Over the years,zinc-ion batteries(ZIBs)have attracted attention as a promising next-generation energy storage technology because of their excellent safety,long cycling performance,eco-friendliness,and high-power densi...Over the years,zinc-ion batteries(ZIBs)have attracted attention as a promising next-generation energy storage technology because of their excellent safety,long cycling performance,eco-friendliness,and high-power density.However,issues,such as the corrosion and dissolution of the Zn anode,limited wet-tability,and lack of sufficient nucleation sites for Zn plating,have limited their practical application.The introduction of a protective layer comprising of tellurium(Te)nanobelts onto the surface of Zn anode has emerged as a promising approach to overcome these limitations and improve the electrochemical behav-ior by enhancing the safety and wettability of ZIBs,as well as providing numerous nucleation sites for Zn plating.In the presence of a Te-based protective layer,the energy power density of the surface-engineered Zn anode improved significantly(ranging from 310 to 144 W h kg^(-1),over a power density range of 270 to 1,800 W kg^(-1)),and the lifespan capability was extended.These results demonstrate that the proposed strategy of employing Te nanobelts as a protective layer holds great promise for enhancing the energy storage performance of zIBs,making them even more attractive as a viable energy storage solution forthefuture.展开更多
The development of tellurium(Te)-based semiconductor nanomaterials for efficient light-to-heat conversion may offer an effective means of harvesting sunlight to address global energy concerns.However,the nanosized Te(...The development of tellurium(Te)-based semiconductor nanomaterials for efficient light-to-heat conversion may offer an effective means of harvesting sunlight to address global energy concerns.However,the nanosized Te(nano-Te)materials reported to date suffer from a series of drawbacks,including limited light absorption and a lack of surface structures.Herein,we report the preparation of nano-Te by electrochemical exfoliation using an electrolyzable room-temperature ionic liquid.Anions,cations,and their corresponding electrolytic products acting as chemical scissors can precisely intercalate and functionalize bulk Te.The resulting nano-Te has high morphological entropy,rich surface functional groups,and broad light absorption.We also constructed foam hydrogels based on poly(vinyl alcohol)/nano-Te,which achieved an evaporation rate and energy efficiency of 4.11 kg m^(−2)h^(−1)and 128%,respectively,under 1 sun irradiation.Furthermore,the evaporation rate was maintained in the range 2.5-3.0 kg m^(−2)h^(−1)outdoors under 0.5-1.0 sun,providing highly efficient evaporation under low light conditions.展开更多
By studying the light isotopic compositions of carbon,oxygen,and hydrogen,combined with previous research results on the ore-forming source of the deposit,the authors try to uncover its metallogenic origin.The δ^(18)...By studying the light isotopic compositions of carbon,oxygen,and hydrogen,combined with previous research results on the ore-forming source of the deposit,the authors try to uncover its metallogenic origin.The δ^(18)O and δ^(13)C isotope signatures of dolomite samples vary between 10.2 and 13.0‰,and between−7.2 and−5.2‰,respectively,implying that the carbon derives from the upper mantle.δD and δ^(18) O of quartz,biotite,and muscovite from diff erent ore veins of the deposit vary between−82 and−59‰,and between 11.6 and 12.4‰,respectively,implying that the metallogenic solutions are mainly magmatic.According to the relevant research results of many isotope geologists,the fractionation degree of hydrogen isotopes increases as the depth to the Earth’s core increases,and the more diff erentiated the hydrogen isotopes are,the lower their values will be.In other words,mantle-derived solutions can have extremely low hydrogen isotope values.This means that the δD‰ value−134 of the pyrrhotite sample numbered SD-34 in this article may indicate mantle-derived oreforming fl uid of the deposit.The formation of the Dashuigou tellurium deposit occurred between 91.71 and 80.19 Ma.展开更多
The Dashuigou tellurium deposit is the world’s only known independent tellurium deposit.By restoring metamorphic rocks’protolith,we seek to understand not only the development and evolution trajectory of the region ...The Dashuigou tellurium deposit is the world’s only known independent tellurium deposit.By restoring metamorphic rocks’protolith,we seek to understand not only the development and evolution trajectory of the region but also the origin of the relevant deposits.While there are many ways to restore metamorphic rocks’protolith,we take the host metamorphic rocks of Dashuigou tellurium deposit and leverage various petrochemical eigenvalues and related diagrams previously proposed to reveal the deposit’s host metamorphic rocks’protolith.The petrochemical eigenvalues include molecular number,Niggli’s value,REE parity ratio,CaO/Al_(2)O_(3)ratio,Fe^(3+) /(Fe^(3+) -+Fe^(2+) )ratio,chondrite-normalized REE value,logarithmic REE value,various REE eigenvalues including scandium,Eu/Sm ratio,total REE amount,light and heavy REEs,δEu,Eu anomaly,Sm/Nd ratio,and silicon isotope δ^(30) SiNBS-29‰,etc.The petrochemical plots include ACMs,100 mg-c-(al+alk),SiO_(2)-(Na_(2)O+K_(2)O),(al+fm)-(c+alk)versus Si,FeO+Fe_(2)O^(3+) TiO)-Al_(2)O_(3)-MgO,c-mg,Al_(2)O_(3)-(Na_(2)O+K_(2)O),chondrite-normalized REE model,La/Yb-REE,and Sm/Nd ratio,etc.On the basis of these comprehensive analyses,the following conclusions are drawn,starting from the many mantle-derived types of basalt developed in the study area of different geological ages,combined with the previously published research results on the deposit s fluid inclusions and sulfur and lead isotopes.The deposit is formed by mantle degassing in the form of a mantle plume in the late Yanshanian orogeny.The degassed fluids are rich in nano-sc ale substances including Fe,Te,S,As,Bi,Au,Se,H_(2),CO_(2),N_(2),H_(2)O,and CH_(4),which are enriched by nano-effect,and then rise to a certain part of the crust in the form of mantle plume along the lithospheric fault to form the deposit.The ultimate power for tellurium mineralization was from H_(2)flow with high energy,which was produced through radiation from the melted iron of the Earth’s outer core.The H,flow results in the Earth’s degassing,as well as the mantle and crust’s uplift.展开更多
