Discovery of materials using“bottom-up”or“top-down”approach is of great interest in materials science.Layered materials consisting of two-dimensional(2D)building blocks provide a good platform to explore new mater...Discovery of materials using“bottom-up”or“top-down”approach is of great interest in materials science.Layered materials consisting of two-dimensional(2D)building blocks provide a good platform to explore new materials in this respect.In van der Waals(vdW)layered materials,these building blocks are charge neutral and can be isolated from their bulk phase(top-down),but usually grow on substrate.In ionic layered materials,they are charged and usually cannot exist independently but can serve as motifs to construct new materials(bottom-up).In this paper,we introduce our recently constructed databases for 2D material-substrate interface(2DMSI),and 2D charged building blocks.For 2DMSI database,we systematically build a workflow to predict appropriate substrates and their geometries at substrates,and construct the 2DMSI database.For the 2D charged building block database,1208 entries from bulk material database are identified.Information of crystal structure,valence state,source,dimension and so on is provided for each entry with a json format.We also show its application in designing and searching for new functional layered materials.The 2DMSI database,building block database,and designed layered materials are available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00113.00188.展开更多
Considering both the effect of nonisothermal nature of the solid/liquid interface and the microscopic solvability theory (MicST), a further improved version of free dendritic growth model for pure materials was propos...Considering both the effect of nonisothermal nature of the solid/liquid interface and the microscopic solvability theory (MicST), a further improved version of free dendritic growth model for pure materials was proposed. Model comparison indicates that there is a higher temperature at the tip of dendrite predicted by the present model compared with the corresponding model with the isothermal solid/liquid interface assumption. This is attributed to the sidewise thermal diffusion, i.e. the gradient of temperature along the nonisothermal interface. Furthermore, it is indicated that the distinction between the stability criteria from MicST and marginal stability theory (MarST) is more significant with the increase of bath undercoolings. Model test also indicates that the present model can give an agreement with the available experimental data. It is finally concluded that the nonisothermal nature of the solid/liquid interface and the stability criterion from MicST should be taken into account in modeling free dendritic growth.展开更多
A composite beam is symmetric if both the material property and support are symmetric with respect to the middle point. In order to study the free vibration performance of the symmetric composite beams with different ...A composite beam is symmetric if both the material property and support are symmetric with respect to the middle point. In order to study the free vibration performance of the symmetric composite beams with different complex nonsmooth/discontinuous interfaces, we develop an R(x)-orthonormal theory, where R(x) is an integrable flexural rigidity function. The R(x)-orthonormal bases in the linear space of boundary functions are constructed, of which the second-order derivatives of the boundary functions are asked to be orthonormal with respect to the weight function R(x). When the vibration modes of the symmetric composite beam are expressed in terms of the R(x)-orthonormal bases we can derive an eigenvalue problem endowed with a special structure of the coefficient matrix A :=[aij ],aij= 0 if i + j is odd. Based on the special structure we can prove two new theorems, which indicate that the characteristic equation of A can be decomposed into the product of the characteristic equations of two sub-matrices with dimensions half lower. Hence, we can sequentially solve the natural frequencies in closed-form owing to the specialty of A. We use this powerful new theory to analyze the free vibration performance and the vibration modes of symmetric composite beams with three different interfaces.展开更多
We choose a Si/Ge interface as a research object to investigate the influence of interface disorder on thermal boundary conductance.In the calculations,the diffuse mismatch model is used to study thermal boundary cond...We choose a Si/Ge interface as a research object to investigate the influence of interface disorder on thermal boundary conductance.In the calculations,the diffuse mismatch model is used to study thermal boundary conductance between two non-metallic materials,while the phonon dispersion relationship is calculated by the first-principles density functional perturbation theory.The results show that interface disorder limits thermal transport.The increase of atomic spacing at the interface results in weakly coupled interfaces and a decrease in the thermal boundary conductance.This approach shows a simplistic method to investigate the relationship between microstructure and thermal conductivity.展开更多
The behavior of soil-structure interface plays a major role in the definition of soil-structure interaction. In this paper a bi-potential surface elasto-plastic model for soil-structure interface is proposed in order ...The behavior of soil-structure interface plays a major role in the definition of soil-structure interaction. In this paper a bi-potential surface elasto-plastic model for soil-structure interface is proposed in order to describe the interface deformation behavior,including strain softening and normal dilatancy. The model is formulated in the framework of generalized potential theory,in which the soil-structure interface problem is regard as a two-dimensional mathematical problem in stress field,and plastic state equations are used to replace the traditional field surface. The relation curves of shear stress and tangential strain are fitted by a piecewise function composed by hyperbolic functions and hyperbolic secant functions,while the relation curves of normal strain and tangential strain are fitted by another piecewise function composed by quadratic functions and hyperbolic secant functions. The approach proposed has the advantage of deriving an elastoplastic constitutive matrix without postulating the plastic potential functions and yield surface. Moreover,the mathematical principle is clear,and the entire model parameters can be identified by experimental tests. Finally,the predictions of the model have been compared with experimental results obtained from simple shear tests under normal stresses,and results show the model is reasonable and practical.展开更多
