期刊文献+
共找到192篇文章
< 1 2 10 >
每页显示 20 50 100
Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment 被引量:73
1
作者 张振跃 查宏远 《Journal of Shanghai University(English Edition)》 CAS 2004年第4期406-424,共19页
We present a new algorithm for manifold learning and nonlinear dimensionality reduction. Based on a set of unorganized data points sampled with noise from a parameterized manifold, the local geometry of the manifold i... We present a new algorithm for manifold learning and nonlinear dimensionality reduction. Based on a set of unorganized data points sampled with noise from a parameterized manifold, the local geometry of the manifold is learned by constructing an approximation for the tangent space at each point, and those tangent spaces are then aligned to give the global coordinates of the data points with respect to the underlying manifold. We also present an error analysis of our algorithm showing that reconstruction errors can be quite small in some cases. We illustrate our algorithm using curves and surfaces both in 2D/3D Euclidean spaces and higher dimensional Euclidean spaces. We also address several theoretical and algorithmic issues for further research and improvements. 展开更多
关键词 nonlinear dimensionality reduction principal manifold tangent space subspace alignment singular value decomposition.
下载PDF
Orthogonal Discriminant Improved Local Tangent Space Alignment Based Feature Fusion for Face Recognition 被引量:1
2
作者 张强 蔡云泽 许晓鸣 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第4期425-433,共9页
Improved local tangent space alignment (ILTSA) is a recent nonlinear dimensionality reduction method which can efficiently recover the geometrical structure of sparse or non-uniformly distributed data manifold. In thi... Improved local tangent space alignment (ILTSA) is a recent nonlinear dimensionality reduction method which can efficiently recover the geometrical structure of sparse or non-uniformly distributed data manifold. In this paper, based on combination of modified maximum margin criterion and ILTSA, a novel feature extraction method named orthogonal discriminant improved local tangent space alignment (ODILTSA) is proposed. ODILTSA