Through a detailed study of the abundances and spatial-temporal distribution patterns of Te,Bi,As,Se,Cu,Pb,Zn,Au,and Ag in the rock types of different geological epochs in the Dashuigou independent tellurium deposit,a...Through a detailed study of the abundances and spatial-temporal distribution patterns of Te,Bi,As,Se,Cu,Pb,Zn,Au,and Ag in the rock types of different geological epochs in the Dashuigou independent tellurium deposit,and in combination with other research findings of previous researchers in this area,the authors conclude as follows:Abundances of the main ore-forming elements Te,Bi,As,Se,Au,and Ag are not high in the regional geological background,generally lower or close to their respective crustal Clark values,but almost all altered country rocks contain high levels of ore-forming elements.This indicates that the deposit’s ore-forming elements do not come from the country rocks.This also indicates that the geological thermal events that cause alteration and mineralization originate from depths and may be related to mantle plumes.Considering the distribution pattern of these ore-forming elements in the ore bodies’hanging wall and footwall,the metallogenic mechanism may be as follows:Mineralization is not achieved through lateral secretion in the horizontal or near horizontal direction,but rather through the upward movement and emplacement of deep ore-forming elements driven by geological processes such as mantle plumes.In addition,the migration of deep ore-forming elements is not achieved through dispersed infiltration between overlying rock particles,but through non widespread concentrated penetrating channels.This type of channel is likely to be the expansion structures where faults from different directions intersect,or where linear faults intersect with circular structures.展开更多
A process using soda roasting-alkaline leaching-acid leaching to remove selenium, tellurium and copper sequentially from the copper anode slime with high content of Ni was tested. The mechanism of this process was out...A process using soda roasting-alkaline leaching-acid leaching to remove selenium, tellurium and copper sequentially from the copper anode slime with high content of Ni was tested. The mechanism of this process was outlined based on thermodynamic analysis and the change in the XRD patterns of different intermediate products. During soda roasting, copper which occurs as Cu4SeTe in the slime was oxidized to CuO and Cu3TeO6, while selenium and tellurium were oxidized to Ag2SeO4 and Cu3TeO6, respectively. Ag2SeO4 in the calcine is easily leached in the subsequent alkaline leaching, but CuTeO3 resulted from the decomposition of CCu3TeO6 remains inactive in this process through which selenium is leached out in preference to tellurium. The CuTeO3 and Cu O in the alkaline leaching residue can be leached in the following sulfuric acid leaching process. More than 97% of selenium was leached with little tellurium leached under the optimal condition. Then, more than 96% of copper and almost all the tellurium were leached out in the following acid leaching process.展开更多
The leaching kinetics of selenium from selenium-tellurium-rich materials in sodium sulfite solutions was studied. The morphologies of selenium-tellurium-rich materials are mainly spheroid and columnar bodies and the r...The leaching kinetics of selenium from selenium-tellurium-rich materials in sodium sulfite solutions was studied. The morphologies of selenium-tellurium-rich materials are mainly spheroid and columnar bodies and the range of particle size of selenium-tellurium-rich materials is between 17.77μm and 56.58μm, which contain 41.73%selenium and 40.96%tellurium. The ranges of experimental elements are 126-315 g/L of sodium sulfite concentration, 100-400 r/min of agitation speed, 23-95 ℃ of reaction temperature, 7:1-14:1 of liquid-solid ratio and 17.77-56.58μm of average particle size. The results show that the leaching rate increases with increasing the sodium sulfite concentration, agitation speed, reaction temperature or liquid-solid ratio and the leaching rate decreases with increasing the particle size. The reaction temperature has the significant effects on the selenium leaching rate which increases from 21%to 67%with increasing temperature from 23 ℃ to 95 ℃. The experimental data agree quite well with the Avrami model for leaching, with model parameter of 0.235 and apparent activation energy of 20.847 kJ/mol.展开更多
High pure tellurium was prepared from raw tellurium containing copper and selenium by chemical method containing oxidation with concentrated nitric acid, leaching with hydrochloric acid, reducing with sulfur dioxide a...High pure tellurium was prepared from raw tellurium containing copper and selenium by chemical method containing oxidation with concentrated nitric acid, leaching with hydrochloric acid, reducing with sulfur dioxide and treating in hydrogen atmosphere at high temperature. Removal ratio of Cu in raw tellurium reaches 99% after raw tellurium is oxidized and leached with HNO3(69%) under the following conditions: 0.96 times stoichiometric quantity of concentrated nitric acid, 4:1 of ratio of liquid to solid, 20 °C of reaction temperature and 30 min of reaction time. Leaching ratio of Te reaches 99% after Te is leached with hydrochloric acid under the following conditions: 1.67 times stoichiometric quantity of hydrochloric acid, 4:1 of ratio of liquid to solid, 20 °C of reaction temperature and 30 min of reaction time. Tellurium powder(99.95%) is obtained when Te(IV) in leachate is reduced with sulfur dioxide. The purity of tellurium increases from 99.954% to 99.999 6% after tellurium(99.95%) is treated in hydrogen atmosphere at 723.15 K for 30 min.展开更多
