS and OANN+GA+PS,is investigated.Using the GA reduces the elapsed time by approximately 50%compared with using the AOA.Results show that both the OANN+GA+PS and OANN+AOA+PS algorithms perform well in solving structural optimization problems and achieve the same optimal design.However,the OANN+GA+PS algorithm requires significantly fewer function evaluations to achieve the same accuracy as the OANN+AOA+PS algorithm. 展开更多
关键词 optimization surrogate models artificial neural network SAP2000 genetic algorithm
原文传递
Efficient multi-objective CMA-ES algorithm assisted by knowledge-extraction-based variable-fidelity surrogate model
11
作者 Zengcong LI Kuo TIAN +1 位作者 Shu ZHANG Bo WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第6期213-232,共20页
To accelerate the multi-objective optimization for expensive engineering cases, a Knowledge-Extraction-based Variable-Fidelity Surrogate-assisted Covariance Matrix Adaptation Evolution Strategy(KE-VFS-CMA-ES) is prese... To accelerate the multi-objective optimization for expensive engineering cases, a Knowledge-Extraction-based Variable-Fidelity Surrogate-assisted Covariance Matrix Adaptation Evolution Strategy(KE-VFS-CMA-ES) is presented. In the first part, the KE-VFS model is established. Firstly, the optimization is performed using the low-fidelity surrogate model to obtain the Low-Fidelity Non-Dominated Solutions(LF-NDS). Secondly, aiming to obtain the High-Fidelity(HF) sample points located in promising areas, the K-means clustering algorithm and the space-filling strategy are used to extract knowledge from the LF-NDS to the HF space. Finally,the KE-VFS model is established by means of the obtained HF and LF sample points. In the second part, a novel model management based on the Modified Hypervolume Improvement(MHVI) criterion and pre-screening strategy is proposed. In each generation of KE-VFS-CMA-ES, excessive candidate points are firstly generated and then calculated by the MHVI criterion to find out a few potential points, which will be evaluated by the HF model. Through the above two parts,the promising areas can be detected and the potential points can be screened out, which contributes to speeding up the optimization process twofold. Three classic benchmark functions and a time-consuming engineering case of the aerospace integrally stiffened shell are studied, and results illustrate the excellent efficiency, robustness and applicability of KE-VFS-CMA-ES compared with other four known multi-objective optimization algorithms. 展开更多
关键词 Covariance matrix adaptation evolution strategy model management Multi-objective optimization surrogate-assisted evolutionary algorithm Variable-fidelity surrogate model
原文传递
Design Optimization and Analysis of Exit Rotor with Diffuser Passage based on Neural Network Surrogate Model and Entropy Generation Method
12
作者 JIN Yun GENG Shaojuan +2 位作者 LIU Shuaipeng NI Ming ZHANG Hongwu 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第2期739-752,共14页
In this paper,a diffuser passage compressor design is introduced via optimization to improve the aerodynamic performance of the exit rotor in a multistage axial compressor.An in-house design optimization platform,base... In this paper,a diffuser passage compressor design is introduced via optimization to improve the aerodynamic performance of the exit rotor in a multistage axial compressor.An in-house design optimization platform,based on genetic algorithm and back propagation neural network surrogate model,is constructed to perform the optimization.The optimization parameters include diffusion angle of meridian passage,diffusion length of meridian passage,change of blade camber angle and blade number.The impacts of these design parameters on efficiency and stability improvement are analyzed based on the optimization database.Two optimized diffuser passage compressor designs are selected from the optimization solution set by comprehensively considering efficiency and stability of the rotor,and the influencing mechanisms on efficiency and stability are further studied.The simulation results show that the application of diffuser passage compressor design can improve the load coefficient by 12.1%and efficiency by 1.28%at the design mass flow rate condition,and the stall margin can be improved by 12.5%.According to the local entropy generation model analysis,despite the upper and lower endwall loss of the diffuser passage rotor are increased,the profile loss is reduced compared with the original rotor.The efficiency of the diffuser passage rotor can be influenced by both loss and load.At the near stall condition,decreasing flow blockage at blade root region can improve the stall margin of the diffuser passage rotor. 展开更多
关键词 exit rotor diffuser passage neural network surrogate model entropy generation rate flow blockage
原文传递
A surrogate model for uncertainty quantification and global sensitivity analysis of nonlinear large-scale dome structures
13
作者 Huidong ZHANG Yafei SONG +3 位作者 Xinqun ZHU Yaqiang ZHANG Hui WANG Yingjun GAO 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第12期1813-1829,共17页
