[ Objective] The aim was to study the effect of 12C6 + ions beam irradiation to two varieties of sweet sorghum on seed germination and some enzymes activity in seedlings with different doses, and provided a theoretic...[ Objective] The aim was to study the effect of 12C6 + ions beam irradiation to two varieties of sweet sorghum on seed germination and some enzymes activity in seedlings with different doses, and provided a theoretical foundation for sweet sorghum breeding. [ Method] After germination, the germination potential, germination fraction and enzyme activity were detected, respectively. [ Result] The results showed that with the dose increased, the germination potential of sweet sorghum increased first and then decreased, while their germination fraction presented "shoulder like shape" ; the activity of LDH, SOD, CAT and GSH-Px increased first and then decreased with doses, they presented slight differences among different enzymes. [ Conclusion] Low dose radiation could accelerate germination of sweet sorghum seeds and enzyme activity could remain at a relatively high level. Enzyme activity decreased with high doses and the growth of sweet sorghum was inhibited.展开更多
[Objective] The aim was to explore high-yielding cultivation techniques for forage sweet sorghum. [Method[ The effects of planting density and row spacing on plant productivity and grass yield of forage sweet sorghum ...[Objective] The aim was to explore high-yielding cultivation techniques for forage sweet sorghum. [Method[ The effects of planting density and row spacing on plant productivity and grass yield of forage sweet sorghum (Sorghum bicolor (L.) Moench) were compared using split-plot design and LSD method of IBMSPSSStatis- ticsv22. [Result]The planting density and row spacing had important influence on the plant productivity and yield of forage sweet sorghum. The optimum planting density- row spacing combination for plant productivity of forage sweet sorghum was A1B,, i. e., planting density of 75 000 plants/hm2 and row spacing of 40 cm, and the opti- mum combination for yield of forage sweet sorghum was A2B,, i.e., planting density of 225 000 plants/hm2 and row spacing of 40 cm. [Conclusion] This study will pro- vide theoretical basis and technical support for the production practice of forage sweet sorghum.展开更多
[Objective] This study aimed to investigate the effects of heavy-ion beams irradiation on the seed germination potential, survival rate, antioxidant enzyme activi- ties and lipid peroxidation of sweet sorghum. [Method...[Objective] This study aimed to investigate the effects of heavy-ion beams irradiation on the seed germination potential, survival rate, antioxidant enzyme activi- ties and lipid peroxidation of sweet sorghum. [Method] The dry seeds were irradiated by '2(36. heavy ion beams with absorbed doses: 0, 40, 80, 120, 160 and 200 Gy, respectively. Then, the seed germination potential, survival rate, antioxidant enzyme activities and lipid peroxidation of sweet sorghum were measured. [Result] Heavy-ion beams irradiation exhibited different influence on germination potential and survival rates. Germination rate showed a downward trend, but the corresponding survival curve of seedlings was saddle-shaped. The activities of SOD, POD, CAT and ASA- POD changed in different trends as well. The MDA content rose toward increasing irradiation dose, suggesting that high dose of heavy-ion beams irradiation enhanced the damage to membrane of sweet sorghum seedlings. [Conclusion] After being irra- diated, germination potential and survival rates of sweet sorghum were decreased, and antioxidant enzymes activity changed greatly. This study laid the basis for fur- ther work on breeding and improvement of sweet sorghum irradiated by ,^(12)C^(6+) heavy ion beams.展开更多
Among the potential non-food energy crops,the sugar-rich C4 grass sweet sorghum and the biomass-rich Miscanthus are increasingly considered as two leading candidates.Here,we outline the biological traits of these ener...Among the potential non-food energy crops,the sugar-rich C4 grass sweet sorghum and the biomass-rich Miscanthus are increasingly considered as two leading candidates.Here,we outline the biological traits of these energy crops for largescale production in China.We also review recent progress on understanding of plant cell wall composition and wall polymer features of both plant species from large populations that affect both biomass enzymatic digestibility and ethanol conversion rates under various pretreatment conditions.We finally propose genetic approaches to enhance biomass production,enzymatic digestibility and sugar-ethanol conversion efficiency of the energy crops.展开更多
[Objective] The aim was to study on germination and expression of α-amy- lase of KF0680-1 and KF0680-2 (cultivars of sweet sorghum) under salt stress. [Method] In the research, KF0680-1 and KF0680-2, cultivars of s...[Objective] The aim was to study on germination and expression of α-amy- lase of KF0680-1 and KF0680-2 (cultivars of sweet sorghum) under salt stress. [Method] In the research, KF0680-1 and KF0680-2, cultivars of sweet sorghum, were used to measure related indices of germination and expression of co-amylase to discuss effect of salt stress on two cultivars. [Result] Germination of sweet sorghum would be promoted if treated with salt in low concentration and inhibited if treated in high concentration. In the latter condition, roots and seedlings were smaller than that of control group in length, but expression of s-amylase in the two cultivars was pro- moted under proper salt stress. [Conclusion] The research indicates that KF0680-1 and KF0680-2 are inhibited in growth by salt stress and the latter is stronger in salt resis- tance than the former under low salt concentration. In addition, expression of α-amy- lase could be promoted by salt in proper volume. The results provide references for selection of sweet sorghum which could be planted in northwestern areas.展开更多
