The intense research of lithium-ion batteries has been motivated by their successful applications in mobile devices and electronic vehicles.The emerging of intelligent control in kinds of devices brings new requiremen...The intense research of lithium-ion batteries has been motivated by their successful applications in mobile devices and electronic vehicles.The emerging of intelligent control in kinds of devices brings new requirements for battery systems.The high-energy lithium batteries are expected to respond or react under different environmental conditions.In this work,a tri-salt composite electrolyte is designed with a temperature switch function for intelligently temperature-controlled lithium batteries.Specifically,the halide Li_(3)YBr_(6)together with LiTFSI and LiNO_(3)works as active fillers in a low-melting-point polymer matrix(polyethyleneglycol dimethyl ether(PEGDME)and polyethylene oxide(PEO)),which is further filled into the pre-lithiated alumina fiber skeleton.Above 60°C,the composite electrolyte exists in the liquid state and fully contacts with the working electrodes on the liquid–solid interface,effectively minimizing the interfacial resistance and leading to high discharge capacity in the cell.The electrolyte is changed into a solid state below 30°C so that the ionic conductivity is significantly reduced and the interface resistance is increased dramatically on the solid–solid interface.Therefore,by simply adjusting the temperature,the cell can be turned“ON”or“OFF”intentionally.This novel function of the composite electrolyte has enlightening significance in developing intelligently temperature-controlled lithium batteries.展开更多
The robust admissibility analysis of a class of uncertain discrete-time switched linear singular(SLS) systems for arbitrary switching laws is addressed. The parameter uncertainty is assumed to be norm-bounded. First...The robust admissibility analysis of a class of uncertain discrete-time switched linear singular(SLS) systems for arbitrary switching laws is addressed. The parameter uncertainty is assumed to be norm-bounded. First, by using the switched Lyapunov function approach, some new sufficient conditions ensuring the nominal discrete-time SLS system to be regular, casual and asymptotically stable for arbitrary switching laws are derived in terms of linear matrix inequalities. Then, the robust admissibility condition for the uncertain discrete-time SLS systems is presented. The obtained results can be viewed as an extension of previous works on the switched Lyapunov function approach from the regular switched linear systems to the switched linear singular cases. Numerical examples show the reduced conservatism and effectiveness of the proposed conditions.展开更多
The paper presents modeling approach of a Single Ended Primary Inductance Converter (SEPIC) system. The complete model derivation of the SEPIC converter system has been presented in different modes of operation. Stead...The paper presents modeling approach of a Single Ended Primary Inductance Converter (SEPIC) system. The complete model derivation of the SEPIC converter system has been presented in different modes of operation. Steady state and small signal analysis was carried out on the converter dynamic equations using the method of Harmonic balance Technique. The steady state variables and their respective ripple quantities obtained were plotted against duty ratio D. The results obtained for a supply input voltage of 60 volts to the converter at a duty ratio of D = 0.8 , compares well with simulation results.展开更多
In this paper, a hybrid predictive controller is proposed for a class of uncertain switched nonlinear systems based on high-order differential state observers and Lyapunov functions. The main idea is to design an outp...In this paper, a hybrid predictive controller is proposed for a class of uncertain switched nonlinear systems based on high-order differential state observers and Lyapunov functions. The main idea is to design an output feedback bounded controller and a predictive controller for each subsystem using high-order differential state observers and Lyapunov functions, to derive a suitable switched law to stabilize the closed-loop subsystem, and to provide an explicitly characterized set of initial conditions. For the whole switched system, based on the high-order differentiator, a suitable switched law is designed to ensure the whole closed-loop’s stability. The simulation results for a chemical process show the validity of the controller proposed in this paper.展开更多
The paper deals with impulse switching function which are used as exciting functions of one- and multidimensional state-space models of power electronic converters. Obviously, these functions are harmonic but using po...The paper deals with impulse switching function which are used as exciting functions of one- and multidimensional state-space models of power electronic converters. Obviously, these functions are harmonic but using power converters they can be strongly non-harmonic, sometimes piecewise constants with zero spaces between them. Then, one deals with power series of time pulses. The impulse switching functions which are orthogonal ones can be derived from these series. The new impulse switching functions are created using Z-transform, inverse Z-transform and numerical series/sequences. The impulse switching functions created this way can be used for both steady- and transient state investigation of converters.展开更多
There are many papers related to stability, some on suppression or on stabilization are one type of them. Functional differential systems are common and important in practice. They are special situations of neutral di...There are many papers related to stability, some on suppression or on stabilization are one type of them. Functional differential systems are common and important in practice. They are special situations of neutral differential systems and generalization of ordinary differential systems. We discussed conditions on suppression on functional system with Markovian switching in our previous work: “Suppression of Functional System with Markovian Switching”. Based on it, by slightly modifying and adding some conditions, we get this paper. In this paper, we will study a functional system whose coefficient satisfies the local Lipschitz condition and the one-sided polynomial growth condition under Markovian switching. By introducing two appropriate intensity Brownian noise, we find the potential explosion system stabilized.展开更多
This paper investigates the finite-time H<sub>∞</sub> control problem of switched nonlinear systems via state-dependent switching and state feedback control. Unlike the existing approach based on time-dep...This paper investigates the finite-time H<sub>∞</sub> control problem of switched nonlinear systems via state-dependent switching and state feedback control. Unlike the existing approach based on time-dependent switching strategy, in which the switching instants must be given in advance, the state-dependent switching strategy is used to design switching signals. Based on multiple Lyapunov-like functions method, several criteria for switched nonlinear systems to be finite-time H<sub>∞</sub> control are derived. Finally, a numerical example with simulation results is provided to show the validity of the conclusions.展开更多
基金Financial support from the National Natural Science Foundation of China(22279065 and 21935006)is gratefully acknowledged.