Density functional theory calculations are performed to study the structural, electronic and magnetic properties of hexagonal NiAs type and cubic zinc blende type MnSb structure and interface of zinc blende MnSb with ...Density functional theory calculations are performed to study the structural, electronic and magnetic properties of hexagonal NiAs type and cubic zinc blende type MnSb structure and interface of zinc blende MnSb with GaSb(001). We used generalized gradiant approximation to calculate the exchange-correlation term in bulk and interface determination. The zinc blende structure of MnSb is found to be ferromagnetic half-metal with a total moment of 4 μB per formula unit. Results show that the half-metallicity character is preserved at MnSb/GaSb(001) interface. The magnetic moment of Mn atom in interface is reduced and the magnetic moment of the interface Sb atom is equal to the average of the corresponding bulk values in two sides of the interface. The band alignment properties are also computed and a rather large minority valance band offset of about 1.25 eV is obtained in this heterojunction.展开更多
Catechol adsorbed on TiO_(2)is one of the simplest models to explore the relevant properties of dye-sensitized solar cells.However,the effects of water and defects on the electronic levels and the excitonic properties...Catechol adsorbed on TiO_(2)is one of the simplest models to explore the relevant properties of dye-sensitized solar cells.However,the effects of water and defects on the electronic levels and the excitonic properties of the catechol/TiO_(2)interface have been rarely explored.Here,we investigate four catechol/TiO_(2)interfaces aiming to study the influence of coverage,water,and defects on the electronic levels and the excitonic properties of the catechol/TiO_(2)interface through the first-principles many-body Green’s function theory.We find that the adsorption of catechol on the rutile(110)surface increases the energies of both the TiO_(2)valence band maximum and conduction band minimum by approximately 0.7 eV.The increasing coverage and the presence of water can reduce the optical absorption of charge-transfer excitons with maximum oscillator strength.Regarding the reduced hydroxylated TiO_(2)substrate,the conduction band minimum decreases greatly,resulting in a sub-bandgap of 2.51 eV.The exciton distributions in the four investigated interfaces can spread across several unit cells,especially for the hydroxylated TiO2substrate.Although the hydroxylated TiO_(2)substrate leads to a lower open-circuit voltage,it may increase the separation between photogenerated electrons and holes and may therefore be beneficial for improving the photovoltaic efficiency by controlling its concentration.Our results may provide guidance for the design of highly efficient solar cells in future.展开更多
Al coating on U surfaces is one of the methods to protect U against environmental corrosion. The behaviors of hydrogen and oxygen impurities near the Al/α-U interface have been studied in the density functional theor...Al coating on U surfaces is one of the methods to protect U against environmental corrosion. The behaviors of hydrogen and oxygen impurities near the Al/α-U interface have been studied in the density functional theory framework. It turns out that U vacancies tend to segregate to the interface with segregation energies of around 0.5-0.8 eV. The segregated U vacancy can act as a sink for H and O impurities, which is saturated when filled with 8 H or 6 O atoms, respectively.Moreover, the O impurities tend to stay in the Al layer while the H impurities prefer to diffuse into the U lattice, suggesting that the Al coating can play a significant role against oxidation but not against hydrogenation of U.展开更多
Based on closed-orbit theory, the influence of an interface modifier on the photodetachment of H^- in an electric field near a metal surface is studied. It is demonstrated that the interface strengthens the oscillatio...Based on closed-orbit theory, the influence of an interface modifier on the photodetachment of H^- in an electric field near a metal surface is studied. It is demonstrated that the interface strengthens the oscillations in the photodetachment cross section. However, when the electric field environments are different, the strengthening oscillations are caused by different sources. When the electric field direction is upward, the interface enhances the oscillations by shortening the period and the action of the closed orbit. When the electric field direction is downward, the interface strengthens the oscillations either by extending the coherent energy range or by increasing the total number of the closed orbits. We hope that our results will be conducive to the understanding of the photodetachment process of negative ions near interfaces, cavities and ion traps.展开更多
According to the closed-orbit theory, we study the influence of elastic interface on the photodetachment of H- near a metallic sphere surface. First, we give a clear physical description of the detached electron movem...According to the closed-orbit theory, we study the influence of elastic interface on the photodetachment of H- near a metallic sphere surface. First, we give a clear physical description of the detached electron movement between the elastic interface and the metallic sphere surface. Then we put forward an analytical formula for calculating the photodetachment cross section of this system. Our study suggests that the photodetachment cross section of H is changed with the distance between the elastic interface and H^-. Compared with the photodetachment cross section of H^- near a metallic sphere surface without the elastic interface, the cross section of our system oscillates and its oscillation is strengthened with the decrease of the distance from the elastic interface to H^-. In additon, our calcuation results suggest that the influence of the elastic interface becomes much more significant when it is located in the lower half space rather than in the upper half space. Therefore, we can control the photodetachment of H^- near a metallic sphere surface by changing the position of the elastic interface. We hope that our work is conducive to the understanding of the photodetachment process of negative ions near interfaces, cavities and ion traps.展开更多