can preserve local geometry structure and maximize the margin between different classes simultaneously. Based on ODILTSA, a novel face recognition method which combines augmented complex wavelet features and original image features is developed. Experimental results on Yale, AR and PIE face databases demonstrate the effectiveness of ODILTSA and the feature fusion method. 展开更多
关键词 manifold learning linear extension orthogonal discriminant improved local tangent space alignment (ODILTSA) augmented Gabor-like complex wavelet transform face recognition information fusion
原文传递
Tangent space learning and generalization
3
作者 Xiaofei HE Binbin LIN 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2011年第1期27-42,共16页
Manifold learning has attracted considerable attention over the last decade,in which exploring the geometry and topology of the manifold is the central problem.Tangent space is a fundamental tool in discovering the ge... Manifold learning has attracted considerable attention over the last decade,in which exploring the geometry and topology of the manifold is the central problem.Tangent space is a fundamental tool in discovering the geometry of the manifold.In this paper,we will first review canonical manifold learning techniques and then discuss two fundamental problems in tangent space learning.One is how to estimate the tangent space from random samples,and the other is how to generalize tangent space to ambient space.Previous studies in tangent space learning have mainly focused on how to fit tangent space,and one has to solve a global equation for obtaining the tangent spaces.Unlike these approaches,we introduce a novel method,called persistent tangent space learning(PTSL),which estimates the tangent space at each local neighborhood while ensuring that the tangent spaces vary smoothly on the manifold.Tangent space can be viewed as a point on Grassmann manifold.Inspired from the statistics on Grassmann manifold,we use intrinsic sample total variance to measure the variation of estimated tangent spaces at a single point,and thus,the generalization problem can be solved by estimating the intrinsic sample mean on Grassmann manifold.We validate our methods by various experimental results both on synthetic and real data. 展开更多