文摘The intense research of lithium-ion batteries has been motivated by their successful applications in mobile devices and electronic vehicles.The emerging of intelligent control in kinds of devices brings new requirements for battery systems.The high-energy lithium batteries are expected to respond or react under different environmental conditions.In this work,a tri-salt composite electrolyte is designed with a temperature switch function for intelligently temperature-controlled lithium batteries.Specifically,the halide Li_(3)YBr_(6)together with LiTFSI and LiNO_(3)works as active fillers in a low-melting-point polymer matrix(polyethyleneglycol dimethyl ether(PEGDME)and polyethylene oxide(PEO)),which is further filled into the pre-lithiated alumina fiber skeleton.Above 60°C,the composite electrolyte exists in the liquid state and fully contacts with the working electrodes on the liquid–solid interface,effectively minimizing the interfacial resistance and leading to high discharge capacity in the cell.The electrolyte is changed into a solid state below 30°C so that the ionic conductivity is significantly reduced and the interface resistance is increased dramatically on the solid–solid interface.Therefore,by simply adjusting the temperature,the cell can be turned“ON”or“OFF”intentionally.This novel function of the composite electrolyte has enlightening significance in developing intelligently temperature-controlled lithium batteries.
基金The National Natural Science Foundation of China(No.60835001)the Key Project of Ministry of Education of China (No.108060)
文摘The robust admissibility analysis of a class of uncertain discrete-time switched linear singular(SLS) systems for arbitrary switching laws is addressed. The parameter uncertainty is assumed to be norm-bounded. First, by using the switched Lyapunov function approach, some new sufficient conditions ensuring the nominal discrete-time SLS system to be regular, casual and asymptotically stable for arbitrary switching laws are derived in terms of linear matrix inequalities. Then, the robust admissibility condition for the uncertain discrete-time SLS systems is presented. The obtained results can be viewed as an extension of previous works on the switched Lyapunov function approach from the regular switched linear systems to the switched linear singular cases. Numerical examples show the reduced conservatism and effectiveness of the proposed conditions.
文摘The paper presents modeling approach of a Single Ended Primary Inductance Converter (SEPIC) system. The complete model derivation of the SEPIC converter system has been presented in different modes of operation. Steady state and small signal analysis was carried out on the converter dynamic equations using the method of Harmonic balance Technique. The steady state variables and their respective ripple quantities obtained were plotted against duty ratio D. The results obtained for a supply input voltage of 60 volts to the converter at a duty ratio of D = 0.8 , compares well with simulation results.
文摘In this paper, a hybrid predictive controller is proposed for a class of uncertain switched nonlinear systems based on high-order differential state observers and Lyapunov functions. The main idea is to design an output feedback bounded controller and a predictive controller for each subsystem using high-order differential state observers and Lyapunov functions, to derive a suitable switched law to stabilize the closed-loop subsystem, and to provide an explicitly characterized set of initial conditions. For the whole switched system, based on the high-order differentiator, a suitable switched law is designed to ensure the whole closed-loop’s stability. The simulation results for a chemical process show the validity of the controller proposed in this paper.
文摘The paper deals with impulse switching function which are used as exciting functions of one- and multidimensional state-space models of power electronic converters. Obviously, these functions are harmonic but using power converters they can be strongly non-harmonic, sometimes piecewise constants with zero spaces between them. Then, one deals with power series of time pulses. The impulse switching functions which are orthogonal ones can be derived from these series. The new impulse switching functions are created using Z-transform, inverse Z-transform and numerical series/sequences. The impulse switching functions created this way can be used for both steady- and transient state investigation of converters.
文摘There are many papers related to stability, some on suppression or on stabilization are one type of them. Functional differential systems are common and important in practice. They are special situations of neutral differential systems and generalization of ordinary differential systems. We discussed conditions on suppression on functional system with Markovian switching in our previous work: “Suppression of Functional System with Markovian Switching”. Based on it, by slightly modifying and adding some conditions, we get this paper. In this paper, we will study a functional system whose coefficient satisfies the local Lipschitz condition and the one-sided polynomial growth condition under Markovian switching. By introducing two appropriate intensity Brownian noise, we find the potential explosion system stabilized.
文摘This paper investigates the finite-time H<sub>∞</sub> control problem of switched nonlinear systems via state-dependent switching and state feedback control. Unlike the existing approach based on time-dependent switching strategy, in which the switching instants must be given in advance, the state-dependent switching strategy is used to design switching signals. Based on multiple Lyapunov-like functions method, several criteria for switched nonlinear systems to be finite-time H<sub>∞</sub> control are derived. Finally, a numerical example with simulation results is provided to show the validity of the conclusions.