[ Objective ] The paper was to evaluate the fermentation quality of mixed silage of Lablab purpureus and sweet sorghum, and to find out the appropriate mixing ratio. [ Method] L. purpureus were mixed with sweet sorghu...[ Objective ] The paper was to evaluate the fermentation quality of mixed silage of Lablab purpureus and sweet sorghum, and to find out the appropriate mixing ratio. [ Method] L. purpureus were mixed with sweet sorghum at different proportions, to identify the sensory character and quality of silage. [ Result] The nutrient content of mixed silage of L. purpureus and sweet sorghum at different proportions decreased significantly at 30 - 60 d, while no significant changes were observed after 60 d. Mixed silage of L. purpureu.s and sweet sorghum had the best effort at the proportion of 3:7 ; followed by the proportion of 5: 5. These two proportions significantly improved dry matter (DM) content and effectively alleviated the crude protein (CP) loss of raw materials; significantly improved the contents of crude fiber and crude ash; and significantly reduce ammonia nitrogen/total nitrogen (AT/TN). [ Conclusion ] From the perspective of silage quality, the appropriate mixing ratio ofL. purpureus and sweet sorghum is 3:7 or 5:5.展开更多
Sweet sorghum has been suggested as a feedstock into the sugarcane mills for sucrose production in Zimbabwe and Swaziland. Sweet sorghum is widely grown by subsistence farmers and matures in 3 to 6 months in February,...Sweet sorghum has been suggested as a feedstock into the sugarcane mills for sucrose production in Zimbabwe and Swaziland. Sweet sorghum is widely grown by subsistence farmers and matures in 3 to 6 months in February, March and April, before sugarcane harvesting begins. Sweet sorghum has low sucrose content that is difficult to extract during processing. The hypothesis of the study was that sweet sorghum was a potential feedstock to sugarcane mills for the production of sugar and ethanol. The objective of this study was to investigate the trends in starch and sucrose content of four sweet sorghum genotypes namely M337, M81-E, Theis and Topper, and evaluate the potential of sweet sorghum as a feed stock for sugar and ethanol production. The sorghum juice was collected on August 10, August 24, September 8, September 18 and October 2, 2006 and starch and sucrose content were determined. There were significant (P 〈 0.001) genotypes by sampling date interaction effects. Both starch and sucrose content increased with crop sampling date. Genotypes M337 and Theis were late maturing for sucrose content compared to M81-E and Topper. All genotypes except M337 produced no significant increase in starch after 101DAP. Trends in sucrose and starch content were similar, indicating the reason sucrose was difficult to extract from sweet sorghum. The impact of this study would be boosting the incomes of small scale growers who would be subcontracted by the sugar mills to produce sweet sorghum as a feedstock to the mills before sugarcane matures.展开更多
Juice extraction from chopped sweet sorghum is an example of flow through porous media. Darcy’s law is often used to express this type of phenomenon. However, using Darcy’s law to construct a mathematical model to p...Juice extraction from chopped sweet sorghum is an example of flow through porous media. Darcy’s law is often used to express this type of phenomenon. However, using Darcy’s law to construct a mathematical model to predict juice extraction from chopped sweet sorghum is difficult, because the volume of the porous media changes during the pressing operations. A mathematical model was developed from fundamental analysis to predict the juice extraction ratio of chopped sweet sorghum, and experiments were conducted to verify the model. An experimental piston-cylinder assembly was developed to conduct the validation experiments. The parameters in the developed model were estimated by using non-linear regression analysis from the experimental data. Plots of the mathematical model agreed well with experimental data. R^2(coefficient of determination) values for all the regressions studied were higher than 0.99. Results showed that the juice extraction ratio of chopped sweet sorghum approached an asymptote with a maximum value that depended on the physical form of the sample. The model could help in understanding the mechanics of juice extraction from chopped sweet sorghum.展开更多
[ Objectives ] The aim was to optimize the configuration of seedling density and line spacing of forage sweet sorghum ( Sorghum blcolor ( L. ) Moench) and explore its high-yield cultivation techniques. [ Methods] ...[ Objectives ] The aim was to optimize the configuration of seedling density and line spacing of forage sweet sorghum ( Sorghum blcolor ( L. ) Moench) and explore its high-yield cultivation techniques. [ Methods] Effects of such two influencing factors as line spacing and seedling density on the leaf-stem ratio, DW/FW ratio and grass yield of forage sweet sorghum were analyzed by using split-plot experiment design experiment method and LSD method of IBM. SPSS. Statis- tics. v22 stati, stics software. [ Results ~ Seedling density and line spacing had no obvious effect on the leaf-stem ratio and DW/FW ratio of forage sweet sorghum but had obvious influences on the grass yield. Moreover, the optimal combination of seedling density and line spacing for high yield of forage sweet sorghum was A2 B4, that is, seedling density was 225 000 plants/hm2, and line spacing was 40 cm. [ Conclusions] The results provided a theoretical basis and technical support for high-yield cultivation techniques of forage sweet sorghum.展开更多
[Objective] This study aimed to determine the interactive effects of supple- mental Ca amendment and salinity on germination of sweet sorghum seeds in saline solution culture medium, and investigate the effects of dif...[Objective] This study aimed to determine the interactive effects of supple- mental Ca amendment and salinity on germination of sweet sorghum seeds in saline solution culture medium, and investigate the effects of different combinations of Na/Ca ratio in saline soils on the early growth of sweet sorghum plants. [Method] A germi- nation test and a greenhouse pot experiment were conducted to assess the interac- tive effects of calcium addition to culture medium on the germination and seedling growth of sweet sorghum (Sorghum saccharatum Moench) in saline soils with a range of NaYCa ratios. In the germination test, seeds were treated with different combinations of five calcium levels [0, 5, 10, 15, and 20 mmol/L Ca(NO3)2] and five salinity levels (0, 50, 100, 150, and 200 mmol/L NaCI). In the greenhouse experi- ment, seeds were sown in potting soils containing 3 salinity levels (2.3, 4.7 and 7.0 dS/m) and three Na:Ca ratios (10:0, 10:1, and 5:1). [Result] In the germination test, Ca addition at 5 mmol/L promoted germination by 5.5%, 9.9%, and 17.0% at the 3.4, 6.7 and 10.1 dS/m salinity levels. The higher Ca level (10 mmol/L) also in- creased germination by 9.1% and 7.8% at the 3.4 and 6.7 dS/m salinity levels. Then even higher Ca addition at 15 and 20 mmol/L appeared to promote germina- tion when culture media had high salinity (10.1 and 13.4 dS/m). In the greenhouse pot experiment, saline soil amended with supplemental Ca at the 2.3 and 4.7 dS/m salinity levels significantly promoted early seedling growth, with an increase of 6.8% to 28.2% in plant height and 14.3% to 67.9% in whole plant weight. From 28 to 42 d after seeding, the relative growth of seedling was increased by Ca addition, with a reduction of 49.5% to 66.0% in plant height and 4.8% to 61.9% in whole plant weight. From 42 to 56 d after seeding, however, the relative growth of seedling was significantly inhibited by Ca amendment. [Conclusion] Results of this study indicate that appropriate supplemental Ca could improve sorghum germination and early seedling growth in saline soils.展开更多
