Hot tearing is often a major casting defect in magnesium alloys and has a significant impact on the quality of their casting products.Hot tearing of magnesium alloys is a complex solidification phenomenon which is sti...Hot tearing is often a major casting defect in magnesium alloys and has a significant impact on the quality of their casting products.Hot tearing of magnesium alloys is a complex solidification phenomenon which is still not fully understood,it is of great importance to investigate the hot tearing behaviour of magnesium alloys.This review attempts to summarize the investigations on hot tearing of magnesium alloys over the past decades.The hot tearing criteria including recently developed Kou’s criterion are summarized and compared.The numeric simulation and assessing methods of hot tearing,factors influencing hot tearing,and hot tearing susceptibility(HTS)of magnesium alloys are discussed.展开更多
To predict hot tearing susceptibility(HTS)during solidification and improve the quality of Al alloy castings,constitutive equations for AA6111 alloys were developed using a direct finite element(FE)method.A hot tearin...To predict hot tearing susceptibility(HTS)during solidification and improve the quality of Al alloy castings,constitutive equations for AA6111 alloys were developed using a direct finite element(FE)method.A hot tearing model was established for direct chill(DC)casting of industrial AA6111 alloys via coupling FE model and hot tearing criterion.By applying this model to real manufacture processes,the effects of casting speed,bottom cooling,secondary cooling,and geometric variations on the HTS were revealed.The results show that the HTS of the billet increases as the speed and billet radius increase,while it reduces as the interfacial heat transfer coefficient at the bottom or secondary water-cooling rate increases.This model shows the capabilities of incorporating maximum pore fraction in simulating hot tearing initiation,which will have a significant impact on optimizing casting conditions and chemistry for minimizing HTS and thus controlling the casting quality.展开更多
基金the National Natural Science Foundation of China(Project 51531002,51474043)the Ministry of Science&Technology of China(2013DFA71070)+1 种基金the Ministry of Education of China(SRFDR 20130191110018)Chongqing Municipal Government(CSTC2013JCYJC60001,CEC project,Two River Scholar Project and The Chief Scientist Studio Project).
文摘Hot tearing is often a major casting defect in magnesium alloys and has a significant impact on the quality of their casting products.Hot tearing of magnesium alloys is a complex solidification phenomenon which is still not fully understood,it is of great importance to investigate the hot tearing behaviour of magnesium alloys.This review attempts to summarize the investigations on hot tearing of magnesium alloys over the past decades.The hot tearing criteria including recently developed Kou’s criterion are summarized and compared.The numeric simulation and assessing methods of hot tearing,factors influencing hot tearing,and hot tearing susceptibility(HTS)of magnesium alloys are discussed.
文摘To predict hot tearing susceptibility(HTS)during solidification and improve the quality of Al alloy castings,constitutive equations for AA6111 alloys were developed using a direct finite element(FE)method.A hot tearing model was established for direct chill(DC)casting of industrial AA6111 alloys via coupling FE model and hot tearing criterion.By applying this model to real manufacture processes,the effects of casting speed,bottom cooling,secondary cooling,and geometric variations on the HTS were revealed.The results show that the HTS of the billet increases as the speed and billet radius increase,while it reduces as the interfacial heat transfer coefficient at the bottom or secondary water-cooling rate increases.This model shows the capabilities of incorporating maximum pore fraction in simulating hot tearing initiation,which will have a significant impact on optimizing casting conditions and chemistry for minimizing HTS and thus controlling the casting quality.