Bioconvection plays an inevitable role in introducing sustainable and environment-friendly fuel cell technologies.Bio-mathematical modelling of such designs needs continuous refinements to achieve strong agreements in...Bioconvection plays an inevitable role in introducing sustainable and environment-friendly fuel cell technologies.Bio-mathematical modelling of such designs needs continuous refinements to achieve strong agreements in experimental and computational results.Actually,microorganisms transport a miscellaneous palette of ingredients in manufacturing industrial goods particularly in fertilizer industries.Heat transfer characteristics of molecular structure are measured by a physical phenomenon which is allied with the transpiration of heat within matter.Motivated by bioinspired fuel cells involved in near-surface flow phenomena,in the present article,we examine the transverse swimming of motile gyrotactic microorganisms numerically in a rheological Jeffery fluid near a stretching wall.The leading physical model is converted in a nonlinear system of ODEs through proper similarity alterations.A numerical technique called shooting method with R-K Fehlberg is applied via mathematical software and graphical presentations are obtained.The influence of all relative physical constraints on velocity,temperature,concentration,and volume fraction of gyrotactic microorganisms is expressed geometrically.It is found that heat and mass flux at the surface as well as density of motile microorganism’s declines for Brownian motion and thermophoresis parameter.Comparison in tabular form is made with existing literature to validate the results for limiting cases with convective boundary conditions.展开更多
In current study,the numerical computations of Reiner–Rivlin nanofluid flow through a rotational disk under the influence of thermal radiation and Arrhenius activation energy is considered.For innovative physical sit...In current study,the numerical computations of Reiner–Rivlin nanofluid flow through a rotational disk under the influence of thermal radiation and Arrhenius activation energy is considered.For innovative physical situations,the motile microorganisms are incorporated too.The multiple slip effects are considered in the boundary conditions.The bioconvection of motile microorganism is utilized alongside nanofluids to provide stability to enhanced thermal transportation.The Bioconvection pattern in various nanoparticles accredits novel applications of biotechnology like the synthesis of biological polymers,biosensors,fuel cells,petroleum engineering,and the natural environment.By deploying some suitable similarity transformation functions,the governing partial differential equations(PDEs)of the flow problem are rehabilitated into dimensionless forms.The accomplished ordinary differential equations(ODEs)are solved numerically through the bvp4c scheme via a built-in function in computational MATLAB software.The upshots of some prominent physical and bioconvection parameters including wall slip parameters,thermophoresis parameter,Brownian motion parameter,Reiner–Revlin nanofluid parameter,Prandtl number,Peclet number,Lewis number,bioconvection Lewis number,and the mixed convection parameter against velocity,temperature,nanoparticles concentration,and density of motile microorganism profiles are dichotomized and pondered through graphs and tables.The presented computations show that the velocity profiles are de-escalated by the wall slip parameters while the thermal and solutal fields are upgraded with augmentation in thermophoresis number and wall slip parameters.The presence of thermal radiation enhances the temperature profile of nanofluid.The concentration profile of nanoparticles is boosted by intensification in activation energy.Furthermore,the increasing values of bioconvection Lewis number and Peclet number decay the motile microorganisms’field.展开更多
文摘Bioconvection plays an inevitable role in introducing sustainable and environment-friendly fuel cell technologies.Bio-mathematical modelling of such designs needs continuous refinements to achieve strong agreements in experimental and computational results.Actually,microorganisms transport a miscellaneous palette of ingredients in manufacturing industrial goods particularly in fertilizer industries.Heat transfer characteristics of molecular structure are measured by a physical phenomenon which is allied with the transpiration of heat within matter.Motivated by bioinspired fuel cells involved in near-surface flow phenomena,in the present article,we examine the transverse swimming of motile gyrotactic microorganisms numerically in a rheological Jeffery fluid near a stretching wall.The leading physical model is converted in a nonlinear system of ODEs through proper similarity alterations.A numerical technique called shooting method with R-K Fehlberg is applied via mathematical software and graphical presentations are obtained.The influence of all relative physical constraints on velocity,temperature,concentration,and volume fraction of gyrotactic microorganisms is expressed geometrically.It is found that heat and mass flux at the surface as well as density of motile microorganism’s declines for Brownian motion and thermophoresis parameter.Comparison in tabular form is made with existing literature to validate the results for limiting cases with convective boundary conditions.
基金supported by the Government College University,Faisalabad,and Higher Education Commission,Pakistan.
文摘In current study,the numerical computations of Reiner–Rivlin nanofluid flow through a rotational disk under the influence of thermal radiation and Arrhenius activation energy is considered.For innovative physical situations,the motile microorganisms are incorporated too.The multiple slip effects are considered in the boundary conditions.The bioconvection of motile microorganism is utilized alongside nanofluids to provide stability to enhanced thermal transportation.The Bioconvection pattern in various nanoparticles accredits novel applications of biotechnology like the synthesis of biological polymers,biosensors,fuel cells,petroleum engineering,and the natural environment.By deploying some suitable similarity transformation functions,the governing partial differential equations(PDEs)of the flow problem are rehabilitated into dimensionless forms.The accomplished ordinary differential equations(ODEs)are solved numerically through the bvp4c scheme via a built-in function in computational MATLAB software.The upshots of some prominent physical and bioconvection parameters including wall slip parameters,thermophoresis parameter,Brownian motion parameter,Reiner–Revlin nanofluid parameter,Prandtl number,Peclet number,Lewis number,bioconvection Lewis number,and the mixed convection parameter against velocity,temperature,nanoparticles concentration,and density of motile microorganism profiles are dichotomized and pondered through graphs and tables.The presented computations show that the velocity profiles are de-escalated by the wall slip parameters while the thermal and solutal fields are upgraded with augmentation in thermophoresis number and wall slip parameters.The presence of thermal radiation enhances the temperature profile of nanofluid.The concentration profile of nanoparticles is boosted by intensification in activation energy.Furthermore,the increasing values of bioconvection Lewis number and Peclet number decay the motile microorganisms’field.