Being a wide variety of thin-layered interconnection components in electronics packaging with relatively small scale and heterogeneous materials, conventional numerical methods may be time consuming and even inefficac...Being a wide variety of thin-layered interconnection components in electronics packaging with relatively small scale and heterogeneous materials, conventional numerical methods may be time consuming and even inefficacious to obtain an accurate prediction for the interface behavior under mechanical and/or thermal loading. Rather than resort to a fully spatial discretization in the vicinity of this interface zone, an interface model was proposed within the framework of micropolar theory by introducing discontinuous approximation. A fracture description was used to represent the microscopic failure progress inside the interface. The micropolar interface model was then numerically implemented with the finite element method. As an application, the interface behavior of a packaging system with anisotropic conductive adhesive (ACA) joint was analyzed, demonstrating its applicability and great efficiency.展开更多
The problem of privacy in social networks is well documented within literature;users have pri- vacy concerns however, they consistently disclose their sensitive information and leave it open to unintended third partie...The problem of privacy in social networks is well documented within literature;users have pri- vacy concerns however, they consistently disclose their sensitive information and leave it open to unintended third parties. While numerous causes of poor behaviour have been suggested by re- search the role of the User Interface (UI) and the system itself is underexplored. The field of Per- suasive Technology would suggest that Social Network Systems persuade users to deviate from their normal or habitual behaviour. This paper makes the case that the UI can be used as the basis for user empowerment by informing them of their privacy at the point of interaction and remind- ing them of their privacy needs. The Theory of Planned Behaviour is introduced as a potential theoretical foundation for exploring the psychology behind privacy behaviour as it describes the salient factors that influence intention and action. Based on these factors of personal attitude, subjective norms and perceived control, a series of UIs are presented and implemented in con- trolled experiments examining their effect on personal information disclosure. This is combined with observations and interviews with the participants. Results from this initial, pilot experiment suggest groups with privacy salient information embedded exhibit less disclosure than the control group. This work reviews this approach as a method for exploring privacy behaviour and propos- es further work required.展开更多
The propagation of shear-horizontal(SH)waves in the periodic layered nanocomposite is investigated by using both the nonlocal integral model and the nonlocal differential model with the interface effect.Based on the t...The propagation of shear-horizontal(SH)waves in the periodic layered nanocomposite is investigated by using both the nonlocal integral model and the nonlocal differential model with the interface effect.Based on the transfer matrix method and the Bloch theory,the band structures for SH waves with both vertical and oblique incidences to the structure are obtained.It is found that by choosing appropriate interface parameters,the dispersion curves predicted by the nonlocal differential model with the interface effect can be tuned to be the same as those based on the nonlocal integral model.Thus,by propagating the SH waves vertically and obliquely to the periodic layered nanostructure,we could invert,respectively,the interface mass density and the interface shear modulus,by matching the dispersion curves.Examples are further shown on how to determine the interface mass density and the interface shear modulus in theory.展开更多
Very recently,experimental evidence showed that the hydrogen is retained in dithiol-terminated single-molecule junction under the widely adopted preparation conditions,which is in contrast to the accepted view[Nat.Che...Very recently,experimental evidence showed that the hydrogen is retained in dithiol-terminated single-molecule junction under the widely adopted preparation conditions,which is in contrast to the accepted view[Nat.Chem.11351(2019)].However,the hydrogen is generally assumed to be lost in the previous physical models of single-molecule junctions.Whether the retention of the hydrogen at the gold-sulfur interface exerts a significant effect on the theoretical prediction of spin transport properties is an open question.Therefore,here in this paper we carry out a comparative study of spin transport in M-tetraphenylporphyrin-based(M=V,Cr,Mn,Fe,and Co;M-TPP)single-molecule junction through Au-SR and Au-S(H)R bondings.The results show that the hydrogen at the gold-sulfur interface may dramatically affect the spin-filtering efficiency of M-TPP-based single-molecule junction,depending on the type of transition metal ions embedded into porphyrin ring.Moreover,we find that for the Co-TPP-based molecular junction,the hydrogen at the gold-sulfur interface has no obvious effect on transmission at the Fermi level,but it has a significant effect on the spin-dependent transmission dip induced by the quantum interference on the occupied side.Thus the fate of hydrogen should be concerned in the physical model according to the actual preparation condition,which is important for our fundamental understanding of spin transport in the single-molecule junctions.Our work also provides guidance in how to experimentally identify the nature of gold-sulfur interface in the single-molecule junction with spin-polarized transport.展开更多
