期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Decentralized Dynamic Event-Triggered Communication and Active Suspension Control of In-Wheel Motor Driven Electric Vehicles with Dynamic Damping 被引量:15
1
作者 Iftikhar Ahmad Xiaohua Ge Qing-Long Han 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第5期971-986,共16页
This paper addresses the co-design problem of decentralized dynamic event-triggered communication and active suspension control for an in-wheel motor driven electric vehicle equipped with a dynamic damper. The main ob... This paper addresses the co-design problem of decentralized dynamic event-triggered communication and active suspension control for an in-wheel motor driven electric vehicle equipped with a dynamic damper. The main objective is to simultaneously improve the desired suspension performance caused by various road disturbances and alleviate the network resource utilization for the concerned in-vehicle networked suspension system. First, a T-S fuzzy active suspension model of an electric vehicle under dynamic damping is established. Second,a novel decentralized dynamic event-triggered communication mechanism is developed to regulate each sensor's data transmissions such that sampled data packets on each sensor are scheduled in an independent manner. In contrast to the traditional static triggering mechanisms, a key feature of the proposed mechanism is that the threshold parameter in the event trigger is adjusted adaptively over time to reduce the network resources occupancy. Third, co-design criteria for the desired event-triggered fuzzy controller and dynamic triggering mechanisms are derived. Finally, comprehensive comparative simulation studies of a 3-degrees-of-freedom quarter suspension model are provided under both bump road disturbance and ISO-2631 classified random road disturbance to validate the effectiveness of the proposed co-design approach. It is shown that ride comfort can be greatly improved in either road disturbance case and the suspension deflection, dynamic tyre load and actuator control input are all kept below the prescribed maximum allowable limits, while simultaneously maintaining desirable communication efficiency. 展开更多
关键词 Active suspension control decentralized eventtriggered control dynamic damper dynamic eventtriggered communication in-wheel motor driven electric vehicle
下载PDF
Research on Suspension Gravity Compensation System of Lunar Rover with Magnetic Levitation Servo
2
作者 Xuesong Qiu Dongsheng Li +2 位作者 Mengxu Li Ya’nan Wang Jian Liu 《Journal of Harbin Institute of Technology(New Series)》 CAS 2023年第1期24-34,共11页
In order to overcome the shortcomings of the traditional sling suspension method,such as complex structure of suspension truss,large running resistance,and low precision of position servo system,a gravity compensation... In order to overcome the shortcomings of the traditional sling suspension method,such as complex structure of suspension truss,large running resistance,and low precision of position servo system,a gravity compensation method of lunar rover based on the combination of active suspension and active position following of magnetic levitation is proposed,and the overall design is carried out.The dynamic model of the suspension module of microgravity compensation system was established,and the decoupling control between the constant force component and the position servo component was analyzed and verified.The constant tension control was achieved by using hybrid force/position control.The position following control was realized by using fuzzy adaptive PID(proportional⁃integral⁃differential)control.The stable suspension control was realized based on the principle of force balance.The simulation results show that the compensation accuracy of constant tension could reach more than 95%,the position deviation was less than 5 mm,the position deviation angle was less than 0.025°,and the air gap recovered stability within 0.1 s.The gravity compensation system has excellent dynamic performance and can meet the requirements of microgravity simulation experiment of lunar rover. 展开更多
关键词 microgravity simulation gravity compensation constant force control hybrid force/position control fuzzy adaptive PID control stable suspension control
下载PDF
Hierarchical Control of Ride Height System for Electronically Controlled Air Suspension Based on Variable Structure and Fuzzy Control Theory 被引量:14
3
作者 XU Xing ZHOU Kongkang +2 位作者 ZOU Nannan JIANG Hong CUI Xiaoli 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第5期945-953,共9页