This paper focused on investigating high-efficient reductants of recovering selenium and tellurium from degoldizedsolution of copper anode slimes.Firstly,the effect of various reductants on recovery rates of Se and Te...This paper focused on investigating high-efficient reductants of recovering selenium and tellurium from degoldizedsolution of copper anode slimes.Firstly,the effect of various reductants on recovery rates of Se and Te was investigated based onthermodynamic analysis of various metallic ions in degoldized solution.Secondly,the single factor experiments were made toinvestigate the effect of the process parameters on recovering Se and Te with hydrazine hydrate.Finally,the hydroxylaminehydrochloride was added to intensify the extraction efficiencies of Se and Te.The results indicated that hydrazine hydrate was themost suitable reductant,and the recovery rates of Se and Te are71.23%and76.50%,respectively;the recovery rates of Se and Tewere92.07%and97.81%,respectively,under the optimal process conditions of hydrazine hydrate dosage of0.2133mol/L,H+concentration of4.305mol/L,reaction temperature of85°C and reaction time of5h;the recovery rate of Se was97.59%,and that Tereached up to100%when hydroxylamine hydrochloride dosage was1.5116mol/L.展开更多
Since the successful fabrication of two-dimensional(2D)tellurium(Te)in 2017,its fascinating properties including a thickness dependence bandgap,environmental stability,piezoelectric effect,high carrier mobility,and ph...Since the successful fabrication of two-dimensional(2D)tellurium(Te)in 2017,its fascinating properties including a thickness dependence bandgap,environmental stability,piezoelectric effect,high carrier mobility,and photoresponse among others show great potential for various applications.These include photodetectors,field-effect transistors,piezoelectric devices,modulators,and energy harvesting devices.However,as a new member of the 2D material family,much less known is about 2D Te compared to other 2D materials.Motivated by this lack of knowledge,we review the recent progress of research into 2D Te nanoflakes.Firstly,we introduce the background and motivation of this review.Then,the crystal structures and synthesis methods are presented,followed by an introduction to their physical properties and applications.Finally,the challenges and further development directions are summarized.We believe that milestone investigations of 2D Te nanoflakes will emerge soon,which will bring about great industrial revelations in 2D materials-based nanodevice commercialization.展开更多
Tellurium is a sort of scattered rare element on the earth. Its concentration is very low in earth's crust, only 1.0 ng/g. However, it has extremely high abundance in Co-rich crusts, marine polymetallic nodules, deep...Tellurium is a sort of scattered rare element on the earth. Its concentration is very low in earth's crust, only 1.0 ng/g. However, it has extremely high abundance in Co-rich crusts, marine polymetallic nodules, deep-sea sediments and aerolites. To find out the origin of tellurium enrichment in deep-sea sediments, we analyzed and compared tellurium concentrations and helium isotope compositions in the magnetic parts and those in the bulk parts of deep-sea sediments. The result indicates that the helium content, 3He/4He ratio and tellurium concentration are obviously higher in the magnetic parts than those in the bulk parts. The 3He abundance varies synchronously with the tellurium concentration. 3He and Te have a distinct positive correlation with each other. It is the first time that the paper brings forward that the extreme enrichment of tellurium in deep-sea sediments, like helium isotope anomalies, probably results from the input of interplanetary dust particles (IDPs). Similarly, the extreme enrichment of tellurium in marine polymetallic nodules and Co-rich crusts is possibly related to IDPs.展开更多
Aluminum batteries are attractive in electrochemical energy storage due to high energy density and lowcost aluminum,while the energy density is limited for the lack of favorable positive electrode materials to match a...Aluminum batteries are attractive in electrochemical energy storage due to high energy density and lowcost aluminum,while the energy density is limited for the lack of favorable positive electrode materials to match aluminum negative electrodes.Tellurium positive electrode is intrinsically electrically conductive among chalcogen and holds high theoretical specific capacity(1260.27 mAh g^(-1)) and discharge voltage plateau(~1,5 V).However,the chemical and electrochemical dissolution of Te active materials results in the low material utilization and poor cycling stability.To enhance the electrochemical performance,herein a nitrogen doped porous carbon(N-PC) is derived from zeolite imidazolate framework(ZIF-67)as an effective tellurium host to suppress the undesired shuttle effect.In order to inhibit the volume expansion of N-PC during the charge/discharge process,the reduced graphene oxide(rGO) nanosheets are introduced to form a stable host materials(N-PC-rGO) for stabilizing Te.The physical encapsulation and chemical confinement to soluble tellurium species are achieved.N-PC-rGO-Te positive electrode exhibits an improved initial specific capacity and long-term cycling performance at a current density of 500 mA g^(-1)(initial specific capacity:935.5 mAh g^(-1);after 150 cycles:467.5 mAh g^(-1)), highlighting a promising design strategy for inhibiting chemical and electrochemical dissolution of Te.展开更多