Employing density functional theory, we study the tensile and fracture processes of the phase interfaces in Mg–Li binary alloy. The simulation presents the strain–stress relationships, the ideal tensile strengths, a...Employing density functional theory, we study the tensile and fracture processes of the phase interfaces in Mg–Li binary alloy. The simulation presents the strain–stress relationships, the ideal tensile strengths, and the fracture processes of three phase interfaces. The results show that the α/α and α/β interfaces have larger tensile strength than that of β/β interface. The fractures of both α/α and β/β interfaces are ductile fractures, while the α/β fractures abruptly._Further analyses show that the fracture of the α/β occurs at the interface.展开更多
In this study, density functional theory in improved flat waves’ framework has been used. First of all, characterization, elastic and half-metallic properties of the CrSb-ZB compound at (GGA & LDA) and GGA + U ap...In this study, density functional theory in improved flat waves’ framework has been used. First of all, characterization, elastic and half-metallic properties of the CrSb-ZB compound at (GGA & LDA) and GGA + U approximation are calculated. The elastic calculations indicate that the CrSb-ZB is a ductile material. However, the calculation of Deby temperature indicates that the CrSb-ZB is meta-stable. The half-metallicity character is also preserved at CrSb/InP (001) interface by GGA + U. The conduction band minimum (CBM) of CrSb in the minority spin case lies about 1.26 eV above that of GaSb, suggesting that the major spin can be injected into GaSb without being flipped to the conduction bands of the minor spin.展开更多
We have defined the environmental interface through the exchange processes between media forming this interface. Considering the environmental interface as a complex system we elaborated the advanced mathematical tool...We have defined the environmental interface through the exchange processes between media forming this interface. Considering the environmental interface as a complex system we elaborated the advanced mathematical tools for its modelling. We have suggested two coupled maps serving the exchange processes on the environmental interfaces spatially ranged from cellular to planetary level, i.e. 1) the map with diffusive coupling for energy exchange simulation and 2) the map with affinity, which is suitable for matter exchange processes at the cellular level. We have performed the dynamical analysis of the coupled maps using the Lyapunov exponent, cross sample as well as the permutation entropy in dependence on different map parameters. Finally, we discussed the map with affinity, which shows some features making it a promising toll in simulation of exchange processes on the environmental interface at the cellular level.展开更多
As well known in the petroleum industry and academia,Ni/ZnO catalysts have excellent desulfurization performance.However,the sulfur transfer mechanism of reactive adsorption desulfurization(RADS)that occurs on Ni/ZnO ...As well known in the petroleum industry and academia,Ni/ZnO catalysts have excellent desulfurization performance.However,the sulfur transfer mechanism of reactive adsorption desulfurization(RADS)that occurs on Ni/ZnO catalysts remains controversial.Herein,a periodic Ni nanorod supported on ZnO slab was built to represent the Ni/ZnO system,and density functional theory calculations were performed to study the sulfur transfer process and the role of H_(2)within the process.The results elucidate that the direct solid-state diffusion of S from Ni to interfacial oxygen vacancies(Ov)is more favorable than the hydrogenation of S to SH/H_(2)S on Ni and the subsequent H_(2)S desorption,and accordingly,H_(2)O is produced on Ni rather than on ZnO.Ab initio thermodynamics analysis shows that the hydrogen atmosphere applied in preparing Ni/ZnO catalysts greatly promotes the O_(v)formation on ZnO surface,which accounts for the presence of interfacial O_(v)in freshly prepared catalysts.Under RADS condition,hydrogenation of interfacial O atoms to form O-H groups facilitates the reverse spillover of these lattice O atoms from ZnO to Ni,accompanied with the interfacial O_(v)generation.In contrast to the classic S transfer mechanism via H_(2)S,the present work clearly demonstrates that the interfacial S transfer is a feasible reaction pathway in the RADS mechanism.More importantly,the existence of interfacial O_(v)is an essential prerequisite for this interfacial S diffusion,and H_(2)plays a key role in facilitating the O_(v)formation.展开更多
Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction...Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction are undermined since the surface-mantled,electronegative-OH groups hinder the charge transfer between transition metal atoms and nitrogen molecules.Herein,a smart interfacing strategy is proposed to construct a coupled heterointerface between LDH and 2D g-C_(3)N_(4),which is proven by density functional theory(DFT)investigations to be favorable for nitrogen adsorption and ammonia desorption compared with neat LDH surface.The interfaced LDH and g-C_(3)N_(4) is further hybridized with a self-standing TiO_(2) nanofibrous membrane(NM)to maximize the interfacial effect owing to its high porosity and large surface area.Profited from the synergistic superiorities of the three components,the LDH@C_(3)N_(4)@TiO_(2) NM delivers superior ammonia yield(2.07×10^(−9) mol s^(−1) cm^(−2))and Faradaic efficiency(25.3%),making it a high-efficiency,noble-metal-free catalyst system toward electrocatalytic nitrogen reduction.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61888102,52272172,and 52102193)the Major Program of the National Natural Science Foundation of China(Grant No.92163206)+2 种基金the National Key Research and Development Program of China(Grant Nos.2021YFA1201501 and 2022YFA1204100)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000)the Fundamental Research Funds for the Central Universities.