Twenty-eight sweet sorghum (Sorghum bicolor (L.) Moench) genotypes of the different ecological and geographic origins: Kazakhstan, Russia, India, Uzbekistan, and China were tested in the high latitude rainfed con...Twenty-eight sweet sorghum (Sorghum bicolor (L.) Moench) genotypes of the different ecological and geographic origins: Kazakhstan, Russia, India, Uzbekistan, and China were tested in the high latitude rainfed conditions of northern Kazakhstan. The genotypes demonstrated high biomass production (up to 100 t'ha1 and more). The genotypes ripening to full reproductive seeds were selected for seed production and introduction in the northern Kazakhstan. Lactic acid bacteria Lactobacillus plantarum S-1, Streptococcus thermophilus F-1 and Lactococcus lactis F-4 essentially enhance the fermentation process, suppressing undesirable microbiological processes, reducing the loss of nutrient compounds, accelerating in 2 times maturation ensilage process and providing higher quality of the feed product.展开更多
The aim of this study is to standardize the planting technology of sweet sorghums for forage,to prepare? technical specifications for planting sweet sorghums for forage. Based on years of experiment,it is prepared acc...The aim of this study is to standardize the planting technology of sweet sorghums for forage,to prepare? technical specifications for planting sweet sorghums for forage. Based on years of experiment,it is prepared according to the requirements of GB/1. 1 Standardization Guide Rule Part I: Standard Structure and Compilation. The results show that it defines the application scope,basic requirements,preparation before sowing,planting requirements,field management,harvesting requirements of the technical specifications for planting sweet sorghums for forages,and determines the specific measures and technical indicators of the technical specifications. This paper provides technical support for the standardization,industrialization and marketization of planting sweet sorghums for forage.展开更多
Sweet sorghum is a crop with good application prospects, and the research on sweet sorghum breeding people should be strengthened. Based on this, the genetic content of QTLs(quantitative trait loci) for sugar traits i...Sweet sorghum is a crop with good application prospects, and the research on sweet sorghum breeding people should be strengthened. Based on this, the genetic content of QTLs(quantitative trait loci) for sugar traits in sweet sorghum was introduced, and the analysis content of the genetic breeding of sweet sorghum related to sugar traits was expounded, providing support for the cultivation of sweet sorghum with higher quality and the promotion of agricultural development in China.展开更多
[ Objective] This study was conducted to investigate the relationship between each of planting density and row spacing and plant productivity of forage sweet sorghum planted in autumn idle land. [ Methods] Using split...[ Objective] This study was conducted to investigate the relationship between each of planting density and row spacing and plant productivity of forage sweet sorghum planted in autumn idle land. [ Methods] Using split-plot experiment design experiment method and LSD method of IBM. SPSS. Statistics. v22 statistics software, the effects of planting density and row spacing on plant productivity of forage sweet sorghum planted in autumn idle land were compared. [ Result] The results showed that the planting density and row spacing had important influences on plant productivity of forage sweet sorghum planted in autumn idle land. Moreover, the optimal combination of plant productivity for A1B4 , i. e. ,under the combination of the planting density of 7.5 × 10^4 plants/hm^2 and the row spacing of 40 cm, the fresh weight and dry weight per plant were 654.37 and 147.11 g/plant, respectively. [ Conclusion ] The results provided a theoretical basis for the production of forage sweet sorghum in autumn idle land.展开更多
The sweet sorghum is investigated as an alternative source in place of sugar cane for ethanol production. Its mass can be processed with the same machinery used in the processing of sugar cane, also offering a quantit...The sweet sorghum is investigated as an alternative source in place of sugar cane for ethanol production. Its mass can be processed with the same machinery used in the processing of sugar cane, also offering a quantity of biomass (bagasse) similar in volume to the operation. The results obtained in the experiment showed that sweet sorghum cultivar Sugargraze produces ethanol lower than cane sugar ratio. The sugar content in this variety did not show the expected values in the first cut, which resulted in a short amount of ethanol, 740 liters per hectare. The material reached 3.7 meters and suffered no lodging, being easy to handle and cut with common shredder, same equipment used in the processing of corn. The conclusion of the study pointed to the viability of producing ethanol from sweet sorghum in commercial larger scales.展开更多
