期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
Over-sampling algorithm for imbalanced data classification 被引量:9
1
作者 XU Xiaolong CHEN Wen SUN Yanfei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第6期1182-1191,共10页
For imbalanced datasets, the focus of classification is to identify samples of the minority class. The performance of current data mining algorithms is not good enough for processing imbalanced datasets. The synthetic... For imbalanced datasets, the focus of classification is to identify samples of the minority class. The performance of current data mining algorithms is not good enough for processing imbalanced datasets. The synthetic minority over-sampling technique(SMOTE) is specifically designed for learning from imbalanced datasets, generating synthetic minority class examples by interpolating between minority class examples nearby. However, the SMOTE encounters the overgeneralization problem. The densitybased spatial clustering of applications with noise(DBSCAN) is not rigorous when dealing with the samples near the borderline.We optimize the DBSCAN algorithm for this problem to make clustering more reasonable. This paper integrates the optimized DBSCAN and SMOTE, and proposes a density-based synthetic minority over-sampling technique(DSMOTE). First, the optimized DBSCAN is used to divide the samples of the minority class into three groups, including core samples, borderline samples and noise samples, and then the noise samples of minority class is removed to synthesize more effective samples. In order to make full use of the information of core samples and borderline samples,different strategies are used to over-sample core samples and borderline samples. Experiments show that DSMOTE can achieve better results compared with SMOTE and Borderline-SMOTE in terms of precision, recall and F-value. 展开更多