关键词 tangent space learning machine learning manifold learning
原文传递
运动想象脑电图的空域特征迁移核学习方法
4
作者 杨思琪 罗天健 +1 位作者 严宣辉 杨光局 《计算机应用》 CSCD 北大核心 2024年第11期3354-3363,共10页
运动想象脑电(MI-EEG)信号在构建临床辅助康复的无创脑机接口(BCI)中获得了广泛关注。受限于不同被试者的MI-EEG信号样本分布存在差异,跨被试MI-EEG信号的特征学习成为研究重点。然而,现有的相关方法存在域不变特征表达能力弱、时间复... 运动想象脑电(MI-EEG)信号在构建临床辅助康复的无创脑机接口(BCI)中获得了广泛关注。受限于不同被试者的MI-EEG信号样本分布存在差异,跨被试MI-EEG信号的特征学习成为研究重点。然而,现有的相关方法存在域不变特征表达能力弱、时间复杂度较高等问题,无法直接应用于在线BCI。为解决该问题,提出黎曼切空间特征迁移核学习(TKRTS)方法,并基于此构建了高效的跨被试MI-EEG信号分类算法。TKRTS方法首先将MI-EEG信号协方差矩阵投影至黎曼空间,并在黎曼空间上对齐不同被试者的协方差矩阵,同时提取黎曼切空间(RTS)特征;随后,学习RTS特征集上的域不变核矩阵,从而获得完备的跨被试MI-EEG特征表达,并通过该矩阵训练核支持向量机(KSVM)进行分类。为验证TKRTS方法的可行性与有效性,在3个公开数据集上分别进行多源域-单目标域以及单源域-单目标域的实验,平均分类准确率分别提升了0.81个百分点和0.13个百分点。实验结果表明,与主流方法对比,TKRTS方法提升了平均分类准确率并保持相似的时间复杂度。此外,消融实验结果验证了TKRTS方法对跨被试特征表达的完备性和参数不敏感性,适合构建在线脑接机口。 展开更多
关键词 运动想象 脑电信号 跨被试 黎曼切空间特征 迁移核学习
下载PDF
面向相交多流形聚类的标签传播算法
5
作者 高小方 原玉梁 +1 位作者 温静 白雪飞 《计算机工程》 CAS CSCD 北大核心 2023年第6期90-98,共9页
经典的流形学习算法假设样本数据位于高维单流形上,但在现实生活中的真实数据通常位于高维多流形上,且这些数据往往相互交叠,导致流形学习算法效果不佳。传统的标签传播算法通过相似性矩阵构建连接矩阵,实现良好分离数据的聚类,但不能... 经典的流形学习算法假设样本数据位于高维单流形上,但在现实生活中的真实数据通常位于高维多流形上,且这些数据往往相互交叠,导致流形学习算法效果不佳。传统的标签传播算法通过相似性矩阵构建连接矩阵,实现良好分离数据的聚类,但不能有效聚类相互交叠的多流形数据。针对该问题,提出一种面向相交多流形的标签传播算法LPAMMC。采用局部主成分分析算法确定相交多流形数据的相交区域,并基于混合概率主成分分析(MPPCA)模型和多流形的拓扑结构划分相互交叠的子流形,构建“must-link”和“cannot-link”聚类约束,通过约束构建适合相交多流形数据的传播矩阵,实现标签传播算法。LPAMMC算法通过MPPCA模型和多流形拓扑结构划分出子流形,提高相交多流形数据的聚类精度,且MPPCA模型仅用于多流形数据的相交区域,降低了计算复杂度。实验结果表明,LPAMMC算法不仅具有标签传播算法速度快的特点,且能有效聚类相交多流形数据。在Two spirals数据集上的聚类精度、标准互信息和调整兰德系数取得了与SMMC算法相同的性能,运行时间缩短86.7个百分点。 展开更多
关键词 流形学习 多流形聚类 切空间 相交 标签传播
下载PDF
变工况滚动轴承异常状态局部切空间分类检测
6
作者 肖焕丽 《机械制造与自动化》 2023年第6期58-62,共5页
变工况滚动轴承异常状态数据在特征空间上呈现高维模糊分类特征,异常状态数据的子特征分区极为困难,增加了轴承异常检测的难度。为此,提出变工况滚动轴承异常状态局部切空间分类检测方法。采用局部切空间排列法,降维处理变工况滚动轴承... 变工况滚动轴承异常状态数据在特征空间上呈现高维模糊分类特征,异常状态数据的子特征分区极为困难,增加了轴承异常检测的难度。为此,提出变工况滚动轴承异常状态局部切空间分类检测方法。采用局部切空间排列法,降维处理变工况滚动轴承数据,使其在局部切空间满足分类空间映射条件,再利用深度置信网络,通过异常数据训练提取数据的异常特征。将提取的特征输入到SVM分类器中,利用非线性映射函数将二维特征矩阵映射到三维分类空间中再将超平面结构加入其中。在多项式核函数的引导下,找到对应的子特征分类区域,根据分类结果检测变工况滚动轴承的异常状态。实验结果表明:在调整轴承承载负荷前后,该方法针对异常状态的检测率较高,早期异常点检出所花时间较少。 展开更多
