The construction of novel inorganic‐organic hybrid nanomaterials for synchronous photocatalyticremoval of heavy metal ions and organic pollutants has received significant attention.We successfullysynthesized gold‐lo...The construction of novel inorganic‐organic hybrid nanomaterials for synchronous photocatalyticremoval of heavy metal ions and organic pollutants has received significant attention.We successfullysynthesized gold‐loaded graphene oxide/PDPB(polymer poly(diphenylbutadiyne))composites(Au‐GO/PDPB)through a facile mechanical agitation and photoreduction method.The compositeswere characterized by XPS and TEM images,which confirmed the presence of GO and Au nanoparticleson the PDPB.The as‐prepared Au‐GO/PDPB composites displayed enhanced photocatalytic activity compared with that of pure PDPB for the synchronous photoreduction of hexavalent chromium(Cr(VI))and photo‐oxidation of phenol.We also determined the optimal loading mass of GO and Au nanoparticles on the PDPB;the Au1‐GO2/PDPB(2.0wt%GO and1.0wt%Au)composite displayed the best photocatalytic activity among all the catalysts.Our study provides a facile way to prepare inorganic‐organic composites for the synchronous photocatalytic removal of heavy metal ions and organic pollutants.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
Present photocatalysts for the synchronous cleanup of pharmaceuticals and heavy metals have several drawbacks,including inadequate reactive sites,inefficient electron–hole disassociation,and insufficient oxidation an...Present photocatalysts for the synchronous cleanup of pharmaceuticals and heavy metals have several drawbacks,including inadequate reactive sites,inefficient electron–hole disassociation,and insufficient oxidation and reduction power.In this research,we sought to address these issues by using a facile solvothermal-photoreduction route to develop an innovative plasmonic S-scheme heterojunction,Au/MIL-101(Fe)/BiOBr.The screened-out Au/MIL-101(Fe)/BiOBr(AMB-2)works in a durable and high-performance manner for both Cr(VI)and norfloxacin(NOR)eradication under visible light,manifesting up to 53.3 and 2 times greater Cr(VI)and NOR abatement rates,respectively,than BiOBr.Remarkably,AMB-2's ability to remove Cr(VI)in a Cr(VI)-NOR coexistence system is appreciably better than in a sole-Cr(VI)environment;the synergy among Cr(VI),NOR,and AMB-2 results in the better utilization of photo-induced carriers,yielding a desirable capacity for decontaminating Cr(VI)and NOR synchronously.The integration of MOF-based S-scheme heterojunctions and a plasmonic effect contributes to markedly reinforced photocatalytic ability by increasing the number of active sites,augmenting the visible-light absorbance,boosting the efficient disassociation and redistribution of powerful photo-carriers,and elevating the generation of reactive substances.We provide details of the photocatalytic mechanism,NOR decomposition process,and bio-toxicity of the intermediates.This synergistic strategy of modifying S-scheme heterojunctions with a noble metal opens new horizons for devising excellent MOF-based photosystems with a plasmonic effect for environment purification.展开更多
基金supported by the National Natural Science Foundation of China(21577036,21377038,21237003,21677048)the National Basic Research Program of China(973 Program,2013CB632403)+1 种基金State Key Research Development Program of China(2016YFA0204200)the Fundamental Research Funds for the Central Universities(22A201514021)~~
文摘The construction of novel inorganic‐organic hybrid nanomaterials for synchronous photocatalyticremoval of heavy metal ions and organic pollutants has received significant attention.We successfullysynthesized gold‐loaded graphene oxide/PDPB(polymer poly(diphenylbutadiyne))composites(Au‐GO/PDPB)through a facile mechanical agitation and photoreduction method.The compositeswere characterized by XPS and TEM images,which confirmed the presence of GO and Au nanoparticleson the PDPB.The as‐prepared Au‐GO/PDPB composites displayed enhanced photocatalytic activity compared with that of pure PDPB for the synchronous photoreduction of hexavalent chromium(Cr(VI))and photo‐oxidation of phenol.We also determined the optimal loading mass of GO and Au nanoparticles on the PDPB;the Au1‐GO2/PDPB(2.0wt%GO and1.0wt%Au)composite displayed the best photocatalytic activity among all the catalysts.Our study provides a facile way to prepare inorganic‐organic composites for the synchronous photocatalytic removal of heavy metal ions and organic pollutants.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
基金supported by the National Natural Science Foundation of China(U1809214)the Natural Science Foundation of Zhejiang Province(LY20E080014)the Science and Technology Project of Zhoushan City(2022C41011).
文摘Present photocatalysts for the synchronous cleanup of pharmaceuticals and heavy metals have several drawbacks,including inadequate reactive sites,inefficient electron–hole disassociation,and insufficient oxidation and reduction power.In this research,we sought to address these issues by using a facile solvothermal-photoreduction route to develop an innovative plasmonic S-scheme heterojunction,Au/MIL-101(Fe)/BiOBr.The screened-out Au/MIL-101(Fe)/BiOBr(AMB-2)works in a durable and high-performance manner for both Cr(VI)and norfloxacin(NOR)eradication under visible light,manifesting up to 53.3 and 2 times greater Cr(VI)and NOR abatement rates,respectively,than BiOBr.Remarkably,AMB-2's ability to remove Cr(VI)in a Cr(VI)-NOR coexistence system is appreciably better than in a sole-Cr(VI)environment;the synergy among Cr(VI),NOR,and AMB-2 results in the better utilization of photo-induced carriers,yielding a desirable capacity for decontaminating Cr(VI)and NOR synchronously.The integration of MOF-based S-scheme heterojunctions and a plasmonic effect contributes to markedly reinforced photocatalytic ability by increasing the number of active sites,augmenting the visible-light absorbance,boosting the efficient disassociation and redistribution of powerful photo-carriers,and elevating the generation of reactive substances.We provide details of the photocatalytic mechanism,NOR decomposition process,and bio-toxicity of the intermediates.This synergistic strategy of modifying S-scheme heterojunctions with a noble metal opens new horizons for devising excellent MOF-based photosystems with a plasmonic effect for environment purification.