关键词 imbalanced data density-based spatial clustering of applications with noise(DBSCAN) synthetic minority over sampling technique(SMOTE) over-sampling.
下载PDF
一种基于随机森林的OFDM系统自适应算法
2
作者 王波 刘潇然 +2 位作者 熊俊 辜方林 张晓瀛 《信号处理》 CSCD 北大核心 2024年第6期1007-1018,共12页
针对动态变化的信道环境,自适应正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统可以对子载波间隔和循环前缀长度进行调整,以最大化系统的吞吐量。为了能够快速准确地找到OFDM系统在不同信道环境中的最优子载波间... 针对动态变化的信道环境,自适应正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统可以对子载波间隔和循环前缀长度进行调整,以最大化系统的吞吐量。为了能够快速准确地找到OFDM系统在不同信道环境中的最优子载波间隔和循环前缀长度取值,本文提出了基于随机森林的OFDM系统自适应算法。随机森林算法基于集成的思想,能够有效处理高维度数据,并且具有高效率、高准确率和强泛化能力等优势,可以在复杂的数据场景下进行有效的分类。通过提取通信过程中信噪比、用户移动速度、最大多普勒频率和均方根时延扩展等信道特征与OFDM系统的子载波间隔和循环前缀长度组成训练样本,利用随机森林算法创建了OFDM系统参数多分类模型。所提模型可以根据输入的信道特征,实现OFDM系统子载波间隔和循环前缀长度的自适应分配。同时,针对训练样本主要集中在少数几个系统参数类别的情况,利用合成少数类过采样技术对较少样本数的类别进行扩充,满足了随机森林算法对训练样本类别平衡化的需求,进一步提高了算法的分类准确率。相比传统的自适应算法,所提算法具有更高的分类准确率和模型泛化能力。分析和仿真结果表明,与子载波间隔和循环前缀长度固定的OFDM系统相比,本文所提出的自适应算法能够准确选择出最优的系统参数,可以有效地减轻信道中符号间干扰和子载波间干扰的影响,从而在整个信噪比范围上提供最大的平均频谱效率。基于随机森林的OFDM系统自适应算法能够动态地分配子载波间隔和循环前缀长度,增强OFDM系统的通信质量和抗干扰能力,实现在不同信道环境下的可靠传输。 展开更多
关键词 正交频分复用 合成少数类过采样技术 随机森林 自适应算法
下载PDF
基于自适应GA-RF的用户流失预测研究
3
作者 赵峰 徐丹华 《信息通信技术》 2024年第1期58-63,72,共7页
针对电信用户流失问题,文章提出一种自适应遗传算法优化随机森林的预测模型。首先对Kaggle平台提供的电信数据进行数据清洗、特征提取及无量纲化处理,然后运用SMOTE过采样以解决数据不平衡问题,对决策树、随机森林等模型预测的召回率、F... 针对电信用户流失问题,文章提出一种自适应遗传算法优化随机森林的预测模型。首先对Kaggle平台提供的电信数据进行数据清洗、特征提取及无量纲化处理,然后运用SMOTE过采样以解决数据不平衡问题,对决策树、随机森林等模型预测的召回率、F1和AUC值进行对比。最后提出一种自适应遗传算法优化随机森林的电信用户流失预测模型。结果表明,自适应遗传算法优化的随机森林模型的预测性能优于单一分类模型。 展开更多
关键词 用户流失 自适应 遗传算法 随机森林 SMOTE
下载PDF
小样本下基于SMOTE-IGWO-RF的轮毂电机轴承故障诊断
4
作者 葛平淑 王朝阳 +3 位作者 王阳 张涛 薛红涛 夏晨迪 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第8期1-9,共9页