关键词 变工况滚动轴承 局部切空间法 数据降维 深度置信网络 SVM分类器 异常状态检测
下载PDF
Secret Sharing Scheme Based on the Differential Manifold
7
作者 Bin Li 《Applied Mathematics》 2023年第3期173-181,共9页
In this paper, the concepts of topological space and differential manifold are introduced, and it is proved that the surface determined by function F (x<sub>2</sub>, x<sub>2</sub>, …, x<sub... In this paper, the concepts of topological space and differential manifold are introduced, and it is proved that the surface determined by function F (x<sub>2</sub>, x<sub>2</sub>, …, x<sub>t</sub>) of class C<sup>r</sup> in Euelidean R<sup>t</sup> is a differential manifold. Using the intersection of the tangent plane and the hypernormal of the differential manifold to construct the shared master key of participants, an intuitive, secure and complete (t,n)-threshold secret sharing scheme is designed. The paper is proved to be safe, and the probability of successful attack of attackers is only 1/p<sup>t</sup><sup>-1</sup>. When the prime number p is sufficiently large, the probability is almost 0. The results show that this scheme has the characteristics of single-parameter representation of the master key in the geometric method, and is more practical and easy to implement than the Blakley threshold secret sharing scheme. 展开更多
关键词 Topological space Differential Manifold Secret Sharing tangent Plane Hypernormal
下载PDF
基于变分模态分解与流形学习的滚动轴承故障特征提取方法 被引量:23
8
作者 戚晓利 叶绪丹 +3 位作者 蔡江林 郑近德 潘紫微 张兴权 《振动与冲击》 EI CSCD 北大核心 2018年第23期133-140,共8页
提出了一种基于变分模态分解(VMD)和局部切空间排列算法(LTSA)相结合的滚动轴承早期故障诊断方法。首先利用VMD算法分解圆柱滚子轴承不同运行状态下的振动信号,通过求取瞬时频率均值并绘制特征曲线筛选出与原始信号最为相关的几个分量;... 提出了一种基于变分模态分解(VMD)和局部切空间排列算法(LTSA)相结合的滚动轴承早期故障诊断方法。首先利用VMD算法分解圆柱滚子轴承不同运行状态下的振动信号,通过求取瞬时频率均值并绘制特征曲线筛选出与原始信号最为相关的几个分量;然后,提取有效模态分量的时域指标和小波包频带分解能量所构成的频域指标,两者结合初步提取高维故障特征后,再应用LTSA对故障特征进行二次提取;最后输入到K-means分类器进行故障类型识别;通过对圆柱滚子轴承故障诊断的对比实验分析,发现:(1)与时频特征+LTSA、EMD+LTSA特征提取方法相比,VMD+LTSA方法在分类效果和识别精度上更具优势;(2) LTSA算法相比较于PCA、LPP、LE、ISOMAP和LLE这5种算法,其降维后的特征故障敏感性最好。研究结果表明所提出的方法在圆柱滚子轴承故障诊断方面具有一定的优越性。 展开更多
关键词 变分模态分解 流形学习 局部切空间排列算法 故障诊断 圆柱滚动轴承
下载PDF
局部切空间排列和支持向量机的故障诊断模型 被引量:46
9
作者 万鹏 王红军 徐小力 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第12期2789-2795,共7页