Sweet sorghum mutants induced by^(12)C(6+)-ion irradiation were planted under different soil salinity conditions to investigate the mechanisms maintaining the transport and spatial distribution of Na^+. The functions ...Sweet sorghum mutants induced by^(12)C(6+)-ion irradiation were planted under different soil salinity conditions to investigate the mechanisms maintaining the transport and spatial distribution of Na^+. The functions of the synergistic responses of NHX, AKT1, and SOS1 related to Na^+ accumulation were investigated in control(KFJT-CK) sorghum and KF1210-3 and KF1210-4 mutants. The results indicated that the NHX, AKT1, and SOS1 proteins in sweet sorghum are mainly involved in the transport, exclusion, and spatial distribution of Na^+,respectively. In addition to physiological parameters, we also measured the expression levels of NHX, AKT1, and SOS1 genes. The experimental results indicated that 150 m M Na Cl induced marked increases in the transcripts of NHX and SOS1 after 8 and 12 h in the KF1210-3,KF1210-4, and KFJT-CK cultivars. In contrast, however, a decrease in AKT1 was observed. On the basis of our results, we propose a model in which cooperation amongNHX, AKT1, and SOS1 facilitates Na^+ homeostasis in sweet sorghum in response to an increase in salt concentration. Accordingly, study of the regulatory mechanisms in sweet sorghum generated by carbon ion irradiation is essential for the selection of salt-tolerant cultivars.展开更多
To improve the efficiency of ethanol production in a batch fermentation from sweet sorghum juice under a very high gravity(VHG)condition(~290 g/L of total sugar)by Saccharomyces cerevisiae NP01,repeatedbatch fermentat...To improve the efficiency of ethanol production in a batch fermentation from sweet sorghum juice under a very high gravity(VHG)condition(~290 g/L of total sugar)by Saccharomyces cerevisiae NP01,repeatedbatch fermentation under an aerated condition(2.5 vvm for the first 4 h during every cycle)was done in a5-L fermenter.The average ethanol concentration(P),productivity(Qp)and yield(Yp/s)for five successive cycles were 112.31 g/L,1.55 g/L·h^-1 and 0.44,respectively with 80.97%sugar consumption.To complete sugar consumption,the total sugar of the juice was reduced to a high gravity(HG)level(~240 g/L).The results showed that yeast extract was not necessary for ethanol production,and aeration during every other cycle i.e.,alternating cycles,was sufficient to promote both yeast growth and ethanol production.The average P,Qpand Yp/svalues for eight successive cycles with aeration during alternating cycles were97.58 g/L,1.98 g/Láh and 0.41,respectively with 91.21%sugar consumption.The total fatty acids in the yeast cells under the aerated condition were^50%higher than without aeration,irrespective the initial sugar concentration,whereas the ergosterol contents under aeration condition were^29%to 49%higher than those without aeration.展开更多
Soil salinity can limit plant growth and productivity. The cultivation of tolerant varieties is convenient and cost-effective for making good use of the saline soils.The sweet sorghum plant has a high tolerance for sa...Soil salinity can limit plant growth and productivity. The cultivation of tolerant varieties is convenient and cost-effective for making good use of the saline soils.The sweet sorghum plant has a high tolerance for saline alkaline soils. The KF1210-3 and KF1210-4 early-maturity mutants of sweet sorghum were obtained via carbon ion irradiation. The study assesses the productivity of three sweet sorghum cultivars(KF1210-3, KF1210-4, and KFJTCK) which were grown in intermediate(4.6 d S m^(-1)) and high(11.9 d S m^(-1)) soil salinity. The sweet sorghum grown in the soil salinity of 4.6 d S m^(-1)produced 50.00–57.30 %greater fresh weight than that in the soil salinity of11.9 d S m^(-1), while the difference was not as obvious among the dry biomass of the three sweet sorghum cultivars. Moreover, the Brix degree of the sweet sorghum grown in the soil salinity of 11.9 d S m^(-1)was greater than that grown in the soil salinity of 4.6 d S m^(-1). The heavy ion irradiation experiment is of great significance in screening plant mutants, improving environmental conditions, and assessing the productivity. This process, in turn, aids in the understanding of the effects of the biochemical and physiological mechanisms of salt stress.展开更多
In order to study the effects of replacing different proportions of silage maize with silage sweet sorghum treated by different fermentation methods on the production performance and blood biochemical indexes of dairy...In order to study the effects of replacing different proportions of silage maize with silage sweet sorghum treated by different fermentation methods on the production performance and blood biochemical indexes of dairy cows,25 Chinese Holstein lactating cows were randomly divided into 5 groups,5 in each group.The control check (CK) was fed the basal diet;for the experimental group 1 and the experimental group 2,50% of the silage maize in the basal diet was replaced with the additive silage sweet sorghum and the conventional silage sweet sorghum,respectively;and as to the experimental group 3 and the experimental group 4,all the silage maize in the basal diet was replaced with additive silage sweet sorghum and conventional silage sweet sorghum,respectively.The preliminary trial period was 7 d,and the trial period was 35 d.The results showed that the experimental group 1 and the experimental group 3 had the dry matter intake significantly higher than that of the experimental group 2,the experimental group 4 and the CK ( P <0.05).The daily milk yields of the experimental group 1 and the experimental group 2 were significantly lower than that of the CK ( P <0.05),and the experimental group 3 and the experimental group 4 were significantly lower than the experimental group 1 and the experimental group 2 ( P <0.05).The milk protein percentage of the experimental group 2 was extremely significantly higher than that of the experimental group 4 ( P <0.01).The experimental group 1,the experimental group 2 and the experimental group 3 showed the blood glucose levels extremely significantly higher than that in the CK ( P <0.01).The blood urea nitrogen contents in the experimental group 2 and the experimental group 4 were significantly higher than those in the experimental group 1 and the CK ( P <0.01).There were no significant differences in other blood biochemical indexes between various groups ( P >0.05).It is feasible to use silage sweet sorghum to feed dairy cows,but the proportion should not be too large,and attention should be paid to the energy and nitrogen balance of the diet.展开更多