The current research of air suspension mainly focuses on the characteristics and design of the air spring. In fact, electronically controlled air suspension (ECAS) has excellent performance in flexible height adjust... The current research of air suspension mainly focuses on the characteristics and design of the air spring. In fact, electronically controlled air suspension (ECAS) has excellent performance in flexible height adjustment during different driving conditions. However, the nonlinearity of the ride height adjusting system and the uneven distribution of payload affect the control accuracy of ride height and the body attitude. Firstly, the three-point measurement system of three height sensors is used to establish the mathematical model of the ride height adjusting system. The decentralized control of ride height and the centralized control of body attitude are presented to design the ride height control system for ECAS. The exact feedback linearization method is adopted for the nonlinear mathematical model of the ride height system. Secondly, according to the hierarchical control theory, the variable structure control (VSC) technique is used to design a controller that is able to adjust the ride height for the quarter-vehicle anywhere, and each quarter-vehicle height control system is independent. Meanwhile, the three-point height signals obtained by three height sensors are tracked to calculate the body pitch and roll attitude over time, and then by calculating the deviation of pitch and roll and its rates, the height control correction is reassigned based on the fuzzy algorithm. Finally, to verify the effectiveness and performance of the proposed combined control strategy, a validating test of ride height control system with and without road disturbance is carried out. Testing results show that the height adjusting time of both lifting and lowering is over 5 s, and the pitch angle and the roll angle of body attitude are less than 0.15°. This research proposes a hierarchical control method that can guarantee the attitude stability, as well as satisfy the ride height tracking system. 展开更多
关键词 electronically controlled air suspension (ECAS) ride height body attitude hierarchical control
下载PDF
A Hybrid Approach to Modeling and Control of Vehicle Height for Electronically Controlled Air Suspension 被引量:8
4
作者 SUN Xiaoqiang CAI Yingfeng +2 位作者 WANG Shaohua LIU Yanling CHEN Long 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期152-162,共11页
The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on t... The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on this subject over the last years. This paper deals with modeling and control of a vehicle height adjustment system for ECAS, which is an example of a hybrid dynamical system due to the coexistence and coupling of continuous variables and discrete events. A mixed logical dynamical (MLD) modeling approach is chosen for capturing enough details of the vehicle height adjustment process. The hybrid dynamic model is constructed on the basis of some assumptions and piecewise linear approximation for components nonlinearities. Then, the on-off statuses of solenoid valves and the piecewise approximation process are described by propositional logic, and the hybrid system is transformed into the set of linear mixed-integer equalities and inequalities, denoted as MLD model, automatically by HYSDEL. Using this model, a hybrid model predictive controller (HMPC) is tuned based on online mixed-integer quadratic optimization (MIQP). Two different scenarios are considered in the simulation, whose results verify the height adjustment effectiveness of the proposed approach. Explicit solutions of the controller are computed to control the vehicle height adjustment system in realtime using an offline multi-parametric programming technology (MPT), thus convert the controller into an equivalent explicit piecewise affine form. Finally, bench experiments for vehicle height lifting, holding and lowering procedures are conducted, which demonstrate that the HMPC can adjust the vehicle height by controlling the on-off statuses of solenoid valves directly. This research proposes a new modeling and control method for vehicle height adjustment of ECAS, which leads to a closed-loop system with favorable dynamical properties. 展开更多
关键词 electronically controlled air suspension vehicle height control hybrid system mixed logical dynamical model predictive control
下载PDF
Active suspension with optimal control based on a full vehicle model
5
作者 张军伟 陈思忠 赵玉壮 《Journal of Beijing Institute of Technology》 EI CAS 2016年第1期81-90,共10页
The 7-DOF model of a full vehicle with an active suspension is developed in this paper.The model is written into the state equation style.Actuator forces are treated as inputs in the state equations.Based on the basic... The 7-DOF model of a full vehicle with an active suspension is developed in this paper.The model is written into the state equation style.Actuator forces are treated as inputs in the state equations.Based on the basic optimal control theory,the optimal gains for the control system are figured out.So an optimal controller is developed and implemented using Matlab/Simulink,where the Riccati equation with coupling terms is deduced using the Hamilton equation.The all state feedback is chosen for the controller.The gains for all vehicle variables are traded off so that majority of indexes were up to optimal.The active suspension with optimal control is simulated in frequency domain and time domain separately,and compared with a passive suspension.Throughout all the simulation results,the optimal controller developed in this paper works well in the majority of instances.In all,the comfort and ride performance of the vehicle are improved under the active suspension with optimal control. 展开更多