Te-promoted (1%) vanadium phosphate catalyst (VPDTe) was prepared via VOPO4·2H2O by calcining its precursor VOHPO4·0.5H2O in a flow of n-butane/air.VPDTe catalyst has resulted a higher existence of V5+ ...Te-promoted (1%) vanadium phosphate catalyst (VPDTe) was prepared via VOPO4·2H2O by calcining its precursor VOHPO4·0.5H2O in a flow of n-butane/air.VPDTe catalyst has resulted a higher existence of V5+ phase with V5+/V4+ ratio of 0.23.SEM micrographs show that Te addition altered the arrangement of the platelets from "rose-like" clusters to layer with irregular shape.Te addition has also markedly lowered the reduction activation energies of the vanadium phosphate catalyst as revealed by TPR profile.The amount of active oxygen species associated with V4+ phase of the Te promoted catalyst was significantly higher than those of the unpromoted catalyst.These observations suggest that high mobility and availability of reactive oxygen species contributed to the enhancement of n-butane conversion up to 80% at 673 K,while only 47% over unpromoted catalyst (2400 h^-1,1.7% n-butane in air).展开更多
The lack of stable p-type van der Waals(vdW)semiconductors with high hole mobility severely impedes the step of low-dimensional materials entering the industrial circle.Although p-type black phosphorus(bP)and telluriu...The lack of stable p-type van der Waals(vdW)semiconductors with high hole mobility severely impedes the step of low-dimensional materials entering the industrial circle.Although p-type black phosphorus(bP)and tellurium(Te)have shown promising hole mobilities,the instability under ambient conditions of bP and relatively low hole mobility of Te remain as daunting issues.Here we report the growth of high-quality Te nanobelts on atomically flat hexagonal boron nitride(h-BN)for high-performance p-type field-effect transistors(FETs).Importantly,the Te-based FET exhibits an ultrahigh hole mobility up to 1370 cm^(2) V^(−1) s^(−1) at room temperature,that may lay the foundation for the future high-performance p-type 2D FET and metal-oxide-semiconductor(p-MOS)inverter.The vdW h-BN dielectric substrate not only provides an ultra-flat surface without dangling bonds for growth of high-quality Te nanobelts,but also reduces the scattering centers at the interface between the channel material and the dielectric layer,thus resulting in the ultrahigh hole mobility.展开更多
In this study,pure Ni was demonstrated to protect the GH3535 alloy from Te vapor corrosion because of its strong absorption capacity.Severe Te corrosion of a single GH3535 alloy sample occurred in Te vapor at 700C,whi...In this study,pure Ni was demonstrated to protect the GH3535 alloy from Te vapor corrosion because of its strong absorption capacity.Severe Te corrosion of a single GH3535 alloy sample occurred in Te vapor at 700C,which manifested as complex surface corrosion products and deep intergranular cracks.However,when pure Ni and the GH3535 alloy were put together in the vessel,the GH3535 alloy was completely protected from Te corrosion at the expense of the pure Ni.Thermodynamic calculations proved that the preferential reaction between pure Ni and Te vapor reduced the activity of Te vapor considerably,preventing the corrosion of the GH3535 alloy.Our study reveals one potential approach for protecting the alloys used in molten-salt reactors from Te corrosion.展开更多
The purpose of this study was to enhance the content of valuable metals, such as Au, Ag, and Te, in tellurium-bearing minerals via bioleaching. The ore samples composed of invisible Au and Au paragenesis minerals(such...The purpose of this study was to enhance the content of valuable metals, such as Au, Ag, and Te, in tellurium-bearing minerals via bioleaching. The ore samples composed of invisible Au and Au paragenesis minerals(such as pyrite, chalcopyrite, sphalerite and galena) in combination with tellurium-bearing minerals(hessite, sylvanite and Tellurobismuthite) were studied. Indigenous microbes from mine drainage were isolated and identified as Acidithiobacillus ferrooxidans, which were used in bioleaching after adaption to copper. The effect of the microbial adaption on the bioleaching performance was then compared with the results produced by the non-adaptive process. The microbial adaption enhanced the Au–Ag–Te contents in biological leaching of tellurium-bearing ore minerals. This suggests that bioleaching with adapted microbes can be used both as a pretreatment and in the main recovery processes of valuable metals.展开更多
The embrittlement of nickel-based structural alloys by fission-produced tellurium(Te) is a major challenge for molten salt reactors(MSR). In this study, the effects of thermal exposure time on tellurium diffusion in a...The embrittlement of nickel-based structural alloys by fission-produced tellurium(Te) is a major challenge for molten salt reactors(MSR). In this study, the effects of thermal exposure time on tellurium diffusion in a candidate MSR structural alloy(Ni–16 Mo–7 Cr–4 Fe) and the consequent mechanical property degradation of the alloy were investigated through surrogate diffusion experiments at 700 °C. The results show that some tellurium reacted with the alloy to form tellurides on the surface,while some tellurium diffused into the alloy along grain boundaries. Ni_3Te_2 and CrTe were the most stable reaction products at the tested temperature, and the formation of CrTe on the surface induced the Cr depletion at grain boundaries of the alloy. The diffusion depth of Te increased gradually with thermal exposure time, and thediffusion rate kept stable within the test duration of up to3000 h. The Te diffusion in the alloy caused the embrittlement of grain boundaries, inducing crack formation and strength degradation in tensile test at room temperature.展开更多