Full-scale dome structures intrinsically have numerous sources of irreducible aleatoric uncertainties.A large-scale numerical simulation of the dome structure is required to quantify the effects of these sources on th... Full-scale dome structures intrinsically have numerous sources of irreducible aleatoric uncertainties.A large-scale numerical simulation of the dome structure is required to quantify the effects of these sources on the dynamic performance of the structure using the finite element method(FEM).To reduce the heavy computational burden,a surrogate model of a dome structure was constructed to solve this problem.The dynamic global sensitivity of elastic and elastoplastic structures was analyzed in the uncertainty quantification framework using fully quantitative variance-and distribution-based methods through the surrogate model.The model considered the predominant sources of uncertainty that have a significant influence on the performance of the dome structure.The effects of the variables on the structural performance indicators were quantified using the sensitivity index values of the different performance states.Finally,the effects of the sample size and correlation function on the accuracy of the surrogate model as well as the effects of the surrogate accuracy and failure probability on the sensitivity index values are discussed.The results show that surrogate modeling has high computational efficiency and acceptable accuracy in the uncertainty quantification of large-scale structures subjected to earthquakes in comparison to the conventional FEM. 展开更多
关键词 large-scale dome structure surrogate model global sensitivity analysis uncertainty quantification structural performance
原文传递
Reliability-based design optimization of offshore wind turbine support structures using RBF surrogate model
14
作者 Changhai YU Xiaolong LV +1 位作者 Dan HUANG Dongju JIANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第7期1086-1099,共14页
An efficient reliability-based design optimization method for the support structures of monopile offshore wind turbines is proposed herein.First,parametric finite element analysis(FEA)models of the support structure a... An efficient reliability-based design optimization method for the support structures of monopile offshore wind turbines is proposed herein.First,parametric finite element analysis(FEA)models of the support structure are established by considering stochastic variables.Subsequently,a surrogate model is constructed using a radial basis function(RBF)neural network to replace the time-consuming FEA.The uncertainties of loads,material properties,key sizes of structural components,and soil properties are considered.The uncertainty of soil properties is characterized by the variabilities of the unit weight,friction angle,and elastic modulus of soil.Structure reliability is determined via Monte Carlo simulation,and five limit states are considered,i.e.,structural stresses,tower top displacements,mudline rotation,buckling,and natural frequency.Based on the RBF surrogate model and particle swarm optimization algorithm,an optimal design is established to minimize the volume.Results show that the proposed method can yield an optimal design that satisfies the target reliability and that the constructed RBF surrogate model significantly improves the optimization efficiency.Furthermore,the uncertainty of soil parameters significantly affects the optimization results,and increasing the monopile diameter is a cost-effective approach to cope with the uncertainty of soil parameters. 展开更多
关键词 reliability-based design optimization offshore wind turbine parametric finite element analysis RBF surrogate model uncertain soil parameter
原文传递
A Surrogate Model for a CAES Radial Inflow Turbine with Test Data-Based MLP Neural Network Algorithm
15
作者 WANG Xing ZHU Yangli +2 位作者 LI Wen ZUO Zhitao CHEN Haisheng 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第6期2081-2092,共12页
It is usually to conduct a full-scale three-dimensional flow analysis for a radial turbine to find a way to increase the efficiency of a Compressed Air Energy Storage(CAES)system.However,long solving time and huge con... It is usually to conduct a full-scale three-dimensional flow analysis for a radial turbine to find a way to increase the efficiency of a Compressed Air Energy Storage(CAES)system.However,long solving time and huge consumption of computing resources become a major obstacle to the analysis.Therefore,in present study,a surrogate model with test data-based multi-layer perceptron(MLP)Neural Network is proposed to overcome the difficulty.Instead of complex flow field solving process,it provides reliable turbine aerodynamic performance and flow field distribution characteristics in a short solution time by“learning the measurement results”.The validation results illustrated that the predicted maximum relative errors of isentropic efficiency,corrected mass flow rate and corrected power are only 0.03%,0.22%and 0.26%respectively.The predicted flow distribution parameters in chamber,shroud cavity and outlet region of rotor are also basically consistent with the experimental results.In the chamber,it can be found that a pressure stagnation point is observed at circumferential angle of 270°when total pressure ratio is decreased.In the shroud cavity,obvious pressure variation is found near outlet of shroud cavity which although labyrinth seals exist.At outlet of rotor,obvious variations of velocity and pressure are found in the 0.0–0.4 and 0.6–0.8 of blade height.At the same time,obvious variations of velocity and pressure are found in the 0.0–0.4 and 0.6–0.8 of blade height and this is because the influence of upper passage vortex,lower passage vortex and end wall secondary flow.The present study can provide further reference for the dynamic performance evaluation of CAES radial inflow turbine. 展开更多