The experiments were conducted to determine suitable sowing time in order to achieve high plant biomass and sugar content of sweet sorghum for bioethanol manufacture. The results showed that germination rate reached &...The experiments were conducted to determine suitable sowing time in order to achieve high plant biomass and sugar content of sweet sorghum for bioethanol manufacture. The results showed that germination rate reached > 80% in all trial times (p > 0.05). The growth and development speed of sweet sorghum reduced when seeds were sowed in August and was significantly different from other sowing times (p < 0.05). Sowing from March to June obtained the highest plant height during all growth and development stages. Lodging and diseases observed in all periods of sowing, and planting began in July and August had lower percentage. In contrast, the productivity of fresh weight (1310.4 g/whole plant), sugar content (14.9% Brix), biomass yield (122.4 tons/ha) and theoretical converted ethanol yield (5 tons/ha) were the highest when sweet sorghum planted from March to June. It was observed that sowing sweet sorghum in four periods of month from March to June had the desirable biomass for bioethanol production.展开更多
基金Supported by Director Fund for the Year 2008 Project(0806230SZO)Training Projects of Light of Western in Chinese Academy of Sciences(0906040XBO)Chinese Academy of science and Technology Project in Support of Gansu(0806300YDO)~~
文摘[ Objective] The aim was to study the effect of 12C6 + ions beam irradiation to two varieties of sweet sorghum on seed germination and some enzymes activity in seedlings with different doses, and provided a theoretical foundation for sweet sorghum breeding. [ Method] After germination, the germination potential, germination fraction and enzyme activity were detected, respectively. [ Result] The results showed that with the dose increased, the germination potential of sweet sorghum increased first and then decreased, while their germination fraction presented "shoulder like shape" ; the activity of LDH, SOD, CAT and GSH-Px increased first and then decreased with doses, they presented slight differences among different enzymes. [ Conclusion] Low dose radiation could accelerate germination of sweet sorghum seeds and enzyme activity could remain at a relatively high level. Enzyme activity decreased with high doses and the growth of sweet sorghum was inhibited.
文摘[Objective] The aim was to explore high-yielding cultivation techniques for forage sweet sorghum. [Method[ The effects of planting density and row spacing on plant productivity and grass yield of forage sweet sorghum (Sorghum bicolor (L.) Moench) were compared using split-plot design and LSD method of IBMSPSSStatis- ticsv22. [Result]The planting density and row spacing had important influence on the plant productivity and yield of forage sweet sorghum. The optimum planting density- row spacing combination for plant productivity of forage sweet sorghum was A1B,, i. e., planting density of 75 000 plants/hm2 and row spacing of 40 cm, and the opti- mum combination for yield of forage sweet sorghum was A2B,, i.e., planting density of 225 000 plants/hm2 and row spacing of 40 cm. [Conclusion] This study will pro- vide theoretical basis and technical support for the production practice of forage sweet sorghum.
基金Supported by Knowledge Innovation Program of the Chinese Academy of Sciences(KJCX2-EW-N05)~~
文摘[Objective] This study aimed to investigate the effects of heavy-ion beams irradiation on the seed germination potential, survival rate, antioxidant enzyme activi- ties and lipid peroxidation of sweet sorghum. [Method] The dry seeds were irradiated by '2(36. heavy ion beams with absorbed doses: 0, 40, 80, 120, 160 and 200 Gy, respectively. Then, the seed germination potential, survival rate, antioxidant enzyme activities and lipid peroxidation of sweet sorghum were measured. [Result] Heavy-ion beams irradiation exhibited different influence on germination potential and survival rates. Germination rate showed a downward trend, but the corresponding survival curve of seedlings was saddle-shaped. The activities of SOD, POD, CAT and ASA- POD changed in different trends as well. The MDA content rose toward increasing irradiation dose, suggesting that high dose of heavy-ion beams irradiation enhanced the damage to membrane of sweet sorghum seedlings. [Conclusion] After being irra- diated, germination potential and survival rates of sweet sorghum were decreased, and antioxidant enzymes activity changed greatly. This study laid the basis for fur- ther work on breeding and improvement of sweet sorghum irradiated by ,^(12)C^(6+) heavy ion beams.
基金supported by grants from the Fundamental Research Funds for the Central Universities Project , China (2013QC042)the Fundamental Research Funds for the 111 Project of Ministry of Education of China (B08032)the Starting Foundation for Changjiang Scholars Program of Ministry of Education of China (52204-14004)
文摘Among the potential non-food energy crops,the sugar-rich C4 grass sweet sorghum and the biomass-rich Miscanthus are increasingly considered as two leading candidates.Here,we outline the biological traits of these energy crops for largescale production in China.We also review recent progress on understanding of plant cell wall composition and wall polymer features of both plant species from large populations that affect both biomass enzymatic digestibility and ethanol conversion rates under various pretreatment conditions.We finally propose genetic approaches to enhance biomass production,enzymatic digestibility and sugar-ethanol conversion efficiency of the energy crops.
基金Supported by West Light Foundation of The Chinese Academy of Sciences(0906040XBO)Key Program of Knowledge Innovation(KJCX2-YW-N34-3,KJCX2-EW-N05-1)+1 种基金Action-Plan for West Development(Y110190XBX)Foundation for Middleaged and Young People in Gansu(099RJYA012)~~
文摘[Objective] The aim was to study on germination and expression of α-amy- lase of KF0680-1 and KF0680-2 (cultivars of sweet sorghum) under salt stress. [Method] In the research, KF0680-1 and KF0680-2, cultivars of sweet sorghum, were used to measure related indices of germination and expression of co-amylase to discuss effect of salt stress on two cultivars. [Result] Germination of sweet sorghum would be promoted if treated with salt in low concentration and inhibited if treated in high concentration. In the latter condition, roots and seedlings were smaller than that of control group in length, but expression of s-amylase in the two cultivars was pro- moted under proper salt stress. [Conclusion] The research indicates that KF0680-1 and KF0680-2 are inhibited in growth by salt stress and the latter is stronger in salt resis- tance than the former under low salt concentration. In addition, expression of α-amy- lase could be promoted by salt in proper volume. The results provide references for selection of sweet sorghum which could be planted in northwestern areas.