文摘Discovery of materials using“bottom-up”or“top-down”approach is of great interest in materials science.Layered materials consisting of two-dimensional(2D)building blocks provide a good platform to explore new materials in this respect.In van der Waals(vdW)layered materials,these building blocks are charge neutral and can be isolated from their bulk phase(top-down),but usually grow on substrate.In ionic layered materials,they are charged and usually cannot exist independently but can serve as motifs to construct new materials(bottom-up).In this paper,we introduce our recently constructed databases for 2D material-substrate interface(2DMSI),and 2D charged building blocks.For 2DMSI database,we systematically build a workflow to predict appropriate substrates and their geometries at substrates,and construct the 2DMSI database.For the 2D charged building block database,1208 entries from bulk material database are identified.Information of crystal structure,valence state,source,dimension and so on is provided for each entry with a json format.We also show its application in designing and searching for new functional layered materials.The 2DMSI database,building block database,and designed layered materials are available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00113.00188.
基金Project(51671075) supported by the National Natural Science Foundation of ChinaProject(E201446) supported by the Natural Science Foundation of Heilongjiang Province,China+1 种基金Project(SKLSP201606) supported by Fund of the State Key Laboratory of Solidification Processing in NWPU,ChinaProject(2016M590970) supported by China Postdoctoral Science Foundation
文摘Considering both the effect of nonisothermal nature of the solid/liquid interface and the microscopic solvability theory (MicST), a further improved version of free dendritic growth model for pure materials was proposed. Model comparison indicates that there is a higher temperature at the tip of dendrite predicted by the present model compared with the corresponding model with the isothermal solid/liquid interface assumption. This is attributed to the sidewise thermal diffusion, i.e. the gradient of temperature along the nonisothermal interface. Furthermore, it is indicated that the distinction between the stability criteria from MicST and marginal stability theory (MarST) is more significant with the increase of bath undercoolings. Model test also indicates that the present model can give an agreement with the available experimental data. It is finally concluded that the nonisothermal nature of the solid/liquid interface and the stability criterion from MicST should be taken into account in modeling free dendritic growth.
文摘A composite beam is symmetric if both the material property and support are symmetric with respect to the middle point. In order to study the free vibration performance of the symmetric composite beams with different complex nonsmooth/discontinuous interfaces, we develop an R(x)-orthonormal theory, where R(x) is an integrable flexural rigidity function. The R(x)-orthonormal bases in the linear space of boundary functions are constructed, of which the second-order derivatives of the boundary functions are asked to be orthonormal with respect to the weight function R(x). When the vibration modes of the symmetric composite beam are expressed in terms of the R(x)-orthonormal bases we can derive an eigenvalue problem endowed with a special structure of the coefficient matrix A :=[aij ],aij= 0 if i + j is odd. Based on the special structure we can prove two new theorems, which indicate that the characteristic equation of A can be decomposed into the product of the characteristic equations of two sub-matrices with dimensions half lower. Hence, we can sequentially solve the natural frequencies in closed-form owing to the specialty of A. We use this powerful new theory to analyze the free vibration performance and the vibration modes of symmetric composite beams with three different interfaces.
文摘We choose a Si/Ge interface as a research object to investigate the influence of interface disorder on thermal boundary conductance.In the calculations,the diffuse mismatch model is used to study thermal boundary conductance between two non-metallic materials,while the phonon dispersion relationship is calculated by the first-principles density functional perturbation theory.The results show that interface disorder limits thermal transport.The increase of atomic spacing at the interface results in weakly coupled interfaces and a decrease in the thermal boundary conductance.This approach shows a simplistic method to investigate the relationship between microstructure and thermal conductivity.
基金supported by the National Natural Science Foundation of ChinaYalona River Hydropower Development of Ertan Hydropower Development Company (No.50639050)
文摘The behavior of soil-structure interface plays a major role in the definition of soil-structure interaction. In this paper a bi-potential surface elasto-plastic model for soil-structure interface is proposed in order to describe the interface deformation behavior,including strain softening and normal dilatancy. The model is formulated in the framework of generalized potential theory,in which the soil-structure interface problem is regard as a two-dimensional mathematical problem in stress field,and plastic state equations are used to replace the traditional field surface. The relation curves of shear stress and tangential strain are fitted by a piecewise function composed by hyperbolic functions and hyperbolic secant functions,while the relation curves of normal strain and tangential strain are fitted by another piecewise function composed by quadratic functions and hyperbolic secant functions. The approach proposed has the advantage of deriving an elastoplastic constitutive matrix without postulating the plastic potential functions and yield surface. Moreover,the mathematical principle is clear,and the entire model parameters can be identified by experimental tests. Finally,the predictions of the model have been compared with experimental results obtained from simple shear tests under normal stresses,and results show the model is reasonable and practical.