轮毂电机复杂多变的运行环境可能导致轴承故障而危及电动车辆行驶安全,为解决传统故障诊断方法在小样本条件下识别精度低的问题,提出一种基于SMOTE-IGWO-RF的轮毂电机轴承故障诊断方法。首先,通过合成少数过采样技术(SMOTE)扩展训练数据... 轮毂电机复杂多变的运行环境可能导致轴承故障而危及电动车辆行驶安全,为解决传统故障诊断方法在小样本条件下识别精度低的问题,提出一种基于SMOTE-IGWO-RF的轮毂电机轴承故障诊断方法。首先,通过合成少数过采样技术(SMOTE)扩展训练数据集,生成与真实样本分布相似的故障样本,并使用主成分分析(PCA)优化其时域和频域的特征。然后,通过引入非线性收敛因子和Levy飞行策略改进传统的灰狼优化算法(GWO),使用改进的灰狼优化算法(IGWO)优化随机森林(RF)模型的参数。最后,基于SMOTE-IGWO-RF的轮毂电机轴承故障诊断模型实现故障状态的识别,并在轮毂电机试验台架上进行了实验验证。结果表明,所提出的轮毂电机轴承故障诊断方法在7种转速工况下平均准确率均超过96%,具有高精度和稳定性。与遗传算法(GA)、粒子群优化算法(PSO)、GWO优化RF相比,提出的IGWO-RF模型在3种小样本训练集下的诊断准确率均超过90%,且准确率均明显高于其他3个对比算法,能够有效实现小样本条件下的轮毂电机轴承故障诊断。 展开更多
关键词 轮毂电机 轴承 合成少数类过采样技术(SMOTE) 改进灰狼优化算法(IGWO) 随机森林(RF) 故障诊断
下载PDF
特征提取及数据扩充的GA-LightGBM半导体质量检测方法
5
作者 程云飞 周丽芳 +2 位作者 赵波 谭佳伟 王淑影 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2024年第2期351-356,共6页
半导体质量检测数据具有的“相关性、冗余性、不平衡性”等特点,导致传统的分类算法效率较低,为此,提出一种基于特征提取及数据扩充的GA-LightGBM(genetic algorithm-light gradient boosting machine)质量检测方法。通过结合主成分分析... 半导体质量检测数据具有的“相关性、冗余性、不平衡性”等特点,导致传统的分类算法效率较低,为此,提出一种基于特征提取及数据扩充的GA-LightGBM(genetic algorithm-light gradient boosting machine)质量检测方法。通过结合主成分分析(principal component analysis,PCA)、合成少数类过采样技术(synthetic minority oversampling technique,SMOTE)、遗传算法和LightGBM这4种方法,实现对产品质量的有效识别。实验结果表明,相较于传统分类算法,提出的方法可以有效提升质量检测的效率。 展开更多
关键词 质量检测 主成分分析 合成少数类过采样技术 GA-LightGBM
下载PDF
基于SMOTE-SSA-CNN的开关柜故障诊断方法
6
作者 张玮 《电气传动》 2024年第10期83-89,共7页
开关柜多源监测数据包含丰富的设备运行状态信息,对其进行分析可实现开关柜故障诊断。提出一种基于SMOTE-SSA-CNN的开关柜故障诊断方法。首先,以开关柜电压、电流和温湿度等监测数据为基础,采用合成少数类样本过采样技术(SMOTE)算法对... 开关柜多源监测数据包含丰富的设备运行状态信息,对其进行分析可实现开关柜故障诊断。提出一种基于SMOTE-SSA-CNN的开关柜故障诊断方法。首先,以开关柜电压、电流和温湿度等监测数据为基础,采用合成少数类样本过采样技术(SMOTE)算法对原始数据集进行样本扩充,解决原始数据集中正负样本严重失衡的问题;然后引入麻雀搜索算法(SSA)对卷积神经网络(CNN)的卷积核大小与数量、全连接层神经元数量、学习率等超参数进行优化,提高模型故障诊断结果的准确率;最后,通过算例分析对建立的SMOTE-SSA-CNN模型性能进行评估,验证了所提方法对开关柜故障诊断的有效性,且与传统故障诊断方法相比,所提方法的收敛性较好,精度较高。 展开更多
关键词 开关柜 多源监测数据 合成少数类样本过采样技术算法 麻雀搜索算法 卷积神经网络
下载PDF
基于群体优化-概率神经网络的配电网设备状态研判模型 被引量:3
7
作者 解明辉 孙亚剑 +1 位作者 汤思杰 曹晖 《电工电能新技术》 CSCD 北大核心 2023年第6期79-87,共9页