关键词 active suspension full vehicle model optimal control frequencydomain time domain
下载PDF
Disturbance decoupled fault diagnosis for sensor fault of maglev suspension system 被引量:6
6
作者 李云 李杰 +1 位作者 张耿 田文静 《Journal of Central South University》 SCIE EI CAS 2013年第6期1545-1551,共7页
A disturbance decoupled fault diagnosis strategy is proposed.This disturbance decoupled fault diagnosis is both robust to disturbances and sensitive to sensor faults of magnetic levitation control system.First,a robus... A disturbance decoupled fault diagnosis strategy is proposed.This disturbance decoupled fault diagnosis is both robust to disturbances and sensitive to sensor faults of magnetic levitation control system.First,a robust controller based on a novel disturbance observer is devised to improve the disturbance attenuation ability,which greatly enhances the robustness of the system.Second,a fault reconstruction technique with adaptive method is presented,along with a strict verification for guaranteeing the robustness of fault.This fault reconstruction technique provides an accurate sensor fault reconstruction.From the results of simulation and experiments conducted on the CMS-04 maglev train,the integrated strategy is robust to model uncertainties of the system and the fault reconstruction algorithm is able to reconstruct the dynamic uncertain faults. 展开更多
关键词 maglev system suspension control robust control disturbance observer tault reconstruction
下载PDF
Stiffness-damping matching method of an ECAS system based on LQG control 被引量:9
7
作者 陈一锴 何杰 +2 位作者 M.KING 陈无畏 张卫华 《Journal of Central South University》 SCIE EI CAS 2014年第1期439-446,共8页
A novel method of matching stiffness and continuous variable damping of an ECAS(electronically controlled air suspension) based on LQG(linear quadratic Gaussian) control was proposed to simultaneously improve the road... A novel method of matching stiffness and continuous variable damping of an ECAS(electronically controlled air suspension) based on LQG(linear quadratic Gaussian) control was proposed to simultaneously improve the road-friendliness and ride comfort of a two-axle school bus.Taking account of the suspension nonlinearities and target-height-dependent variation in suspension characteristics,a stiffness model of the ECAS mounted on the drive axle of the bus was developed based on thermodynamics and the key parameters were obtained through field tests.By determining the proper range of the target height for the ECAS of the fully-loaded bus based on the design requirements of vehicle body bounce frequency,the control algorithm of the target suspension height(i.e.,stiffness) was derived according to driving speed and road roughness.Taking account of the nonlinearities of a continuous variable semi-active damper,the damping force was obtained through the subtraction of the air spring force from the optimum integrated suspension force,which was calculated based on LQG control.Finally,a GA(genetic algorithm)-based matching method between stepped variable damping and stiffness was employed as a benchmark to evaluate the effectiveness of the LQG-based matching method.Simulation results indicate that compared with the GA-based matching method,both dynamic tire force and vehicle body vertical acceleration responses are markedly reduced around the vehicle body bounce frequency employing the LQG-based matching method,with peak values of the dynamic tire force PSD(power spectral density) decreased by 73.6%,60.8% and 71.9% in the three cases,and corresponding reduction are 71.3%,59.4% and 68.2% for the vehicle body vertical acceleration.A strong robustness to variation of driving speed and road roughness is also observed for the LQG-based matching method. 展开更多
关键词 matching method electronically controlled air suspension linear quadratic Gaussian genetic algorithm
下载PDF
Damage alarming of long-span suspension bridge based on GPS-RTK monitoring 被引量:7
8
作者 缪长青 王蔓 +2 位作者 田洪金 冯兆祥 陈策 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2800-2808,共9页