提出了一种非线性流形学习和支持向量机的故障诊断模型。基于机电系统振动信号时域与频域的20个特征参数构建高维特征空间,利用局部切空间排列的非线性流形学习算法提取出隐藏其中的低维流形,网格搜索算法进行维数和邻域点参数的优化,... 提出了一种非线性流形学习和支持向量机的故障诊断模型。基于机电系统振动信号时域与频域的20个特征参数构建高维特征空间,利用局部切空间排列的非线性流形学习算法提取出隐藏其中的低维流形,网格搜索算法进行维数和邻域点参数的优化,实现高维相空间中局部邻域参数的自适应选取,获得机电系统的故障特征。利用K折交叉验证和一对一法构造支持向量机多类故障分类器,采用径向基核函数支持向量机进行机电系统的故障诊断。应用于转子试验台的3种故障状态的识别并与其他故障诊断方法进行分析比较,结果表明基于局部切空间排列和支持向量机的机电系统故障诊断模型诊断精度可达到96.6667%,可以有效提取故障的敏感特征并解决机电系统故障样本缺乏的问题。 展开更多
关键词 机电系统 故障诊断 局部切空间排列算法 支持向量机 网格搜索
下载PDF
一种改进的局部切空间排列算法 被引量:36
10
作者 杨剑 李伏欣 王珏 《软件学报》 EI CSCD 北大核心 2005年第9期1584-1590,共7页
局部切空间排列算法(localtangentspacealignment,简称LTSA)是一种新的流形学习算法,能有效地学习出高维采样数据的低维嵌入坐标,但也存在一些不足,如不能处理样本数较大的样本集和新来的样本点.针对这些缺点,提出了一种基于划分的局部... 局部切空间排列算法(localtangentspacealignment,简称LTSA)是一种新的流形学习算法,能有效地学习出高维采样数据的低维嵌入坐标,但也存在一些不足,如不能处理样本数较大的样本集和新来的样本点.针对这些缺点,提出了一种基于划分的局部切空间排列算法(partitionallocaltangentspacealignment,简称PLTSA).它建立在VQPCA(vectorquantizationprincipalcomponentanalysis)算法和LTSA算法的基础上,利用X-均值算法把样本空间划分成一些相互有重叠的块,通过把样本点投影到它所在块的局部切空间上得到其局部低维坐标,对局部低维坐标施加平移、旋转、伸缩变换,求出整体低维坐标.PLTSA解决了VQPCA不能求出整体低维坐标和LTSA中大规模矩阵的特征值分解问题,且能够有效处理新来的样本点,这是很多流形学习算法所不能的.通过实验说明了PLTSA的有效性. 展开更多
关键词 维数约简 流形学习 主成分分析 局部主成分分析 局部切空间排列 X-均值
下载PDF
基于改进局部切空间排列的流形学习算法 被引量:9
11
作者 杜春 邹焕新 +2 位作者 孙即祥 周石琳 赵晶晶 《电子与信息学报》 EI CSCD 北大核心 2014年第2期277-284,共8页
局部切空间排列是一种广受关注的流形学习算法,其具备实现简单、全局最优等特点,但其难以有效处理稀疏采样或非均匀分布的高维观测数据。针对这一问题,该文提出一种改进的局部切空间排列算法。首先,提出一种基于L1范数的局部切空间估计... 局部切空间排列是一种广受关注的流形学习算法,其具备实现简单、全局最优等特点,但其难以有效处理稀疏采样或非均匀分布的高维观测数据。针对这一问题,该文提出一种改进的局部切空间排列算法。首先,提出一种基于L1范数的局部切空间估计方法,由于同时考虑了距离和结构因素,该方法得到的切空间较主成分分析方法更为准确。其次,在坐标排列步骤为了减小排列误差,设计了一种基于流形结构的加权坐标排列方案,并给出了具体的求解方法。基于人造数据和真实数据的实验表明,该算法能够有效地处理稀疏和非均匀分布的流形数据。 展开更多
关键词 模式识别 流形学习 降维 局部切空间排列(LTSA) L1范数
下载PDF
局部切空间排列算法用于轴承早期故障诊断 被引量:13
12
作者 杨庆 陈桂明 +1 位作者 何庆飞 刘鲭洁 《振动.测试与诊断》 EI CSCD 北大核心 2012年第5期831-835,867-868,共5页
提出了一种基于经验模态分解(EMD)和局部切空间排列算法(LTSA)相结合的滚动轴承早期故障诊断方法。首先,利用经验模态分解算法分解滚动轴承不同模式下的振动信号,得到各阶本征模态分量和残余分量,提取各分量中的幅域参数和频域参数组成... 提出了一种基于经验模态分解(EMD)和局部切空间排列算法(LTSA)相结合的滚动轴承早期故障诊断方法。首先,利用经验模态分解算法分解滚动轴承不同模式下的振动信号,得到各阶本征模态分量和残余分量,提取各分量中的幅域参数和频域参数组成原始特征参数集;然后,建立基于类别可分性测度的邻域参数k选取方法,运用局部切空间排列算法实现敏感特征提取;最后,应用该方法对滚动轴承不同状态下的振动数据进行特征提取和模式识别,对比分析改进后的局部切空间排列算法与主成分分析、核主元分析以及传统局部切空间排列算法的故障模式识别能力。分析结果表明,该方法提取的滚动轴承故障特征敏感性较好,提高了故障模式识别能力,实现了滚动轴承的早期故障诊断。 展开更多