基金Supported by Major Project of Science and Technology Plan in Hunan Province(2017NK1020)
文摘[ Objective ] The paper was to evaluate the fermentation quality of mixed silage of Lablab purpureus and sweet sorghum, and to find out the appropriate mixing ratio. [ Method] L. purpureus were mixed with sweet sorghum at different proportions, to identify the sensory character and quality of silage. [ Result] The nutrient content of mixed silage of L. purpureus and sweet sorghum at different proportions decreased significantly at 30 - 60 d, while no significant changes were observed after 60 d. Mixed silage of L. purpureu.s and sweet sorghum had the best effort at the proportion of 3:7 ; followed by the proportion of 5: 5. These two proportions significantly improved dry matter (DM) content and effectively alleviated the crude protein (CP) loss of raw materials; significantly improved the contents of crude fiber and crude ash; and significantly reduce ammonia nitrogen/total nitrogen (AT/TN). [ Conclusion ] From the perspective of silage quality, the appropriate mixing ratio ofL. purpureus and sweet sorghum is 3:7 or 5:5.
文摘Sweet sorghum has been suggested as a feedstock into the sugarcane mills for sucrose production in Zimbabwe and Swaziland. Sweet sorghum is widely grown by subsistence farmers and matures in 3 to 6 months in February, March and April, before sugarcane harvesting begins. Sweet sorghum has low sucrose content that is difficult to extract during processing. The hypothesis of the study was that sweet sorghum was a potential feedstock to sugarcane mills for the production of sugar and ethanol. The objective of this study was to investigate the trends in starch and sucrose content of four sweet sorghum genotypes namely M337, M81-E, Theis and Topper, and evaluate the potential of sweet sorghum as a feed stock for sugar and ethanol production. The sorghum juice was collected on August 10, August 24, September 8, September 18 and October 2, 2006 and starch and sucrose content were determined. There were significant (P 〈 0.001) genotypes by sampling date interaction effects. Both starch and sucrose content increased with crop sampling date. Genotypes M337 and Theis were late maturing for sucrose content compared to M81-E and Topper. All genotypes except M337 produced no significant increase in starch after 101DAP. Trends in sucrose and starch content were similar, indicating the reason sucrose was difficult to extract from sweet sorghum. The impact of this study would be boosting the incomes of small scale growers who would be subcontracted by the sugar mills to produce sweet sorghum as a feedstock to the mills before sugarcane matures.
文摘Juice extraction from chopped sweet sorghum is an example of flow through porous media. Darcy’s law is often used to express this type of phenomenon. However, using Darcy’s law to construct a mathematical model to predict juice extraction from chopped sweet sorghum is difficult, because the volume of the porous media changes during the pressing operations. A mathematical model was developed from fundamental analysis to predict the juice extraction ratio of chopped sweet sorghum, and experiments were conducted to verify the model. An experimental piston-cylinder assembly was developed to conduct the validation experiments. The parameters in the developed model were estimated by using non-linear regression analysis from the experimental data. Plots of the mathematical model agreed well with experimental data. R^2(coefficient of determination) values for all the regressions studied were higher than 0.99. Results showed that the juice extraction ratio of chopped sweet sorghum approached an asymptote with a maximum value that depended on the physical form of the sample. The model could help in understanding the mechanics of juice extraction from chopped sweet sorghum.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(20120304201)
文摘[ Objectives ] The aim was to optimize the configuration of seedling density and line spacing of forage sweet sorghum ( Sorghum blcolor ( L. ) Moench) and explore its high-yield cultivation techniques. [ Methods] Effects of such two influencing factors as line spacing and seedling density on the leaf-stem ratio, DW/FW ratio and grass yield of forage sweet sorghum were analyzed by using split-plot experiment design experiment method and LSD method of IBM. SPSS. Statis- tics. v22 stati, stics software. [ Results ~ Seedling density and line spacing had no obvious effect on the leaf-stem ratio and DW/FW ratio of forage sweet sorghum but had obvious influences on the grass yield. Moreover, the optimal combination of seedling density and line spacing for high yield of forage sweet sorghum was A2 B4, that is, seedling density was 225 000 plants/hm2, and line spacing was 40 cm. [ Conclusions] The results provided a theoretical basis and technical support for high-yield cultivation techniques of forage sweet sorghum.
基金Supported by Priority Academic Program Development of Jiangsu Higher Education Institution,Natural Science Foundation of China(31171483)Fund for Returning Overseas Scholars(2011)+1 种基金Jiangsu Provincial Science Technology Support Program (BE2010307)the Start-up Project of Yangzhou University(2006 and 2009)
文摘[Objective] This study aimed to determine the interactive effects of supple- mental Ca amendment and salinity on germination of sweet sorghum seeds in saline solution culture medium, and investigate the effects of different combinations of Na/Ca ratio in saline soils on the early growth of sweet sorghum plants. [Method] A germi- nation test and a greenhouse pot experiment were conducted to assess the interac- tive effects of calcium addition to culture medium on the germination and seedling growth of sweet sorghum (Sorghum saccharatum Moench) in saline soils with a range of NaYCa ratios. In the germination test, seeds were treated with different combinations of five calcium levels [0, 5, 10, 15, and 20 mmol/L Ca(NO3)2] and five salinity levels (0, 50, 100, 150, and 200 mmol/L NaCI). In the greenhouse experi- ment, seeds were sown in potting soils containing 3 salinity levels (2.3, 4.7 and 7.0 dS/m) and three Na:Ca ratios (10:0, 10:1, and 5:1). [Result] In the germination test, Ca addition at 5 mmol/L promoted germination by 5.5%, 9.9%, and 17.0% at the 3.4, 6.7 and 10.1 dS/m salinity levels. The higher Ca level (10 mmol/L) also in- creased germination by 9.1% and 7.8% at the 3.4 and 6.7 dS/m salinity levels. Then even higher Ca addition at 15 and 20 mmol/L appeared to promote germina- tion when culture media had high salinity (10.1 and 13.4 dS/m). In the greenhouse pot experiment, saline soil amended with supplemental Ca at the 2.3 and 4.7 dS/m salinity levels significantly promoted early seedling growth, with an increase of 6.8% to 28.2% in plant height and 14.3% to 67.9% in whole plant weight. From 28 to 42 d after seeding, the relative growth of seedling was increased by Ca addition, with a reduction of 49.5% to 66.0% in plant height and 4.8% to 61.9% in whole plant weight. From 42 to 56 d after seeding, however, the relative growth of seedling was significantly inhibited by Ca amendment. [Conclusion] Results of this study indicate that appropriate supplemental Ca could improve sorghum germination and early seedling growth in saline soils.