随着我国电能需求量不断提升,配电网可靠性要求逐步提高,配电网设备状态研判难度也不断增大。针对该问题,本文提出一种基于群体优化-概率神经网络的配电网设备状态研判模型。引入改进后的人工鱼群算法对概率神经网络的平滑因子进行寻优... 随着我国电能需求量不断提升,配电网可靠性要求逐步提高,配电网设备状态研判难度也不断增大。针对该问题,本文提出一种基于群体优化-概率神经网络的配电网设备状态研判模型。引入改进后的人工鱼群算法对概率神经网络的平滑因子进行寻优,避免其因随机设置而导致研判精度不理想的问题。基于群体优化-概率神经网络算法建立设备状态研判模型,同时利用合成少数类过采样技术改善配电网数据集不平衡的问题,采用主成分分析法对数据集进行特征属性指标提取,减少冗余指标对状态研判精度和时间的影响。实验结果表明,本文模型在状态研判的精度和计算时间上均具有一定优势,能够在配电网的状态研判过程中起到辅助作用。 展开更多
关键词 状态研判模型 概率神经网络 人工鱼群算法 合成少数类过采样 主成分分析
下载PDF
面向不平衡数据集的改进型SMOTE算法 被引量:25
8
作者 王超学 张涛 马春森 《计算机科学与探索》 CSCD 2014年第6期727-734,共8页
针对SMOTE(synthetic minority over-sampling technique)在合成少数类新样本时存在的不足,提出了一种改进的SMOTE算法GA-SMOTE。该算法的关键将是遗传算法中的3个基本算子引入到SMOTE中,利用选择算子实现对少数类样本有区别的选择,使... 针对SMOTE(synthetic minority over-sampling technique)在合成少数类新样本时存在的不足,提出了一种改进的SMOTE算法GA-SMOTE。该算法的关键将是遗传算法中的3个基本算子引入到SMOTE中,利用选择算子实现对少数类样本有区别的选择,使用交叉、变异算子实现对合成样本质量的控制。结合GA-SMOTE与SVM(support vector machine)算法来处理不平衡数据的分类问题。UCI数据集上的大量实验表明,GA-SMOTE在新样本的整体合成效果上表现出色,有效提高了SVM在不平衡数据集上的分类性能。 展开更多
关键词 不平衡数据集 分类 遗传算子 少数类样本合成过采样技术(SMOTE) synthetic minority over-sampling technique (SMOTE)
下载PDF
构造性覆盖算法的SMOTE过采样方法 被引量:8
9
作者 严远亭 朱原玮 +2 位作者 吴增宝 张以文 张燕平 《计算机科学与探索》 CSCD 北大核心 2020年第6期975-984,共10页
如何提高对少数类样本的识别能力是不平衡数据分类中的一个研究热点。合成少数类过采样技术(SMOTE)是解决此类问题的代表性方法之一。近年来,不少研究者对SMOTE做出了一些改进,较好地提高了该方法的性能。然而,如何有效地选取典型少数... 如何提高对少数类样本的识别能力是不平衡数据分类中的一个研究热点。合成少数类过采样技术(SMOTE)是解决此类问题的代表性方法之一。近年来,不少研究者对SMOTE做出了一些改进,较好地提高了该方法的性能。然而,如何有效地选取典型少数类样本进行过采样仍然是一个值得研究的问题。此外,被孤立的少数样本在提高模型性能方面的潜在能力也没有得到足够的重视。针对上述问题,提出了基于构造性覆盖算法(CCA)的过采样技术CMOTE。CMOTE提供了两种不同策略下选择关键样本的方法:基于覆盖内样本个数的方法与基于覆盖密度的方法。在12个典型的不平衡数据集上验证CMOTE算法的性能。实验结果表明,CMOTE算法在总体上优于对比方法,并且通过强化关键样本对模型性能的影响增强了模型的泛化能力。 展开更多
关键词 不平衡数据 过采样技术 合成少数类过采样技术(SMOTE) 构造性覆盖算法(CCA)
下载PDF
基于地质大数据的泥石流灾害易发性评价 被引量:16
10
作者 张永宏 葛涛涛 +2 位作者 田伟 夏广浩 何静 《计算机应用》 CSCD 北大核心 2018年第11期3319-3325,共7页