关键词 特征提取 局部切空间排列算法 经验模态分解 模式识别 滚动轴承
下载PDF
增量式局部切空间排列算法在滚动轴承故障诊断中的应用 被引量:11
13
作者 杨庆 陈桂明 +1 位作者 童兴民 何庆飞 《机械工程学报》 EI CAS CSCD 北大核心 2012年第5期81-86,共6页
针对流形学习算法的批量处理方式无法利用已学习的流形结构实现新样本的增量处理问题,提出一种增量式局部切空间排列算法。阐述局部切空间排列算法的基本原理及一次性观测样本全局坐标矩阵迭代和低维坐标提取方法。在算法增量学习上,对... 针对流形学习算法的批量处理方式无法利用已学习的流形结构实现新样本的增量处理问题,提出一种增量式局部切空间排列算法。阐述局部切空间排列算法的基本原理及一次性观测样本全局坐标矩阵迭代和低维坐标提取方法。在算法增量学习上,对因新增样本加入而改变近邻点的样本进行全局坐标更新,建立新样本点的全局坐标;利用原始样本低维嵌入坐标和更新后的全局坐标矩阵对新增样本的低维嵌入坐标进行估计,并采用特征值迭代方法实现全局坐标更新。将增量式局部切空间排列算法应用于滚动轴承四种不同状态的模式识别中,提取的新增样本低维特征与特征空间聚集度分析结果表明:增量式局部切空间排列算法能够在保留一次性观测样本建立的低维流形基础上实现算法的增量式学习,同时对新增样本具有较高的识别率。 展开更多
关键词 局部切空间排列算法 增量式学习 模式识别 滚动轴承
下载PDF
基于正切空间的多尺度面实体形状匹配 被引量:13
14
作者 付仲良 邵世维 童春芽 《计算机工程》 CAS CSCD 北大核心 2010年第17期216-217,220,共3页
针对多尺度面状要素的一对多匹配问题,提出基于正切空间的多尺度面实体形状相似性匹配方法。通过源多边形外扩缓冲区搜索候选匹配集,对候选匹配集中的面要素进行组合,组合生成的多边形与源多边形进行形状匹配,从而获得最佳匹配集。实验... 针对多尺度面状要素的一对多匹配问题,提出基于正切空间的多尺度面实体形状相似性匹配方法。通过源多边形外扩缓冲区搜索候选匹配集,对候选匹配集中的面要素进行组合,组合生成的多边形与源多边形进行形状匹配,从而获得最佳匹配集。实验结果表明,该方法计算过程简单,容易实现且匹配效率较高。 展开更多
关键词 空间相似性 矢量匹配 正切空间 多尺度
下载PDF
基于敏感特征选择与流形学习维数约简的故障诊断 被引量:41
15
作者 苏祖强 汤宝平 姚金宝 《振动与冲击》 EI CSCD 北大核心 2014年第3期70-75,共6页
针对故障诊断中特征集包含非敏感特征和维数过高的问题,提出基于特征选择(Feature Selection,FS)与流形学习维数约简的故障诊断方法。提出一种改进的核空间距离测度特征选择方法(Improved Kernel Distance Measurement Feature Selectio... 针对故障诊断中特征集包含非敏感特征和维数过高的问题,提出基于特征选择(Feature Selection,FS)与流形学习维数约简的故障诊断方法。提出一种改进的核空间距离测度特征选择方法(Improved Kernel Distance Measurement Feature Selection,IKDM-FS),在核空间中计算样本类间距离和类内散度,优选出使样本类间距大、类内散度小的特征,并根据特征的敏感程度对特征进行加权。通过线性局部切空间排列算法(Linear Local Tangent Space Alignment,LLTSA)对由敏感特征组成的特征子集进行特征融合,提取出对故障分类更加敏感的融合特征,并输入加权k最近邻分类器(Weighted k Nearest Neighbor Classifier,WKNNC)进行故障识别。WKNNC具有比k最近邻分类器(k Nearest Neighbor Classifier,KNNC)更加稳定的识别精度。最后,通过滚动轴承故障模拟实验验证了该方法的有效性。 展开更多
关键词 故障诊断 特征选择 改进的核空间距离测度 线性局部切空间排列 加权k最近邻分类器
下载PDF
基于谱图理论的流形学习算法 被引量:76
16
作者 罗四维 赵连伟 《计算机研究与发展》 EI CSCD 北大核心 2006年第7期1173-1179,共7页
流形学习的主要目标是发现嵌入在高维数据空间的低维光滑流形.近年来基于谱图理论的学习算法受到研究者的广泛关注.介绍了流形与流形学习的关系,着重研究了几种有代表性的基于谱图理论的流形学习算法,并对算法进行了比较分析,最后进行... 流形学习的主要目标是发现嵌入在高维数据空间的低维光滑流形.近年来基于谱图理论的学习算法受到研究者的广泛关注.介绍了流形与流形学习的关系,着重研究了几种有代表性的基于谱图理论的流形学习算法,并对算法进行了比较分析,最后进行总结和对进一步的研究做了展望. 展开更多
关键词 流形学习 谱图理论 局部切空间 随机游走 特征映射