文摘Density functional theory calculations are performed to study the structural, electronic and magnetic properties of hexagonal NiAs type and cubic zinc blende type MnSb structure and interface of zinc blende MnSb with GaSb(001). We used generalized gradiant approximation to calculate the exchange-correlation term in bulk and interface determination. The zinc blende structure of MnSb is found to be ferromagnetic half-metal with a total moment of 4 μB per formula unit. Results show that the half-metallicity character is preserved at MnSb/GaSb(001) interface. The magnetic moment of Mn atom in interface is reduced and the magnetic moment of the interface Sb atom is equal to the average of the corresponding bulk values in two sides of the interface. The band alignment properties are also computed and a rather large minority valance band offset of about 1.25 eV is obtained in this heterojunction.
基金supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2020L0609 and No.2020L0556)the Doctoral research funds of Jinzhong University(jzxybsjjxm2019005)the Basic Research Program in Shanxi Province under the Grant No.20210302124345。
文摘Catechol adsorbed on TiO_(2)is one of the simplest models to explore the relevant properties of dye-sensitized solar cells.However,the effects of water and defects on the electronic levels and the excitonic properties of the catechol/TiO_(2)interface have been rarely explored.Here,we investigate four catechol/TiO_(2)interfaces aiming to study the influence of coverage,water,and defects on the electronic levels and the excitonic properties of the catechol/TiO_(2)interface through the first-principles many-body Green’s function theory.We find that the adsorption of catechol on the rutile(110)surface increases the energies of both the TiO_(2)valence band maximum and conduction band minimum by approximately 0.7 eV.The increasing coverage and the presence of water can reduce the optical absorption of charge-transfer excitons with maximum oscillator strength.Regarding the reduced hydroxylated TiO_(2)substrate,the conduction band minimum decreases greatly,resulting in a sub-bandgap of 2.51 eV.The exciton distributions in the four investigated interfaces can spread across several unit cells,especially for the hydroxylated TiO2substrate.Although the hydroxylated TiO_(2)substrate leads to a lower open-circuit voltage,it may increase the separation between photogenerated electrons and holes and may therefore be beneficial for improving the photovoltaic efficiency by controlling its concentration.Our results may provide guidance for the design of highly efficient solar cells in future.
基金Project supported by Science Challenge Project of China(Grant No.TZ2016002)the National Key R&D Program of China(Grant No.2017YFB0702201)
文摘Al coating on U surfaces is one of the methods to protect U against environmental corrosion. The behaviors of hydrogen and oxygen impurities near the Al/α-U interface have been studied in the density functional theory framework. It turns out that U vacancies tend to segregate to the interface with segregation energies of around 0.5-0.8 eV. The segregated U vacancy can act as a sink for H and O impurities, which is saturated when filled with 8 H or 6 O atoms, respectively.Moreover, the O impurities tend to stay in the Al layer while the H impurities prefer to diffuse into the U lattice, suggesting that the Al coating can play a significant role against oxidation but not against hydrogenation of U.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11074104 and 10604045)the University Science & Technology Planning Program of Shandong Province of China (Grant No.J09LA02)the Discipline Construction Fund of Ludong University of China
文摘Based on closed-orbit theory, the influence of an interface modifier on the photodetachment of H^- in an electric field near a metal surface is studied. It is demonstrated that the interface strengthens the oscillations in the photodetachment cross section. However, when the electric field environments are different, the strengthening oscillations are caused by different sources. When the electric field direction is upward, the interface enhances the oscillations by shortening the period and the action of the closed orbit. When the electric field direction is downward, the interface strengthens the oscillations either by extending the coherent energy range or by increasing the total number of the closed orbits. We hope that our results will be conducive to the understanding of the photodetachment process of negative ions near interfaces, cavities and ion traps.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11074104 and 11374133)the Shandong Provincial Higher Educational Science and Technology Program,China (Grant No.J13LJ04)
文摘According to the closed-orbit theory, we study the influence of elastic interface on the photodetachment of H- near a metallic sphere surface. First, we give a clear physical description of the detached electron movement between the elastic interface and the metallic sphere surface. Then we put forward an analytical formula for calculating the photodetachment cross section of this system. Our study suggests that the photodetachment cross section of H is changed with the distance between the elastic interface and H^-. Compared with the photodetachment cross section of H^- near a metallic sphere surface without the elastic interface, the cross section of our system oscillates and its oscillation is strengthened with the decrease of the distance from the elastic interface to H^-. In additon, our calcuation results suggest that the influence of the elastic interface becomes much more significant when it is located in the lower half space rather than in the upper half space. Therefore, we can control the photodetachment of H^- near a metallic sphere surface by changing the position of the elastic interface. We hope that our work is conducive to the understanding of the photodetachment process of negative ions near interfaces, cavities and ion traps.