在地质大数据背景下,为了更加精准、客观地评估泥石流易发程度,提出一种基于神经网络的区域泥石流易发性评价模型,并结合使用平均影响值算法(MIV)、遗传算法(GA)、Borderline-SMOTE算法提升模型精度。在预处理阶段使用Borderline-SMOTE... 在地质大数据背景下,为了更加精准、客观地评估泥石流易发程度,提出一种基于神经网络的区域泥石流易发性评价模型,并结合使用平均影响值算法(MIV)、遗传算法(GA)、Borderline-SMOTE算法提升模型精度。在预处理阶段使用Borderline-SMOTE算法处理非平衡数据集的分类问题,之后采用神经网络拟合主要指标与易发程度的非线性关系并结合遗传算法提升拟合速度,最后结合MIV算法定量分析指标与易发程度相关性。选取雅鲁藏布江中上游流域作为研究区域,实验结果显示,模型能够有效降低非平衡数据集的过拟合,优化原始输入维度,同时在拟合速度上有了很大提升。采用AUC指标检验评价结果,测试集的分类精度达到97.95%,说明模型能够在非平衡数据集下为评价研究区域泥石流易发程度提供参考。 展开更多
关键词 地质大数据 泥石流 易发性 平均影响值算法 遗传算法 Borderline-SMOTE算法
下载PDF
非平衡技术在高速网络入侵检测中的应用 被引量:3
11
作者 赵月爱 陈俊杰 穆晓芳 《计算机应用》 CSCD 北大核心 2009年第7期1806-1808,1812,共4页
针对现有的高速网络入侵检测系统丢包率高、检测速度慢以及检测算法对不同类型攻击检测的非平衡性等问题,提出了采用两阶段的负载均衡策略的检测模型。在线检测阶段对网络数据包按协议类型进行分流的检测,离线建模阶段对不同协议类型的... 针对现有的高速网络入侵检测系统丢包率高、检测速度慢以及检测算法对不同类型攻击检测的非平衡性等问题,提出了采用两阶段的负载均衡策略的检测模型。在线检测阶段对网络数据包按协议类型进行分流的检测,离线建模阶段对不同协议类型的数据进行学习建模,供在线部分检测。在讨论非平衡数据处理的各种采样技术基础上,采用改进后的过抽样少数样本合成过采样技术(SMOTE)对网络数据进行预处理,采用AdaBoost、随机森林算法等进行分类。另外对特征选取等方面进行了实验,结果表明SMOTE过抽样可提高各少数类的检测,随机森林算法分类效果好而且建模所用的时间稳定。 展开更多
关键词 高速网络 入侵检测 非平衡数据 少数样本合成过采样技术 集成学习 ADABOOST算法 随机森林算法
下载PDF
基于SMOTE算法和条件生成对抗网络的到港航班延误分类预测 被引量:7
12
作者 刘博 卢婷婷 +1 位作者 张兆宁 张健斌 《科学技术与工程》 北大核心 2021年第34期14843-14852,共10页
由于航班延误数据集类别分布不均,传统分类器的性能受到一定程度的制约。为了能够对到港航班延误情况进行精准预测,提出了一种基于合成少数类过采样技术(synthetic minority oversampling technique,SMOTE)算法和条件生成对抗网络(condi... 由于航班延误数据集类别分布不均,传统分类器的性能受到一定程度的制约。为了能够对到港航班延误情况进行精准预测,提出了一种基于合成少数类过采样技术(synthetic minority oversampling technique,SMOTE)算法和条件生成对抗网络(conditional generative adversarial nets,CGAN)的航班延误预测模型。首先,利用SMOTE算法对原始数据集进行上采样,并融合经过训练的CGAN生成指定样本数据集,缓解原始数据集中某些类别样本量少和数据非平衡等问题;再次,采用XGBoost模型在4种模式训练集上进行训练和超参数寻优;最后,以K近邻、支持向量机和随机森林为基准模型进行性能对比分析。经试验分析,通过分类器在融合样本集的训练,整体上可以在一定程度上提高模型的泛化性,尤其在轻度延误和中度延误类别中提升较为明显,与不采用融合方法比较,宏平均下的Precision、Recall、F_(1)-score值分别提升了0.16、0.29、0.24个百分点。实验结果表明,该方法能够有效地对航班延误非平衡数据进行建模,在保持模型整体性能较高的前提下,能够显著地提升少数类的预测能力,可以为空管、航空公司和机场等提供决策依据。 展开更多