下载PDF
基于线性局部切空间排列维数化简的故障诊断 被引量:35
17
作者 李锋 汤宝平 陈法法 《振动与冲击》 EI CSCD 北大核心 2012年第13期36-40,61,共6页
为实现旋转机械故障诊断方法的自动化、高精度及通用性,提出基于线性局部切空间排列(Linear LocalTangent Space Alignment,LLTSA)维数化简的故障诊断模型。首先结合经验模式分解(Empirical Mode Decomposition,EMD)和自回归(Autoregres... 为实现旋转机械故障诊断方法的自动化、高精度及通用性,提出基于线性局部切空间排列(Linear LocalTangent Space Alignment,LLTSA)维数化简的故障诊断模型。首先结合经验模式分解(Empirical Mode Decomposition,EMD)和自回归(Autoregression,AR)模型系数构造全面表征不同故障特性的混合域特征集,再利用LLTSA将高维混合域特征集化简为故障区分度更好的低维特征矢量,并输入到最近邻分类器(K-nearest Neighbors Classifier,KNNC)中进行故障模式识别。所提出的诊断模型充分融合混合域特征融合在故障特征的全面提取、LLTSA在信息的有效化简及KNNC在分类决策方面的优势,实现诊断方法的自动化、高识别率及较好的通用性。用深沟球轴承不同部位、不同程度故障诊断实例验证该模型的有效性。 展开更多
关键词 混合域特征融合 线性局部切空间排列 维数化简 最近邻分类器 故障诊断
下载PDF
基于局部切空间排列和K-最近邻分类器的转子故障诊断方法 被引量:16
18
作者 孙斌 刘立远 牛翀 《中国机械工程》 EI CAS CSCD 北大核心 2015年第1期74-78,共5页
为了解决大型机械设备故障数据难以准确快速提取的问题,提出了一种基于局部切空间排列(LTSA)和K-最近邻分类器的转子故障诊断模型。首先基于转子的振动信号构造一个高维多征兆矩阵,利用LTSA提取高维矩阵的低维特征向量,映射在可视空间里... 为了解决大型机械设备故障数据难以准确快速提取的问题,提出了一种基于局部切空间排列(LTSA)和K-最近邻分类器的转子故障诊断模型。首先基于转子的振动信号构造一个高维多征兆矩阵,利用LTSA提取高维矩阵的低维特征向量,映射在可视空间里;然后将提取的低维特征向量输入K-最近邻分类器进行故障模式识别。试验和数据降维仿真过程表明,该模型的准确度和快速性均优于LTSA和神经网络以及LTSA和支持向量机组成的故障诊断模型。 展开更多
关键词 局部切空间排列 K-最近邻分类器 模式识别 故障诊断
下载PDF
基于改进距离的孤立点检测方法 被引量:12
19
作者 韦佳 彭宏 林毅申 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第9期25-30,共6页
局部切空间排列(LTSA)算法是一种有效的流形学习方法,但该算法对孤立点的存在非常敏感.为了增强LTSA算法对孤立点的鲁棒性,文中提出了一种基于改进距离的孤立点检测方法.该方法通过改进距离来度量样本点之间的距离,降低了样本点分布不... 局部切空间排列(LTSA)算法是一种有效的流形学习方法,但该算法对孤立点的存在非常敏感.为了增强LTSA算法对孤立点的鲁棒性,文中提出了一种基于改进距离的孤立点检测方法.该方法通过改进距离来度量样本点之间的距离,降低了样本点分布不均匀对孤立点检测算法的影响.实验结果表明,该数据预处理方法能有效地提高LTSA算法的鲁棒性,更好地挖掘数据集的本征特性,具有更好的数据可视化效果. 展开更多
关键词 数据预处理 孤立点检测 改进距离 流形学习 局部切空间排列
下载PDF
融入局部几何特征的流形谱聚类图像分割 被引量:8
20
作者 张荣国 姚晓玲 +2 位作者 赵建 胡静 刘小君 《模式识别与人工智能》 EI CSCD 北大核心 2020年第4期313-324,共12页
为了改善谱聚类图像分割的精准性和时效性,文中提出融入局部几何特征的流形谱聚类图像分割算法.首先,考虑图像数据的流形结构,在数据点的K近邻域内执行局部PCA,得到数据间本征维数的关系.然后,引入流形学习中的局部线性重构技术,通过混... 为了改善谱聚类图像分割的精准性和时效性,文中提出融入局部几何特征的流形谱聚类图像分割算法.首先,考虑图像数据的流形结构,在数据点的K近邻域内执行局部PCA,得到数据间本征维数的关系.然后,引入流形学习中的局部线性重构技术,通过混合线性分析器得到数据间局部切空间的相似性,结合二者构造含有局部几何特征的相似性矩阵.再利用Nystr m技术逼近待分割图像的特征向量,对构造的k个主特征向量执行谱聚类.最后,在Berkeley数据集上的对比实验验证文中算法的准确性和时效性优势. 展开更多
关键词 相似性矩阵 本征维数 局部切空间 流形谱聚类 图像分割
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部