关键词 CAES surrogate model radial inflow turbine MLP neural network
原文传递
Unsupervised learning of load signatures to estimate energy-related building features using surrogate modelling techniques
16
作者 Shane Ferreira Burak Gunay +1 位作者 Araz Ashouri Scott Shillinglaw 《Building Simulation》 SCIE EI CSCD 2023年第7期1273-1286,共14页
Characterization of an existing building’s energy-related features is critical to inform maintenance and retrofit decisions.However,existing field-scale characterization methods tend to be labour intensive,invasive,a... Characterization of an existing building’s energy-related features is critical to inform maintenance and retrofit decisions.However,existing field-scale characterization methods tend to be labour intensive,invasive,and require high fidelity longitudinal data gathered through tightly regulated experiments.This highlights the need for a low cost,scalable,and efficient screening method.This paper puts forward a surrogate model-based approach to rapidly estimate energy-related building features.To this end,EnergyPlus models for 12 midrise office archetypes,all with a rectangular footprint,are developed.Ten thousand variants of each archetype are generated by altering envelope,causal heat gain,and heating,ventilation,and air conditioning operation features.A unique load signature is derived for each variant’s heating and cooling energy use.The parameters of the load signatures are clustered,then each cluster is associated with a set of plausible energy-related features.The accuracy of the results was evaluated using five test buildings not seen by the algorithm.The method could effectively identify building features with reasonable accuracy and no significant degradation in performance across all 12 archetypes. 展开更多
关键词 remote characterization energy-related building features surrogate modelling cluster analysis
原文传递
Multi-objective optimization of the cathode catalyst layer micro-composition of polymer electrolyte membrane fuel cells using a multi-scale,two-phase fuel cell model and data-driven surrogates
17
作者 Neil Vaz Jaeyoo Choi +3 位作者 Yohan Cha Jihoon Kong Yooseong Park Hyunchul Ju 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期28-41,I0003,共15页
Polymer electrolyte membrane fuel cells(PEMFCs)are considered a promising alternative to internal combustion engines in the automotive sector.Their commercialization is mainly hindered due to the cost and effectivenes... Polymer electrolyte membrane fuel cells(PEMFCs)are considered a promising alternative to internal combustion engines in the automotive sector.Their commercialization is mainly hindered due to the cost and effectiveness of using platinum(Pt)in them.The cathode catalyst layer(CL)is considered a core component in PEMFCs,and its composition often considerably affects the cell performance(V_(cell))also PEMFC fabrication and production(C_(stack))costs.In this study,a data-driven multi-objective optimization analysis is conducted to effectively evaluate the effects of various cathode CL compositions on Vcelland Cstack.Four essential cathode CL parameters,i.e.,platinum loading(L_(Pt)),weight ratio of ionomer to carbon(wt_(I/C)),weight ratio of Pt to carbon(wt_(Pt/c)),and porosity of cathode CL(ε_(cCL)),are considered as the design variables.The simulation results of a three-dimensional,multi-scale,two-phase comprehensive PEMFC model are used to train and test two famous surrogates:multi-layer perceptron(MLP)and response surface analysis(RSA).Their accuracies are verified using root mean square error and adjusted R^(2).MLP which outperforms RSA in terms of prediction capability is then linked to a multi-objective non-dominated sorting genetic algorithmⅡ.Compared to a typical PEMFC stack,the results of the optimal study show that the single-cell voltage,Vcellis improved by 28 m V for the same stack price and the stack cost evaluated through the U.S department of energy cost model is reduced by$5.86/k W for the same stack performance. 展开更多
关键词 Polymer electrolyte membrane fuel cell surrogate modeling Multi-layer perceptron(MLP) Response surface analysis(RSA) Non-dominated sorting genetic algorithmⅡ(NSGAⅡ)
下载PDF
An improved interval model updating method via adaptive Kriging models
18
作者 Sha WEI Yifeng CHEN +1 位作者 Hu DING Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期497-514,共18页