A novel mimic was synthesized by modifying hyaluronic acid (HA) with tellurium, whose function is similar to that of glutathione peroxidase (GPX). The structure of TeHA was characterized by means of IR and NMR, th...A novel mimic was synthesized by modifying hyaluronic acid (HA) with tellurium, whose function is similar to that of glutathione peroxidase (GPX). The structure of TeHA was characterized by means of IR and NMR, the target-Te was located at -CH2OH of the N-acetyl-D- glucosamine of HA. The H202 reducing activity of TeHA, by glutathione (GSH), was 163.6 U/μmol according to Wilson's method. In contrast to other mimics, TeHA displayed the highest activity. Moreover, TeHA accepted many hydroperoxides as its substrates, such as H2O2, cumenyl hydroperoxide (CuOOH) and tert-butyl hydroperoxide (t-BuOOH), and CuOOH was the optimal substrate of TeHA. A ping-pong mechanism was observed in the steady-state kinetic studies of the reactions catalyzed by TeHA.展开更多
Selenium and tellurium are recovered from copper anodic slimes by oxidizing selenium and tellurium in werk acidic aqueous solution using H 2O 2 as oxidant and then separated at a proper pH value and reduced by addin...Selenium and tellurium are recovered from copper anodic slimes by oxidizing selenium and tellurium in werk acidic aqueous solution using H 2O 2 as oxidant and then separated at a proper pH value and reduced by adding the acidity sodium sulfite. The recoveries of selenium and tellurium are 99% and 98% respectively, and their purities are both >99%.展开更多
In situ high-pressure angle dispersive x-ray diffraction experiments using synchrotron radiation on Te nanoplates were carried out with a diamond anvil cell at room temperature. The results show that Te-Ⅰ with a trig...In situ high-pressure angle dispersive x-ray diffraction experiments using synchrotron radiation on Te nanoplates were carried out with a diamond anvil cell at room temperature. The results show that Te-Ⅰ with a trigonal structure transforms to triclinic Te-Ⅱ at about 4.9 GPa, Te-Ⅱ transforms to monoclinic Te-Ⅲ at about 8.0 GPa, Te-Ⅲ turns to rhombohedral Te-Ⅳ at about 23.8 GPa, and Te-Ⅳ changes to body centered cubic Te-Ⅴ at 27.6 GPa. The bulk moduli B0 of Te nanoplates are higher than those of Te bulk materials.展开更多
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Korea government(MOTIE)(RS-2023-00303581,Multiscale Simulation-Driven Development of Cost-Effective and Stable Aqueous Zn Ion Battery with Energy Density of 110 Wh/L for Energy Storage Systems:A Korea-USA Collaboration)。
文摘Over the years,zinc-ion batteries(ZIBs)have attracted attention as a promising next-generation energy storage technology because of their excellent safety,long cycling performance,eco-friendliness,and high-power density.However,issues,such as the corrosion and dissolution of the Zn anode,limited wet-tability,and lack of sufficient nucleation sites for Zn plating,have limited their practical application.The introduction of a protective layer comprising of tellurium(Te)nanobelts onto the surface of Zn anode has emerged as a promising approach to overcome these limitations and improve the electrochemical behav-ior by enhancing the safety and wettability of ZIBs,as well as providing numerous nucleation sites for Zn plating.In the presence of a Te-based protective layer,the energy power density of the surface-engineered Zn anode improved significantly(ranging from 310 to 144 W h kg^(-1),over a power density range of 270 to 1,800 W kg^(-1)),and the lifespan capability was extended.These results demonstrate that the proposed strategy of employing Te nanobelts as a protective layer holds great promise for enhancing the energy storage performance of zIBs,making them even more attractive as a viable energy storage solution forthefuture.
基金the Science and Technology Innovation Council of Shenzhen(Grant Nos.JCYJ20200109105212568,KQTD20170810105439418,JCYJ20200109114237902,20200812203318002,and 20200810103814002)the National Natural Science Foundation of China(Grant No.12274197)the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515030240,2019A1515010790,2021A0505110015).
文摘The development of tellurium(Te)-based semiconductor nanomaterials for efficient light-to-heat conversion may offer an effective means of harvesting sunlight to address global energy concerns.However,the nanosized Te(nano-Te)materials reported to date suffer from a series of drawbacks,including limited light absorption and a lack of surface structures.Herein,we report the preparation of nano-Te by electrochemical exfoliation using an electrolyzable room-temperature ionic liquid.Anions,cations,and their corresponding electrolytic products acting as chemical scissors can precisely intercalate and functionalize bulk Te.The resulting nano-Te has high morphological entropy,rich surface functional groups,and broad light absorption.We also constructed foam hydrogels based on poly(vinyl alcohol)/nano-Te,which achieved an evaporation rate and energy efficiency of 4.11 kg m^(−2)h^(−1)and 128%,respectively,under 1 sun irradiation.Furthermore,the evaporation rate was maintained in the range 2.5-3.0 kg m^(−2)h^(−1)outdoors under 0.5-1.0 sun,providing highly efficient evaporation under low light conditions.
基金Support for this study was received from Orient Resources Ltd.in Canada,Wuhan Institute of Technology,China,and College of Earth Sciences,Jilin University,China.