基金supported by the National Natural Science Foundation of China (Grant No.10702037)the Shanghai Pujiang Program(Grant No.08PJ14054)the Innovation Program of Shanghai Municipal Education Commission (Grant No.09YZ01)
文摘Being a wide variety of thin-layered interconnection components in electronics packaging with relatively small scale and heterogeneous materials, conventional numerical methods may be time consuming and even inefficacious to obtain an accurate prediction for the interface behavior under mechanical and/or thermal loading. Rather than resort to a fully spatial discretization in the vicinity of this interface zone, an interface model was proposed within the framework of micropolar theory by introducing discontinuous approximation. A fracture description was used to represent the microscopic failure progress inside the interface. The micropolar interface model was then numerically implemented with the finite element method. As an application, the interface behavior of a packaging system with anisotropic conductive adhesive (ACA) joint was analyzed, demonstrating its applicability and great efficiency.
文摘The problem of privacy in social networks is well documented within literature;users have pri- vacy concerns however, they consistently disclose their sensitive information and leave it open to unintended third parties. While numerous causes of poor behaviour have been suggested by re- search the role of the User Interface (UI) and the system itself is underexplored. The field of Per- suasive Technology would suggest that Social Network Systems persuade users to deviate from their normal or habitual behaviour. This paper makes the case that the UI can be used as the basis for user empowerment by informing them of their privacy at the point of interaction and remind- ing them of their privacy needs. The Theory of Planned Behaviour is introduced as a potential theoretical foundation for exploring the psychology behind privacy behaviour as it describes the salient factors that influence intention and action. Based on these factors of personal attitude, subjective norms and perceived control, a series of UIs are presented and implemented in con- trolled experiments examining their effect on personal information disclosure. This is combined with observations and interviews with the participants. Results from this initial, pilot experiment suggest groups with privacy salient information embedded exhibit less disclosure than the control group. This work reviews this approach as a method for exploring privacy behaviour and propos- es further work required.
基金Project supported by the National Natural Science Foundation of China(Nos.11472182 and 11272222)the China Scholarship Council(No.201907090051)。
文摘The propagation of shear-horizontal(SH)waves in the periodic layered nanocomposite is investigated by using both the nonlocal integral model and the nonlocal differential model with the interface effect.Based on the transfer matrix method and the Bloch theory,the band structures for SH waves with both vertical and oblique incidences to the structure are obtained.It is found that by choosing appropriate interface parameters,the dispersion curves predicted by the nonlocal differential model with the interface effect can be tuned to be the same as those based on the nonlocal integral model.Thus,by propagating the SH waves vertically and obliquely to the periodic layered nanostructure,we could invert,respectively,the interface mass density and the interface shear modulus,by matching the dispersion curves.Examples are further shown on how to determine the interface mass density and the interface shear modulus in theory.
基金the National Natural Science Foundation of China(Grant Nos.11674092,11804093,and 61764005)the Natural Science Foundation of Hunan Province,China(Grant No.2019JJ40006)+2 种基金the Scientific Research Fund of the Education Department of Hunan Province,China(Grant No.18B368)the Science and Technology Development Plan Project of Hengyang City,China(Grant No.2018KJ121)the Science and Technology Plan Project of Hunan Province,China(Grant No.2016TP1020).
文摘Very recently,experimental evidence showed that the hydrogen is retained in dithiol-terminated single-molecule junction under the widely adopted preparation conditions,which is in contrast to the accepted view[Nat.Chem.11351(2019)].However,the hydrogen is generally assumed to be lost in the previous physical models of single-molecule junctions.Whether the retention of the hydrogen at the gold-sulfur interface exerts a significant effect on the theoretical prediction of spin transport properties is an open question.Therefore,here in this paper we carry out a comparative study of spin transport in M-tetraphenylporphyrin-based(M=V,Cr,Mn,Fe,and Co;M-TPP)single-molecule junction through Au-SR and Au-S(H)R bondings.The results show that the hydrogen at the gold-sulfur interface may dramatically affect the spin-filtering efficiency of M-TPP-based single-molecule junction,depending on the type of transition metal ions embedded into porphyrin ring.Moreover,we find that for the Co-TPP-based molecular junction,the hydrogen at the gold-sulfur interface has no obvious effect on transmission at the Fermi level,but it has a significant effect on the spin-dependent transmission dip induced by the quantum interference on the occupied side.Thus the fate of hydrogen should be concerned in the physical model according to the actual preparation condition,which is important for our fundamental understanding of spin transport in the single-molecule junctions.Our work also provides guidance in how to experimentally identify the nature of gold-sulfur interface in the single-molecule junction with spin-polarized transport.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.50874079,51002102,and 61205179)the Natural Science Foundation of Shanxi Province,China(Grant No.2009021026)
文摘Employing density functional theory, we study the tensile and fracture processes of the phase interfaces in Mg–Li binary alloy. The simulation presents the strain–stress relationships, the ideal tensile strengths, and the fracture processes of three phase interfaces. The results show that the α/α and α/β interfaces have larger tensile strength than that of β/β interface. The fractures of both α/α and β/β interfaces are ductile fractures, while the α/β fractures abruptly._Further analyses show that the fracture of the α/β occurs at the interface.