Interval model updating(IMU)methods have been widely used in uncertain model updating due to their low requirements for sample data.However,the surrogate model in IMU methods mostly adopts the one-time construction me... Interval model updating(IMU)methods have been widely used in uncertain model updating due to their low requirements for sample data.However,the surrogate model in IMU methods mostly adopts the one-time construction method.This makes the accuracy of the surrogate model highly dependent on the experience of users and affects the accuracy of IMU methods.Therefore,an improved IMU method via the adaptive Kriging models is proposed.This method transforms the objective function of the IMU problem into two deterministic global optimization problems about the upper bound and the interval diameter through universal grey numbers.These optimization problems are addressed through the adaptive Kriging models and the particle swarm optimization(PSO)method to quantify the uncertain parameters,and the IMU is accomplished.During the construction of these adaptive Kriging models,the sample space is gridded according to sensitivity information.Local sampling is then performed in key subspaces based on the maximum mean square error(MMSE)criterion.The interval division coefficient and random sampling coefficient are adaptively adjusted without human interference until the model meets accuracy requirements.The effectiveness of the proposed method is demonstrated by a numerical example of a three-degree-of-freedom mass-spring system and an experimental example of a butted cylindrical shell.The results show that the updated results of the interval model are in good agreement with the experimental results. 展开更多
关键词 interval model updating(IMU) non-probabilistic uncertainty adaptive Kriging model surrogate model grey number
下载PDF
Application of a PCA-DBN-based surrogate model to robust aerodynamic design optimization 被引量:10
19
作者 Jun TAO Gang SUN +1 位作者 Liqiang GUO Xinyu WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第6期1573-1588,共16页
An efficient method employing a Principal Component Analysis(PCA)-Deep Belief Network(DBN)-based surrogate model is developed for robust aerodynamic design optimization in this study.In order to reduce the number of d... An efficient method employing a Principal Component Analysis(PCA)-Deep Belief Network(DBN)-based surrogate model is developed for robust aerodynamic design optimization in this study.In order to reduce the number of design variables for aerodynamic optimizations,the PCA technique is implemented to the geometric parameters obtained by parameterization method.For the purpose of predicting aerodynamic parameters,the DBN model is established with the reduced design variables as input and the aerodynamic parameters as output,and it is trained using the k-step contrastive divergence algorithm.The established PCA-DBN-based surrogate model is validated through predicting lift-to-drag ratios of a set of airfoils,and the results indicate that the PCA-DBN-based surrogate model is reliable and obtains more accurate predictions than three other surrogate models.Then the efficient optimization method is established by embedding the PCA-DBN-based surrogate model into an improved Particle Swarm Optimization(PSO)framework,and applied to the robust aerodynamic design optimizations of Natural Laminar Flow(NLF)airfoil and transonic wing.The optimization results indicate that the PCA-DBN-based surrogate model works very well as a prediction model in the robust optimization processes of both NLF airfoil and transonic wing.By employing the PCA-DBN-based surrogate model,the developed efficient method improves the optimization efficiency obviously. 展开更多
关键词 Aerodynamic design opti­mization Deep neural networks Particle swarm optimization Principal component analy­sis surrogate model
原文传递
A novel surrogate modeling strategy of the mechanical properties of 3D braided composites 被引量:2
20
作者 Zeyi LIU Yuliang HOU +1 位作者 Qiaoli ZHAO Cheng LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第10期2589-2601,共13页
In this paper,a surrogate-based modeling methodology is developed and presented to predict the elastic properties of three dimensional(3 D)four-directional braided composites.Using this approach,the prediction process... In this paper,a surrogate-based modeling methodology is developed and presented to predict the elastic properties of three dimensional(3 D)four-directional braided composites.Using this approach,the prediction process becomes feasible with only a limited number of training points.The surrogate models constructed using Finite Element(FE)method and Diffuse Approximation,reduce the computational time and cost for preparing experimental samples.In the FE model,multiscale method is applied to couple the computations of elastic properties at microscale and mesoscale.Subsequently,a parametric study is performed to analyze the effects of the three design parameters on the elastic properties.Satisfactory results are obtained via the surrogatebased modeling predictions,which are compared with the experimental measurements.Moreover,the predictions obtained from surrogate models concur well with the FE predictions.This study orients a new direction for predicting the mechanical properties based on surrogate models which can effectively reduce the sample preparation cost and computational efforts. 展开更多
关键词 Braided composites Diffuse approximation Elastic properties Multiscale model surrogate model
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部