文摘By studying the light isotopic compositions of carbon,oxygen,and hydrogen,combined with previous research results on the ore-forming source of the deposit,the authors try to uncover its metallogenic origin.The δ^(18)O and δ^(13)C isotope signatures of dolomite samples vary between 10.2 and 13.0‰,and between−7.2 and−5.2‰,respectively,implying that the carbon derives from the upper mantle.δD and δ^(18) O of quartz,biotite,and muscovite from diff erent ore veins of the deposit vary between−82 and−59‰,and between 11.6 and 12.4‰,respectively,implying that the metallogenic solutions are mainly magmatic.According to the relevant research results of many isotope geologists,the fractionation degree of hydrogen isotopes increases as the depth to the Earth’s core increases,and the more diff erentiated the hydrogen isotopes are,the lower their values will be.In other words,mantle-derived solutions can have extremely low hydrogen isotope values.This means that the δD‰ value−134 of the pyrrhotite sample numbered SD-34 in this article may indicate mantle-derived oreforming fl uid of the deposit.The formation of the Dashuigou tellurium deposit occurred between 91.71 and 80.19 Ma.
基金supported by Orient Resources Ltd.College of Earth Sciences,Jilin University。
文摘The Dashuigou tellurium deposit is the world’s only known independent tellurium deposit.By restoring metamorphic rocks’protolith,we seek to understand not only the development and evolution trajectory of the region but also the origin of the relevant deposits.While there are many ways to restore metamorphic rocks’protolith,we take the host metamorphic rocks of Dashuigou tellurium deposit and leverage various petrochemical eigenvalues and related diagrams previously proposed to reveal the deposit’s host metamorphic rocks’protolith.The petrochemical eigenvalues include molecular number,Niggli’s value,REE parity ratio,CaO/Al_(2)O_(3)ratio,Fe^(3+) /(Fe^(3+) -+Fe^(2+) )ratio,chondrite-normalized REE value,logarithmic REE value,various REE eigenvalues including scandium,Eu/Sm ratio,total REE amount,light and heavy REEs,δEu,Eu anomaly,Sm/Nd ratio,and silicon isotope δ^(30) SiNBS-29‰,etc.The petrochemical plots include ACMs,100 mg-c-(al+alk),SiO_(2)-(Na_(2)O+K_(2)O),(al+fm)-(c+alk)versus Si,FeO+Fe_(2)O^(3+) TiO)-Al_(2)O_(3)-MgO,c-mg,Al_(2)O_(3)-(Na_(2)O+K_(2)O),chondrite-normalized REE model,La/Yb-REE,and Sm/Nd ratio,etc.On the basis of these comprehensive analyses,the following conclusions are drawn,starting from the many mantle-derived types of basalt developed in the study area of different geological ages,combined with the previously published research results on the deposit s fluid inclusions and sulfur and lead isotopes.The deposit is formed by mantle degassing in the form of a mantle plume in the late Yanshanian orogeny.The degassed fluids are rich in nano-sc ale substances including Fe,Te,S,As,Bi,Au,Se,H_(2),CO_(2),N_(2),H_(2)O,and CH_(4),which are enriched by nano-effect,and then rise to a certain part of the crust in the form of mantle plume along the lithospheric fault to form the deposit.The ultimate power for tellurium mineralization was from H_(2)flow with high energy,which was produced through radiation from the melted iron of the Earth’s outer core.The H,flow results in the Earth’s degassing,as well as the mantle and crust’s uplift.
文摘Through a detailed study of the abundances and spatial-temporal distribution patterns of Te,Bi,As,Se,Cu,Pb,Zn,Au,and Ag in the rock types of different geological epochs in the Dashuigou independent tellurium deposit,and in combination with other research findings of previous researchers in this area,the authors conclude as follows:Abundances of the main ore-forming elements Te,Bi,As,Se,Au,and Ag are not high in the regional geological background,generally lower or close to their respective crustal Clark values,but almost all altered country rocks contain high levels of ore-forming elements.This indicates that the deposit’s ore-forming elements do not come from the country rocks.This also indicates that the geological thermal events that cause alteration and mineralization originate from depths and may be related to mantle plumes.Considering the distribution pattern of these ore-forming elements in the ore bodies’hanging wall and footwall,the metallogenic mechanism may be as follows:Mineralization is not achieved through lateral secretion in the horizontal or near horizontal direction,but rather through the upward movement and emplacement of deep ore-forming elements driven by geological processes such as mantle plumes.In addition,the migration of deep ore-forming elements is not achieved through dispersed infiltration between overlying rock particles,but through non widespread concentrated penetrating channels.This type of channel is likely to be the expansion structures where faults from different directions intersect,or where linear faults intersect with circular structures.
基金Project(2012BAE06B05)supported by the National Science and Technology Support Plan of China
文摘A process using soda roasting-alkaline leaching-acid leaching to remove selenium, tellurium and copper sequentially from the copper anode slime with high content of Ni was tested. The mechanism of this process was outlined based on thermodynamic analysis and the change in the XRD patterns of different intermediate products. During soda roasting, copper which occurs as Cu4SeTe in the slime was oxidized to CuO and Cu3TeO6, while selenium and tellurium were oxidized to Ag2SeO4 and Cu3TeO6, respectively. Ag2SeO4 in the calcine is easily leached in the subsequent alkaline leaching, but CuTeO3 resulted from the decomposition of CCu3TeO6 remains inactive in this process through which selenium is leached out in preference to tellurium. The CuTeO3 and Cu O in the alkaline leaching residue can be leached in the following sulfuric acid leaching process. More than 97% of selenium was leached with little tellurium leached under the optimal condition. Then, more than 96% of copper and almost all the tellurium were leached out in the following acid leaching process.
