In this article, we investigate the existence of periodic solutions for a class of nonautonomous second-order differential systems with p(t)-Laplacian. Some multiplicity results are obtained by using critical point th...In this article, we investigate the existence of periodic solutions for a class of nonautonomous second-order differential systems with p(t)-Laplacian. Some multiplicity results are obtained by using critical point theory, which extend some known results.展开更多
In this paper,generalized the ideas of theory of distributions,defined locally convex space depend on operator T,given a new method to change the study of a unbounded operator to a bounded operator, and proved the nor...In this paper,generalized the ideas of theory of distributions,defined locally convex space depend on operator T,given a new method to change the study of a unbounded operator to a bounded operator, and proved the normal solvability of operator polynomial P (T) on FM space that depend on operator T.展开更多
基金Supported by the Natural Science Foundation of Anhui Province(1408085MA02, 1208085 MA13, 1308085MA01, 1308085QA15) Supported by the Key Foundation of Anhui Education Bureau (KJ2012A019, KJ2013A028)+2 种基金 Supported by the National Natural Science Foundation of China(11271371, 11301 004) Supported by the Research Fund for the Doctoral Program of Higher Education(20113401110001) Supported by 211 Project of Anhui University(02303129, 02303303-33030011, 02303902-39020011, KYXL2012004 XJYJXKC04, yfcl00012)
文摘In this article, we investigate the existence of periodic solutions for a class of nonautonomous second-order differential systems with p(t)-Laplacian. Some multiplicity results are obtained by using critical point theory, which extend some known results.
文摘In this paper,generalized the ideas of theory of distributions,defined locally convex space depend on operator T,given a new method to change the study of a unbounded operator to a bounded operator, and proved the normal solvability of operator polynomial P (T) on FM space that depend on operator T.