文摘Twenty-eight sweet sorghum (Sorghum bicolor (L.) Moench) genotypes of the different ecological and geographic origins: Kazakhstan, Russia, India, Uzbekistan, and China were tested in the high latitude rainfed conditions of northern Kazakhstan. The genotypes demonstrated high biomass production (up to 100 t'ha1 and more). The genotypes ripening to full reproductive seeds were selected for seed production and introduction in the northern Kazakhstan. Lactic acid bacteria Lactobacillus plantarum S-1, Streptococcus thermophilus F-1 and Lactococcus lactis F-4 essentially enhance the fermentation process, suppressing undesirable microbiological processes, reducing the loss of nutrient compounds, accelerating in 2 times maturation ensilage process and providing higher quality of the feed product.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(20120304201)
文摘The aim of this study is to standardize the planting technology of sweet sorghums for forage,to prepare? technical specifications for planting sweet sorghums for forage. Based on years of experiment,it is prepared according to the requirements of GB/1. 1 Standardization Guide Rule Part I: Standard Structure and Compilation. The results show that it defines the application scope,basic requirements,preparation before sowing,planting requirements,field management,harvesting requirements of the technical specifications for planting sweet sorghums for forages,and determines the specific measures and technical indicators of the technical specifications. This paper provides technical support for the standardization,industrialization and marketization of planting sweet sorghums for forage.
文摘Sweet sorghum is a crop with good application prospects, and the research on sweet sorghum breeding people should be strengthened. Based on this, the genetic content of QTLs(quantitative trait loci) for sugar traits in sweet sorghum was introduced, and the analysis content of the genetic breeding of sweet sorghum related to sugar traits was expounded, providing support for the cultivation of sweet sorghum with higher quality and the promotion of agricultural development in China.
基金Supported by Special Fund for Agro-scientific Researchin the Public Interest(20120304201)
文摘[ Objective] This study was conducted to investigate the relationship between each of planting density and row spacing and plant productivity of forage sweet sorghum planted in autumn idle land. [ Methods] Using split-plot experiment design experiment method and LSD method of IBM. SPSS. Statistics. v22 statistics software, the effects of planting density and row spacing on plant productivity of forage sweet sorghum planted in autumn idle land were compared. [ Result] The results showed that the planting density and row spacing had important influences on plant productivity of forage sweet sorghum planted in autumn idle land. Moreover, the optimal combination of plant productivity for A1B4 , i. e. ,under the combination of the planting density of 7.5 × 10^4 plants/hm^2 and the row spacing of 40 cm, the fresh weight and dry weight per plant were 654.37 and 147.11 g/plant, respectively. [ Conclusion ] The results provided a theoretical basis for the production of forage sweet sorghum in autumn idle land.
文摘The sweet sorghum is investigated as an alternative source in place of sugar cane for ethanol production. Its mass can be processed with the same machinery used in the processing of sugar cane, also offering a quantity of biomass (bagasse) similar in volume to the operation. The results obtained in the experiment showed that sweet sorghum cultivar Sugargraze produces ethanol lower than cane sugar ratio. The sugar content in this variety did not show the expected values in the first cut, which resulted in a short amount of ethanol, 740 liters per hectare. The material reached 3.7 meters and suffered no lodging, being easy to handle and cut with common shredder, same equipment used in the processing of corn. The conclusion of the study pointed to the viability of producing ethanol from sweet sorghum in commercial larger scales.
基金supported by the Science and Technology Service Network Initiative(STS)program of the Chinese Academy of Sciences(CAS)(KFJ-EW-STS-086)the National Natural Science Foundation of China(No.11275171)+1 种基金the CAS‘‘Light of West China’’ Program(Nos.29Y506020 and 29Y406020)the Youth Innovation Promotion Association of CAS(No.2015337)
文摘Sweet sorghum mutants induced by^(12)C(6+)-ion irradiation were planted under different soil salinity conditions to investigate the mechanisms maintaining the transport and spatial distribution of Na^+. The functions of the synergistic responses of NHX, AKT1, and SOS1 related to Na^+ accumulation were investigated in control(KFJT-CK) sorghum and KF1210-3 and KF1210-4 mutants. The results indicated that the NHX, AKT1, and SOS1 proteins in sweet sorghum are mainly involved in the transport, exclusion, and spatial distribution of Na^+,respectively. In addition to physiological parameters, we also measured the expression levels of NHX, AKT1, and SOS1 genes. The experimental results indicated that 150 m M Na Cl induced marked increases in the transcripts of NHX and SOS1 after 8 and 12 h in the KF1210-3,KF1210-4, and KFJT-CK cultivars. In contrast, however, a decrease in AKT1 was observed. On the basis of our results, we propose a model in which cooperation amongNHX, AKT1, and SOS1 facilitates Na^+ homeostasis in sweet sorghum in response to an increase in salt concentration. Accordingly, study of the regulatory mechanisms in sweet sorghum generated by carbon ion irradiation is essential for the selection of salt-tolerant cultivars.