关键词 航班延误 非平衡数据集 合成少数类过采样技术(SMOTE)算法 条件生成对抗网络 XGBoost模型 分类问题
下载PDF
基于SVM的高维不平衡数据集分类算法 被引量:3
13
作者 赵小强 张露 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第2期452-461,共10页
由于数据量的不断增长,出现了大量的不平衡高维数据,传统的数据挖掘分类算法在处理这些数据时,易受到样本分布和维数的影响,存在分类性能不佳的问题.提出一种针对不平衡高维数据集的改进支持向量机(Supported Vector Machine,SVM)分类算... 由于数据量的不断增长,出现了大量的不平衡高维数据,传统的数据挖掘分类算法在处理这些数据时,易受到样本分布和维数的影响,存在分类性能不佳的问题.提出一种针对不平衡高维数据集的改进支持向量机(Supported Vector Machine,SVM)分类算法,首先通过核函数将数据集映射到特征空间中,再引入改进的核SMOTE(Kernel Synthetic Minority Over-sampling Technique)算法而得到正类样本,使两类样本数目平衡化;然后将维数高的数据集通过稀疏表示的方法投影到低维的空间中,实现降维;最后根据空间的距离关系来确定在输入空间中合成样本的原像,再对得到的平衡样本集通过SVM来分类,通过仿真实验验证了该算法对于高维不平衡数据集有较优的分类性能. 展开更多
关键词 高维不平衡数据集 分类算法 支持向量机(SVM) 核SMOTE 稀疏表示
下载PDF
基于遗传算法改进的少数类样本合成过采样技术的非平衡数据集分类算法 被引量:19
14
作者 霍玉丹 谷琼 +1 位作者 蔡之华 袁磊 《计算机应用》 CSCD 北大核心 2015年第1期121-124,139,共5页
针对少数类样本合成过采样技术(SMOTE)在处理非平衡数据集分类问题时,为少数类的不同样本设置相同的采样倍率,存在一定的盲目性的问题,提出了一种基于遗传算法(GA)改进的SMOTE方法——GASMOTE。首先,为少数类的不同样本设置不同的采样倍... 针对少数类样本合成过采样技术(SMOTE)在处理非平衡数据集分类问题时,为少数类的不同样本设置相同的采样倍率,存在一定的盲目性的问题,提出了一种基于遗传算法(GA)改进的SMOTE方法——GASMOTE。首先,为少数类的不同样本设置不同的采样倍率,并将这些采样倍率取值的组合编码为种群中的个体;然后,循环使用GA的选择、交叉、变异等算子对种群进行优化,在达到停机条件时获得采样倍率取值的最优组合;最后,根据找到的最优组合对非平衡数据集进行SMOTE采样。在10个典型的非平衡数据集上进行的实验结果表明:与SMOTE算法相比,GASMOTE在F-measure值上提高了5.9个百分点,在G-mean值上提高了1.6个百分点;与Borderline-SMOTE算法相比,GASMOTE在F-measure值上提高了3.7个百分点,在G-mean值上提高了2.3个百分点。该方法可作为一种新的解决非平衡数据集分类问题的过采样技术。 展开更多
关键词 非平衡数据集 分类 少数类样本合成过采样技术 采样倍率 遗传算法
下载PDF
改进SMOTE的不平衡数据集成分类算法 被引量:32
15
作者 王忠震 黄勃 +2 位作者 方志军 高永彬 张娟 《计算机应用》 CSCD 北大核心 2019年第9期2591-2596,共6页
针对不平衡数据集的低分类准确性,提出基于改进合成少数类过采样技术(SMOTE)和AdaBoost算法相结合的不平衡数据分类算法(KSMOTE-AdaBoost)。首先,根据K近邻(K NN)的思想,提出噪声样本识别算法,通过样本的K个近邻中所包含的异类样本数目... 针对不平衡数据集的低分类准确性,提出基于改进合成少数类过采样技术(SMOTE)和AdaBoost算法相结合的不平衡数据分类算法(KSMOTE-AdaBoost)。