基金Project(2011B0508000033)supported by the Special Foundation of Guangdong Province Major Science&Technology Program of China
文摘The leaching kinetics of selenium from selenium-tellurium-rich materials in sodium sulfite solutions was studied. The morphologies of selenium-tellurium-rich materials are mainly spheroid and columnar bodies and the range of particle size of selenium-tellurium-rich materials is between 17.77μm and 56.58μm, which contain 41.73%selenium and 40.96%tellurium. The ranges of experimental elements are 126-315 g/L of sodium sulfite concentration, 100-400 r/min of agitation speed, 23-95 ℃ of reaction temperature, 7:1-14:1 of liquid-solid ratio and 17.77-56.58μm of average particle size. The results show that the leaching rate increases with increasing the sodium sulfite concentration, agitation speed, reaction temperature or liquid-solid ratio and the leaching rate decreases with increasing the particle size. The reaction temperature has the significant effects on the selenium leaching rate which increases from 21%to 67%with increasing temperature from 23 ℃ to 95 ℃. The experimental data agree quite well with the Avrami model for leaching, with model parameter of 0.235 and apparent activation energy of 20.847 kJ/mol.
文摘High pure tellurium was prepared from raw tellurium containing copper and selenium by chemical method containing oxidation with concentrated nitric acid, leaching with hydrochloric acid, reducing with sulfur dioxide and treating in hydrogen atmosphere at high temperature. Removal ratio of Cu in raw tellurium reaches 99% after raw tellurium is oxidized and leached with HNO3(69%) under the following conditions: 0.96 times stoichiometric quantity of concentrated nitric acid, 4:1 of ratio of liquid to solid, 20 °C of reaction temperature and 30 min of reaction time. Leaching ratio of Te reaches 99% after Te is leached with hydrochloric acid under the following conditions: 1.67 times stoichiometric quantity of hydrochloric acid, 4:1 of ratio of liquid to solid, 20 °C of reaction temperature and 30 min of reaction time. Tellurium powder(99.95%) is obtained when Te(IV) in leachate is reduced with sulfur dioxide. The purity of tellurium increases from 99.954% to 99.999 6% after tellurium(99.95%) is treated in hydrogen atmosphere at 723.15 K for 30 min.
基金Project(201407300993)supported by Xinjiang Autonomous Region Science and Technology Support Project,China
文摘This paper focused on investigating high-efficient reductants of recovering selenium and tellurium from degoldizedsolution of copper anode slimes.Firstly,the effect of various reductants on recovery rates of Se and Te was investigated based onthermodynamic analysis of various metallic ions in degoldized solution.Secondly,the single factor experiments were made toinvestigate the effect of the process parameters on recovering Se and Te with hydrazine hydrate.Finally,the hydroxylaminehydrochloride was added to intensify the extraction efficiencies of Se and Te.The results indicated that hydrazine hydrate was themost suitable reductant,and the recovery rates of Se and Te are71.23%and76.50%,respectively;the recovery rates of Se and Tewere92.07%and97.81%,respectively,under the optimal process conditions of hydrazine hydrate dosage of0.2133mol/L,H+concentration of4.305mol/L,reaction temperature of85°C and reaction time of5h;the recovery rate of Se was97.59%,and that Tereached up to100%when hydroxylamine hydrochloride dosage was1.5116mol/L.
基金supported by the National Natural Science Fund of China(Grant Nos.61875138,61435010,and 61961136001)Science and Technology Innovation Commission of Shenzhen(KQJSCX20180328095501798,JCYJ20180507182047316,KQTD2015032416270385,JCYJ20170811093453105,JCYJ20180307164612205 and GJHZ20180928160209731)+1 种基金Natural Science Foundation of Guangdong Province for Distinguished Young Scholars(2018B030306038)Natural Science Foundation of SZU(No.860-000002110429).
文摘Since the successful fabrication of two-dimensional(2D)tellurium(Te)in 2017,its fascinating properties including a thickness dependence bandgap,environmental stability,piezoelectric effect,high carrier mobility,and photoresponse among others show great potential for various applications.These include photodetectors,field-effect transistors,piezoelectric devices,modulators,and energy harvesting devices.However,as a new member of the 2D material family,much less known is about 2D Te compared to other 2D materials.Motivated by this lack of knowledge,we review the recent progress of research into 2D Te nanoflakes.Firstly,we introduce the background and motivation of this review.Then,the crystal structures and synthesis methods are presented,followed by an introduction to their physical properties and applications.Finally,the challenges and further development directions are summarized.We believe that milestone investigations of 2D Te nanoflakes will emerge soon,which will bring about great industrial revelations in 2D materials-based nanodevice commercialization.
基金This work was supported by the National Natural Science Foundation of China(No.49873002)Key Basic Research Project of Ministry of Land and Mineral Resources(No.20010209).
文摘Tellurium is a sort of scattered rare element on the earth. Its concentration is very low in earth's crust, only 1.0 ng/g. However, it has extremely high abundance in Co-rich crusts, marine polymetallic nodules, deep-sea sediments and aerolites. To find out the origin of tellurium enrichment in deep-sea sediments, we analyzed and compared tellurium concentrations and helium isotope compositions in the magnetic parts and those in the bulk parts of deep-sea sediments. The result indicates that the helium content, 3He/4He ratio and tellurium concentration are obviously higher in the magnetic parts than those in the bulk parts. The 3He abundance varies synchronously with the tellurium concentration. 3He and Te have a distinct positive correlation with each other. It is the first time that the paper brings forward that the extreme enrichment of tellurium in deep-sea sediments, like helium isotope anomalies, probably results from the input of interplanetary dust particles (IDPs). Similarly, the extreme enrichment of tellurium in marine polymetallic nodules and Co-rich crusts is possibly related to IDPs.
