An improved RRT∗algorithm,referred to as the AGP-RRT∗algorithm,is proposed to address the problems of poor directionality,long generated paths,and slow convergence speed in multi-axis robotic arm path planning.First,a...An improved RRT∗algorithm,referred to as the AGP-RRT∗algorithm,is proposed to address the problems of poor directionality,long generated paths,and slow convergence speed in multi-axis robotic arm path planning.First,an adaptive biased probabilistic sampling strategy is adopted to dynamically adjust the target deviation threshold and optimize the selection of random sampling points and the direction of generating new nodes in order to reduce the search space and improve the search efficiency.Second,a gravitationally adjustable step size strategy is used to guide the search process and dynamically adjust the step-size to accelerate the search speed of the algorithm.Finally,the planning path is processed by pruning,removing redundant points and path smoothing fitting using cubic B-spline curves to improve the flexibility of the robotic arm.Through the six-axis robotic arm path planning simulation experiments on the MATLAB platform,the results show that the AGP-RRT∗algorithm reduces 87.34%in terms of the average running time and 40.39%in terms of the average path cost;Meanwhile,under two sets of complex environments A and B,the average running time of the AGP-RRT∗algorithm is shortened by 94.56%vs.95.37%,and the average path cost is reduced by 55.28%vs.47.82%,which proves the effectiveness of the AGP-RRT∗algorithm in improving the efficiency of multi-axis robotic arm path planning.展开更多
An optical hydrogen sulfide(H_2S) sensor based on wavelength modulation spectroscopy with the second harmonic(2f) corrected by the first harmonic(1f) signal(WMS-2f/1f) is developed using a distributed feedback(DFB) la...An optical hydrogen sulfide(H_2S) sensor based on wavelength modulation spectroscopy with the second harmonic(2f) corrected by the first harmonic(1f) signal(WMS-2f/1f) is developed using a distributed feedback(DFB) laser emitting at 1.578 μm and a homemade gas cell with 1-m-long optical path length. The novel sensor is constructed by an electrical cabinet and an optical reflecting and receiving end. The DFB laser is employed for targeting a strong H_2S line at 6 336.62 cm^(-1) in the fundamental absorption band of H_2S. The sensor performance, including the minimum detection limit and the stability, can be improved by reducing the laser intensity drift and common mode noise by means of the WMS-2f/1f technique. The experimental results indicate that the linearity and response time of the sensor are 0.999 26 and 6 s(in concentration range of 15.2—45.6 mg/m^3), respectively. The maximum relative deviation for continuous detection(60 min) of 30.4 mg/m^3 H_2S is 0.48% and the minimum detection limit obtained by Allan variance is 79 μg/m^3 with optimal integration time of 32 s. The optical H_2S sensor can be applied to environmental monitoring and industrial production, and it has significance for real-time online detection in many fields.展开更多
基金supported by Foundation of key Laboratory of AI and Information Processing of Education Department of Guangxi(No.2022GXZDSY002)(Hechi University),Foundation of Guangxi Key Laboratory of Automobile Components and Vehicle Technology(Nos.2022GKLACVTKF04,2023GKLACVTZZ06)。
文摘An improved RRT∗algorithm,referred to as the AGP-RRT∗algorithm,is proposed to address the problems of poor directionality,long generated paths,and slow convergence speed in multi-axis robotic arm path planning.First,an adaptive biased probabilistic sampling strategy is adopted to dynamically adjust the target deviation threshold and optimize the selection of random sampling points and the direction of generating new nodes in order to reduce the search space and improve the search efficiency.Second,a gravitationally adjustable step size strategy is used to guide the search process and dynamically adjust the step-size to accelerate the search speed of the algorithm.Finally,the planning path is processed by pruning,removing redundant points and path smoothing fitting using cubic B-spline curves to improve the flexibility of the robotic arm.Through the six-axis robotic arm path planning simulation experiments on the MATLAB platform,the results show that the AGP-RRT∗algorithm reduces 87.34%in terms of the average running time and 40.39%in terms of the average path cost;Meanwhile,under two sets of complex environments A and B,the average running time of the AGP-RRT∗algorithm is shortened by 94.56%vs.95.37%,and the average path cost is reduced by 55.28%vs.47.82%,which proves the effectiveness of the AGP-RRT∗algorithm in improving the efficiency of multi-axis robotic arm path planning.
基金supported by the National Natural Science Foundation of China(Nos.60808020 and 61078041)the Natural Science Foundation of Tianjin(Nos.16JCQNJC02100,15JCYBJC51700 and 16JCYBJC15400)the National Science and Technology Support(No.2014BAH03F01)
文摘An optical hydrogen sulfide(H_2S) sensor based on wavelength modulation spectroscopy with the second harmonic(2f) corrected by the first harmonic(1f) signal(WMS-2f/1f) is developed using a distributed feedback(DFB) laser emitting at 1.578 μm and a homemade gas cell with 1-m-long optical path length. The novel sensor is constructed by an electrical cabinet and an optical reflecting and receiving end. The DFB laser is employed for targeting a strong H_2S line at 6 336.62 cm^(-1) in the fundamental absorption band of H_2S. The sensor performance, including the minimum detection limit and the stability, can be improved by reducing the laser intensity drift and common mode noise by means of the WMS-2f/1f technique. The experimental results indicate that the linearity and response time of the sensor are 0.999 26 and 6 s(in concentration range of 15.2—45.6 mg/m^3), respectively. The maximum relative deviation for continuous detection(60 min) of 30.4 mg/m^3 H_2S is 0.48% and the minimum detection limit obtained by Allan variance is 79 μg/m^3 with optimal integration time of 32 s. The optical H_2S sensor can be applied to environmental monitoring and industrial production, and it has significance for real-time online detection in many fields.