首先,根据K近邻(K NN)的思想,提出噪声样本识别算法,通过样本的K个近邻中所包含的异类样本数目,对样本集中的噪声样本进行精确识别并予以滤除;其次,在过采样过程中基于聚类的思想将样本集划分为不同的子簇,根据子簇的簇心及其所包含的样本数目,在簇内样本与簇心之间进行新样本的合成操作。在样本合成过程中充分考虑类间和类内数据不平衡性,对样本及时修正以保证合成样本质量,平衡样本信息;最后,利用AdaBoost算法的优势,采用决策树作为基分类器,对平衡后的样本集进行训练,迭代多次直到满足终止条件,得到最终分类模型。选择G-mean、AUC作为评价指标,通过在6组KEEL数据集进行对比实验。实验结果表明,所提的过采样算法与经典的过采样算法SMOTE、自适应综合过采样技术(ADASYN)相比,G-means和AUC在4组中有3组最高;所提分类模型与现有的不平衡分类模型SMOTE-Boost,CUS-Boost,RUS-Boost相比,6组数据中:G-means均高于CUS-Boost和RUS-Boost,有3组低于SMOTE-Boost;AUC均高于SMOTE-Boost和RUS-Boost,有1组低于CUS-Boost。验证了所提的KSMOTE-AdaBoost具有更好的分类效果,且模型泛化性能更高。 展开更多
关键词 不平衡数据分类 合成少数类过采样技术 K近邻 过采样 聚类 ADABOOST算法
下载PDF
基于随机森林算法的函数缺陷定位 被引量:5
16
作者 李倩倩 牟永敏 赵晓永 《科学技术与工程》 北大核心 2020年第32期13278-13284,共7页
缺陷定位是软件调试过程中的重要阶段,通过挖掘程序执行过程中的动态信息与执行结果之间的关系,可以有效定位缺陷位置。由此提出一种基于随机森林算法的函数缺陷定位方法(function defect location based on random forest,FDLRF)。其... 缺陷定位是软件调试过程中的重要阶段,通过挖掘程序执行过程中的动态信息与执行结果之间的关系,可以有效定位缺陷位置。由此提出一种基于随机森林算法的函数缺陷定位方法(function defect location based on random forest,FDLRF)。其具体思想是:首先动态执行测试用例获取函数的动态调用图并生成DOT文件,解析该文件获取各个函数的轨迹信息,建立特征矩阵,同时利用合成少数类过采样技术(synthetic minority over-sampling technique,SMOTE)得到均衡样本,运用随机森林算法对数据进行训练,从而获得每个属性的贡献度信息,即函数缺陷概率。实验结果表明,该方法较传统算法在定位准确率有了一定程度的提升。 展开更多
关键词 缺陷定位 函数轨迹信息 随机森林 合成少数类过采样技术(SMOTE)算法
下载PDF
基于少数类过采样的倾向得分匹配插补法 被引量:4
17
作者 杨贵军 杜飞 孙玲莉 《统计与信息论坛》 CSSCI 北大核心 2021年第1期3-12,共10页
无回答在大数据应用中频繁发生。通常,实际数据的无回答率较低,在这样的情况下,采用倾向得分模型对无回答单元与回答单元进行匹配,易导致倾向得分匹配插补法的插补效果显著下降。为此,将合成少数类过采样算法的思想融入到倾向得分匹配... 无回答在大数据应用中频繁发生。通常,实际数据的无回答率较低,在这样的情况下,采用倾向得分模型对无回答单元与回答单元进行匹配,易导致倾向得分匹配插补法的插补效果显著下降。为此,将合成少数类过采样算法的思想融入到倾向得分匹配插补法中,提出基于少数类过采样的倾向得分匹配插补法。利用统计模拟与实证研究,在不同无回答率、插补重数和误差分布情形下,演示新插补法的统计性质和应用效果。统计模拟显示,新插补法具有明显高于倾向得分匹配插补法的精度,统计性质受无回答率、插补重数和误差分布的影响小。实证结果显示,新插补法在实际数据中具有较好的应用性。基于少数类过采样的倾向得分匹配插补法提供了处理无回答问题的新思路,并具有较好的扩展性。 展开更多
关键词 倾向得分匹配插补法 合成少数类过采样算法 无回答率 无回答机制
下载PDF
基于SMOTE算法的船舶结构可靠性优化设计 被引量:17
18
作者 龙周 陈松坤 王德禹 《上海交通大学学报》 EI CAS CSCD 北大核心 2019年第1期26-34,共9页