Structure damage identification and alarming of long-span bridge were conducted with three-dimensional dynamic displacement data collected by GPS subsystem of health monitoring system on Runyang Suspension Bridge.Firs... Structure damage identification and alarming of long-span bridge were conducted with three-dimensional dynamic displacement data collected by GPS subsystem of health monitoring system on Runyang Suspension Bridge.First,the effects of temperature on the main girder spatial position coordinates were analyzed from the transverse,longitudinal and vertical directions of bridge,and the correlation regression models were built between temperature and the position coordinates of main girder in the longitudinal and vertical directions;then the alarming indices of coordinate residuals were conducted,and the mean-value control chart was applied to making statistical pattern identification for abnormal changes of girder dynamic coordinates;and finally,the structural damage alarming method of main girder was established.Analysis results show that temperature has remarkable correlation with position coordinates in the longitudinal and vertical directions of bridge,and has weak correlation with the transverse coordinates.The 3%abnormal change of the longitudinal coordinates and 5%abnormal change of the vertical ones caused by structural damage are respectively identified by the mean-value control chart method based on GPS dynamic monitoring data and hence the structural abnormalities state identification and damage alarming for main girder of long-span suspension bridge can be realized in multiple directions. 展开更多
关键词 long-span suspension bridge damage alarming mean-value control chart GPS displacement temperature correlation
下载PDF
Preparation and performance of fluorescent polyacrylamide microspheres as a profile control and tracer agent 被引量:1
9
作者 Wan-Li Kang Lei-Lei Hu +3 位作者 Xiang-Feng Zhang Run-Mei Yang Hai-Ming Fan Jie Geng 《Petroleum Science》 SCIE CAS CSCD 2015年第3期483-491,共9页
Polyacrylamide microspheres have been suc- cessfully used to reduce water production in reservoirs, but it is impossible to distinguish polyacrylamide microspheres from polyacrylamide that is used to enhance oil recov... Polyacrylamide microspheres have been suc- cessfully used to reduce water production in reservoirs, but it is impossible to distinguish polyacrylamide microspheres from polyacrylamide that is used to enhance oil recovery and is already present in production fluids. In order to detect polyacrylamide microspheres in the reservoir pro- duced fluid, fluorescent polyacrylamide microspheres P(AM-BA-AMCO), which fluoresce under ultraviolet irradiation, were synthesized via an inverse suspension polymerization. In order to keep the particle size distribu- tion in a narrow range, the synthesis conditions of the polymerization were studied, including the stirring speed and the concentrations of initiator, NaaCO3, and dispersant. The bonding characteristics of microspheres were deter- mined by Fourier transform infrared spectroscopy. The surface morphology of these microspheres was observed under ultraviolet irradiation with an inverse fluorescence microscope. A laboratory evaluation test showed that the fluorescent polymer microspheres had good water swelling capability, thus they had the ability to plug and migrate in a sand pack. The plugging rate was 99.8 % and the residual resistance coefficient was 800 after microsphere treatment in the sand pack. Furthermore, the fluorescent microspheres and their fragments were accurately detected under ultra- violet irradiation in the produced fluid, even though theyhad experienced extrusion and deformation in the sand pack. 展开更多
关键词 Inverse suspension polymerization Fluorescence Polyacrylamide microsphere Narrow sizedistribution - Profile control performance
下载PDF
Designing and characteristics analysis of electric suspensions with symmetrically arranged two slider-rods
10
作者 WANG Guo-sheng LEI Qiang-shun +1 位作者 SONG Hui-xin JIN Hao-long 《Journal of Beijing Institute of Technology》 EI CAS 2016年第3期309-315,共7页
An innovative design of electric suspensions was developed in this study to help realize slow active suspension easily and quickly.This design was driven by screw through double slider-rod arranged symmetrically as a ... An innovative design of electric suspensions was developed in this study to help realize slow active suspension easily and quickly.This design was driven by screw through double slider-rod arranged symmetrically as a substitute for two springs.Based on a mathematical modeling,suspension parameters were introduced for a certain type of wheeled vehicles.The functions and its mechanism in regulating terrain clearance and adjusting attitudes were subsequently explained respectively,together with its semi-active control mechanism and characteristics In conclusion,our data in the study show that the new mechanical design of suspensions not only could realize adjusting terrain clearance and static vehicle pose,but also had an ideal stiffness that could realize a semi-active suspension function through adjusting suspension's stiffness.Therefore it can bequite suitable for off-road wheeled vehicles and military wheeled vehicles. 展开更多
关键词 suspension mechanism slider-link arranged symmetrically adjustable stiffness electric control semi-active suspension low active control
下载PDF
Simulation and analysis of a Truck Model’s ride comfort based on fuzzy adaptive control theory
11