文摘In this study, density functional theory in improved flat waves’ framework has been used. First of all, characterization, elastic and half-metallic properties of the CrSb-ZB compound at (GGA & LDA) and GGA + U approximation are calculated. The elastic calculations indicate that the CrSb-ZB is a ductile material. However, the calculation of Deby temperature indicates that the CrSb-ZB is meta-stable. The half-metallicity character is also preserved at CrSb/InP (001) interface by GGA + U. The conduction band minimum (CBM) of CrSb in the minority spin case lies about 1.26 eV above that of GaSb, suggesting that the major spin can be injected into GaSb without being flipped to the conduction bands of the minor spin.
文摘We have defined the environmental interface through the exchange processes between media forming this interface. Considering the environmental interface as a complex system we elaborated the advanced mathematical tools for its modelling. We have suggested two coupled maps serving the exchange processes on the environmental interfaces spatially ranged from cellular to planetary level, i.e. 1) the map with diffusive coupling for energy exchange simulation and 2) the map with affinity, which is suitable for matter exchange processes at the cellular level. We have performed the dynamical analysis of the coupled maps using the Lyapunov exponent, cross sample as well as the permutation entropy in dependence on different map parameters. Finally, we discussed the map with affinity, which shows some features making it a promising toll in simulation of exchange processes on the environmental interface at the cellular level.
基金supported by the National Natural Science Foundation of China(22178388,21776315)the Taishan Scholars Program of Shandong Province(tsqn201909065)the Fundamental Research Funds for the Central Universities(19CX05001A).
文摘As well known in the petroleum industry and academia,Ni/ZnO catalysts have excellent desulfurization performance.However,the sulfur transfer mechanism of reactive adsorption desulfurization(RADS)that occurs on Ni/ZnO catalysts remains controversial.Herein,a periodic Ni nanorod supported on ZnO slab was built to represent the Ni/ZnO system,and density functional theory calculations were performed to study the sulfur transfer process and the role of H_(2)within the process.The results elucidate that the direct solid-state diffusion of S from Ni to interfacial oxygen vacancies(Ov)is more favorable than the hydrogenation of S to SH/H_(2)S on Ni and the subsequent H_(2)S desorption,and accordingly,H_(2)O is produced on Ni rather than on ZnO.Ab initio thermodynamics analysis shows that the hydrogen atmosphere applied in preparing Ni/ZnO catalysts greatly promotes the O_(v)formation on ZnO surface,which accounts for the presence of interfacial O_(v)in freshly prepared catalysts.Under RADS condition,hydrogenation of interfacial O atoms to form O-H groups facilitates the reverse spillover of these lattice O atoms from ZnO to Ni,accompanied with the interfacial O_(v)generation.In contrast to the classic S transfer mechanism via H_(2)S,the present work clearly demonstrates that the interfacial S transfer is a feasible reaction pathway in the RADS mechanism.More importantly,the existence of interfacial O_(v)is an essential prerequisite for this interfacial S diffusion,and H_(2)plays a key role in facilitating the O_(v)formation.
基金financially supported by the National Natural Science Foundation of China(No.52173055 and 21961132024)the Natural Science Foundation of Shanghai(No.19ZR1401100)+3 种基金the International Cooperation Fund of Science and Technology Commission of Shanghai Municipality(No.21130750100)the Innovation Program of Shanghai Municipal Education Commission(No.2017-01-07-00-03-E00024)the Fundamental Research Funds for the Central Universities(No.18D310109)the DHU Distinguished Young Professor Program(No.LZA2020001).
文摘Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction are undermined since the surface-mantled,electronegative-OH groups hinder the charge transfer between transition metal atoms and nitrogen molecules.Herein,a smart interfacing strategy is proposed to construct a coupled heterointerface between LDH and 2D g-C_(3)N_(4),which is proven by density functional theory(DFT)investigations to be favorable for nitrogen adsorption and ammonia desorption compared with neat LDH surface.The interfaced LDH and g-C_(3)N_(4) is further hybridized with a self-standing TiO_(2) nanofibrous membrane(NM)to maximize the interfacial effect owing to its high porosity and large surface area.Profited from the synergistic superiorities of the three components,the LDH@C_(3)N_(4)@TiO_(2) NM delivers superior ammonia yield(2.07×10^(−9) mol s^(−1) cm^(−2))and Faradaic efficiency(25.3%),making it a high-efficiency,noble-metal-free catalyst system toward electrocatalytic nitrogen reduction.