针对常规船舶结构可靠性优化设计由高度非线性带来的计算效率低、收敛困难的问题,提出了基于SMOTE(Synthetic Minority Oversampling Technique)算法的船舶结构可靠性优化设计方法.利用SMOTE算法建立了改进的BP (Back Propagation)神经... 针对常规船舶结构可靠性优化设计由高度非线性带来的计算效率低、收敛困难的问题,提出了基于SMOTE(Synthetic Minority Oversampling Technique)算法的船舶结构可靠性优化设计方法.利用SMOTE算法建立了改进的BP (Back Propagation)神经网络模型,以较少的样本点完成了极限状态函数的高度近似,克服了以往代理模型不能同时满足精度和效率要求的缺点,并通过数学算例验证了使用SMOTE算法建立BP神经网络模型的可行性和有效性.将改进的BP神经网络模型和模拟退火法嵌入单循环优化策略,并将其用于船舶舱段的可靠性优化设计,验证了所提出的可靠性优化设计方法的求解效率和精度,为大型工程结构的可靠性优化设计提供了思路. 展开更多
关键词 可靠性优化设计 极限状态函数 单循环优化策略 SMOTE算法
下载PDF
基于深度森林和DNA甲基化的癌症分类研究 被引量:8
19
作者 刘超 吴申 +1 位作者 郑一超 侯维岩 《计算机工程与应用》 CSCD 北大核心 2020年第13期189-193,共5页
作为人类基因组重要的表观遗传现象,DNA甲基化对基因的表达发挥着重要的调控作用,与癌症的关系密切。针对癌症基因组图谱(TCGA)庞大数据的类不平衡和高维度,致使假阴率大幅增加的问题,提出了一种混合采样的不平衡数据集成分类算法,使用... 作为人类基因组重要的表观遗传现象,DNA甲基化对基因的表达发挥着重要的调控作用,与癌症的关系密切。针对癌症基因组图谱(TCGA)庞大数据的类不平衡和高维度,致使假阴率大幅增加的问题,提出了一种混合采样的不平衡数据集成分类算法,使用合成少数过采样(SMOTE)算法生成新的少数类样本,得到扩充后的数据集,通过Tomek Link算法剔除样本扩充过程中引入的噪声,得到相对平衡的数据集。在此基础上,利用深度森林(gcForest)算法的级联森林结构,每一层选取两种随机森林结构,以增强模型的泛化能力,得到最终的分类模型。对6种癌症的DNA甲基化数据实验表明混合采样的不平衡数据集成分类算法在保证多数类分类精度的前提下,有效地提高了对于少数类的灵敏度。 展开更多
关键词 DNA甲基化 癌症基因组图谱(TCGA) 合成少数类采样技术(SMOTE) Tomek Link算法 gcForest算法
下载PDF
基于SMOTE算法和动态代理模型的船舶结构可靠性优化 被引量:11
20
作者 刘婧 王德禹 《中国舰船研究》 CSCD 北大核心 2020年第5期114-123,共10页
[目的]针对传统船舶结构可靠性优化设计中难以同时保证全局近似精度与计算效率的问题,提出一种基于少数类合成的过采样算法(SMOTE)和动态代理模型的可靠性优化策略。[方法]首先,通过最优拉丁超立方试验设计,在设计空间中选择初始样本点... [目的]针对传统船舶结构可靠性优化设计中难以同时保证全局近似精度与计算效率的问题,提出一种基于少数类合成的过采样算法(SMOTE)和动态代理模型的可靠性优化策略。[方法]首先,通过最优拉丁超立方试验设计,在设计空间中选择初始样本点,构造BP神经网络模型;然后,利用全局优化算法−模拟退火法(ASA)和可靠性优化设计的单循环法(SLA),找到当前全局最优解;最后,通过SMOTE算法增加最优解周围的样本点,更新代理模型以提高其在全局最优解附近的精度,直至优化迭代收敛。[结果]结果显示,SMOTE算法可以合成位于失效面附近的样本点,从而使BP神经网络模型更高效地拟合极限状态函数;SLA法将可靠性优化问题解耦成确定性优化问题,在保持计算精度的同时提高了计算效率。[结论]优化结果表明,采用所提方法在获得分析模型全局最优解的同时还能有效减少计算成本。 展开更多
关键词 船舶结构 可靠性优化 动态代理模型 少数类合成的过采样算法 BP神经网络模型 单循环法
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部