作者 姜立标 王登峰 +1 位作者 倪强 谭维明 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第1期33-35,共3页
This paper tried to analyse and verify the fuzzy adaptive control strategy of electronic control air suspension system for heavy truck. Created the seven-freedoms vehicle suspension model, and the road input model; wi... This paper tried to analyse and verify the fuzzy adaptive control strategy of electronic control air suspension system for heavy truck. Created the seven-freedoms vehicle suspension model, and the road input model; with Matlab/Simulink toolboxes and modules, built dynamical system simulation model for heavy truck with air suspension, fuzzy adaptive control model, height control model for air spring, and intelligent control and analyse on root mean square value of acceleration of gravity center of the vehicle under excitation of road. Results show that the fuzzy control had less help to the body vibration on the better pavement, but had the better benefit on the bad road, and the vehicle’s root mean square value of acceleration of gravity center is less than passive suspension’s obviously. 展开更多
关键词 Jelectronic control air suspension self-adaptive fuzzy control fide comfort level control
下载PDF
Adaptive fault-tolerant control of high-speed maglev train suspension system with partial actuator failure: design and experiments
12
作者 Yougang SUN Fengxing LI +2 位作者 Guobin LIN Junqi XU Zhenyu HE 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2023年第3期272-283,共12页
High-speed maglev trains will play an important role in the high-speed transportation system in the near future.However,under the conditions of strong magnetic fields and continuous operation,the actuators of the high... High-speed maglev trains will play an important role in the high-speed transportation system in the near future.However,under the conditions of strong magnetic fields and continuous operation,the actuators of the high-speed maglev train suspension system are prone to lose partial effectiveness,which makes the suspension control problem challenging.In addition,most existing fault-tolerant control(FTC)methods for suspension systems require linearization around the equilibrium points during the controller design or stability analysis.Therefore,from a practical perspective,this study presents a novel nonlinear FTC strategy with adaptive compensation for high-speed maglev train suspension systems.First,a nonlinear dynamic model of the suspension system based on join-structure is established and the actuator failures are described.Then,a nonlinear fault-tolerant suspension control law with an adaptive update law is designed to achieve stable suspension against partial actuator failure.The Lyapunov theory and extended Barbalat lemma are utilized to rigorously prove the closed-loop asymptotic stability even if there is partial actuator failure,without any approximation to the original nonlinear dynamics.Finally,hardware experimental results are included to demonstrate the effectiveness of the proposed approach. 展开更多
关键词 High-speed maglev transportation suspension control system Adaptive fault-tolerant control(FTC) Partial actuator failure MECHATRONICS
原文传递
Vehicle height and leveling control of electronically controlled air suspension using mixed logical dynamical approach 被引量:7
13
作者 SUN Xiao Qiang CAI Ying Feng +2 位作者 YUAN Chao Chun WANG Shao Hua CHEN Long 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第12期1814-1824,共11页
Vehicle height and leveling control of electronically controlled air suspension(ECAS) still poses theoretical challenges for researchers that have not been adequately addressed in prior research. This paper investigat... Vehicle height and leveling control of electronically controlled air suspension(ECAS) still poses theoretical challenges for researchers that have not been adequately addressed in prior research. This paper investigates the design and verification of a new controller to adjust the vehicle height and to regulate the roll and pitch angles of the vehicle body(leveling control) during the height adjustment procedures. A nonlinear mechanism model of the vehicle height adjustment system is formulated to describe the dynamic behaviors of the system. By using mixed logical dynamical(MLD) approach, a novel control strategy is proposed to adjust the vehicle height by controlling the on-off statuses of the solenoid valves directly. On this basis, a correction algorithm is also designed to regulate the durations of the on-off statuses of the solenoid valves based on pulse width modulated(PWM) technology, thus the effective leveling control of the vehicle body can be guaranteed. Finally, simulations and vehicle tests results are presented to demonstrate the effectiveness and applicability of the proposed control methodology. 展开更多
关键词 electronically controlled air suspension vehicle height control leveling control hybrid system mixed logical dynamical approach
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部