基金Supported by the Post-Doctoral Training Program from Research Affairs and Graduate School,Khon Kaen University(KKU).Thailand(Grant no.59153)
文摘To improve the efficiency of ethanol production in a batch fermentation from sweet sorghum juice under a very high gravity(VHG)condition(~290 g/L of total sugar)by Saccharomyces cerevisiae NP01,repeatedbatch fermentation under an aerated condition(2.5 vvm for the first 4 h during every cycle)was done in a5-L fermenter.The average ethanol concentration(P),productivity(Qp)and yield(Yp/s)for five successive cycles were 112.31 g/L,1.55 g/L·h^-1 and 0.44,respectively with 80.97%sugar consumption.To complete sugar consumption,the total sugar of the juice was reduced to a high gravity(HG)level(~240 g/L).The results showed that yeast extract was not necessary for ethanol production,and aeration during every other cycle i.e.,alternating cycles,was sufficient to promote both yeast growth and ethanol production.The average P,Qpand Yp/svalues for eight successive cycles with aeration during alternating cycles were97.58 g/L,1.98 g/Láh and 0.41,respectively with 91.21%sugar consumption.The total fatty acids in the yeast cells under the aerated condition were^50%higher than without aeration,irrespective the initial sugar concentration,whereas the ergosterol contents under aeration condition were^29%to 49%higher than those without aeration.
基金supported by the STS Project(KFJ-EW-STS-086)the Western Light Co-scholar(29Y406020)Program of the Chinese Academy of Sciences
文摘Soil salinity can limit plant growth and productivity. The cultivation of tolerant varieties is convenient and cost-effective for making good use of the saline soils.The sweet sorghum plant has a high tolerance for saline alkaline soils. The KF1210-3 and KF1210-4 early-maturity mutants of sweet sorghum were obtained via carbon ion irradiation. The study assesses the productivity of three sweet sorghum cultivars(KF1210-3, KF1210-4, and KFJTCK) which were grown in intermediate(4.6 d S m^(-1)) and high(11.9 d S m^(-1)) soil salinity. The sweet sorghum grown in the soil salinity of 4.6 d S m^(-1)produced 50.00–57.30 %greater fresh weight than that in the soil salinity of11.9 d S m^(-1), while the difference was not as obvious among the dry biomass of the three sweet sorghum cultivars. Moreover, the Brix degree of the sweet sorghum grown in the soil salinity of 11.9 d S m^(-1)was greater than that grown in the soil salinity of 4.6 d S m^(-1). The heavy ion irradiation experiment is of great significance in screening plant mutants, improving environmental conditions, and assessing the productivity. This process, in turn, aids in the understanding of the effects of the biochemical and physiological mechanisms of salt stress.
基金Supported by Key Research and Development Program of Hebei Province(18226603D)Modern Agricultural Science and Technology Innovation Project of Hebei Province(4-04-03)
文摘In order to study the effects of replacing different proportions of silage maize with silage sweet sorghum treated by different fermentation methods on the production performance and blood biochemical indexes of dairy cows,25 Chinese Holstein lactating cows were randomly divided into 5 groups,5 in each group.The control check (CK) was fed the basal diet;for the experimental group 1 and the experimental group 2,50% of the silage maize in the basal diet was replaced with the additive silage sweet sorghum and the conventional silage sweet sorghum,respectively;and as to the experimental group 3 and the experimental group 4,all the silage maize in the basal diet was replaced with additive silage sweet sorghum and conventional silage sweet sorghum,respectively.The preliminary trial period was 7 d,and the trial period was 35 d.The results showed that the experimental group 1 and the experimental group 3 had the dry matter intake significantly higher than that of the experimental group 2,the experimental group 4 and the CK ( P <0.05).The daily milk yields of the experimental group 1 and the experimental group 2 were significantly lower than that of the CK ( P <0.05),and the experimental group 3 and the experimental group 4 were significantly lower than the experimental group 1 and the experimental group 2 ( P <0.05).The milk protein percentage of the experimental group 2 was extremely significantly higher than that of the experimental group 4 ( P <0.01).The experimental group 1,the experimental group 2 and the experimental group 3 showed the blood glucose levels extremely significantly higher than that in the CK ( P <0.01).The blood urea nitrogen contents in the experimental group 2 and the experimental group 4 were significantly higher than those in the experimental group 1 and the CK ( P <0.01).There were no significant differences in other blood biochemical indexes between various groups ( P >0.05).It is feasible to use silage sweet sorghum to feed dairy cows,but the proportion should not be too large,and attention should be paid to the energy and nitrogen balance of the diet.
文摘The experiments were conducted to determine suitable sowing time in order to achieve high plant biomass and sugar content of sweet sorghum for bioethanol manufacture. The results showed that germination rate reached > 80% in all trial times (p > 0.05). The growth and development speed of sweet sorghum reduced when seeds were sowed in August and was significantly different from other sowing times (p < 0.05). Sowing from March to June obtained the highest plant height during all growth and development stages. Lodging and diseases observed in all periods of sowing, and planting began in July and August had lower percentage. In contrast, the productivity of fresh weight (1310.4 g/whole plant), sugar content (14.9% Brix), biomass yield (122.4 tons/ha) and theoretical converted ethanol yield (5 tons/ha) were the highest when sweet sorghum planted from March to June. It was observed that sowing sweet sorghum in four periods of month from March to June had the desirable biomass for bioethanol production.