基金supported by the National Natural Science Foundation of China(No.51725401 and 51874019)the Fundamental Research Funds for the Central Universities(FRF-TP-17-002C2)。
文摘Aluminum batteries are attractive in electrochemical energy storage due to high energy density and lowcost aluminum,while the energy density is limited for the lack of favorable positive electrode materials to match aluminum negative electrodes.Tellurium positive electrode is intrinsically electrically conductive among chalcogen and holds high theoretical specific capacity(1260.27 mAh g^(-1)) and discharge voltage plateau(~1,5 V).However,the chemical and electrochemical dissolution of Te active materials results in the low material utilization and poor cycling stability.To enhance the electrochemical performance,herein a nitrogen doped porous carbon(N-PC) is derived from zeolite imidazolate framework(ZIF-67)as an effective tellurium host to suppress the undesired shuttle effect.In order to inhibit the volume expansion of N-PC during the charge/discharge process,the reduced graphene oxide(rGO) nanosheets are introduced to form a stable host materials(N-PC-rGO) for stabilizing Te.The physical encapsulation and chemical confinement to soluble tellurium species are achieved.N-PC-rGO-Te positive electrode exhibits an improved initial specific capacity and long-term cycling performance at a current density of 500 mA g^(-1)(initial specific capacity:935.5 mAh g^(-1);after 150 cycles:467.5 mAh g^(-1)), highlighting a promising design strategy for inhibiting chemical and electrochemical dissolution of Te.
文摘Te-promoted (1%) vanadium phosphate catalyst (VPDTe) was prepared via VOPO4·2H2O by calcining its precursor VOHPO4·0.5H2O in a flow of n-butane/air.VPDTe catalyst has resulted a higher existence of V5+ phase with V5+/V4+ ratio of 0.23.SEM micrographs show that Te addition altered the arrangement of the platelets from "rose-like" clusters to layer with irregular shape.Te addition has also markedly lowered the reduction activation energies of the vanadium phosphate catalyst as revealed by TPR profile.The amount of active oxygen species associated with V4+ phase of the Te promoted catalyst was significantly higher than those of the unpromoted catalyst.These observations suggest that high mobility and availability of reactive oxygen species contributed to the enhancement of n-butane conversion up to 80% at 673 K,while only 47% over unpromoted catalyst (2400 h^-1,1.7% n-butane in air).
基金supported by the financial supports from National Natural Science Foundation of China(Grant No.61904110)Young Teachers’Startup Fund for Scientific Research of Shenzhen University(Grant No.860-000002110426)+2 种基金the funding support from the National Natural Science Foundation of China(52122002)the Start-Up Grant(Project No.9610495)from City University of Hong KongECS scheme(City U 21201821)from the Research Grant Council of Hong Kong。
文摘The lack of stable p-type van der Waals(vdW)semiconductors with high hole mobility severely impedes the step of low-dimensional materials entering the industrial circle.Although p-type black phosphorus(bP)and tellurium(Te)have shown promising hole mobilities,the instability under ambient conditions of bP and relatively low hole mobility of Te remain as daunting issues.Here we report the growth of high-quality Te nanobelts on atomically flat hexagonal boron nitride(h-BN)for high-performance p-type field-effect transistors(FETs).Importantly,the Te-based FET exhibits an ultrahigh hole mobility up to 1370 cm^(2) V^(−1) s^(−1) at room temperature,that may lay the foundation for the future high-performance p-type 2D FET and metal-oxide-semiconductor(p-MOS)inverter.The vdW h-BN dielectric substrate not only provides an ultra-flat surface without dangling bonds for growth of high-quality Te nanobelts,but also reduces the scattering centers at the interface between the channel material and the dielectric layer,thus resulting in the ultrahigh hole mobility.
基金the National Natural Science Foundation of China(Nos.U2032205,52171023,51971238,and 52005492)Natural Science Foundation of Shanghai(Nos.20ZR1468600 and 19ZR1468200)+1 种基金Shanghai Sailing Program(No.19YF1458300)the Youth Innovation Promotion Association,Chinese Academy of Science(No.2019264)。
文摘In this study,pure Ni was demonstrated to protect the GH3535 alloy from Te vapor corrosion because of its strong absorption capacity.Severe Te corrosion of a single GH3535 alloy sample occurred in Te vapor at 700C,which manifested as complex surface corrosion products and deep intergranular cracks.However,when pure Ni and the GH3535 alloy were put together in the vessel,the GH3535 alloy was completely protected from Te corrosion at the expense of the pure Ni.Thermodynamic calculations proved that the preferential reaction between pure Ni and Te vapor reduced the activity of Te vapor considerably,preventing the corrosion of the GH3535 alloy.Our study reveals one potential approach for protecting the alloys used in molten-salt reactors from Te corrosion.
文摘The purpose of this study was to enhance the content of valuable metals, such as Au, Ag, and Te, in tellurium-bearing minerals via bioleaching. The ore samples composed of invisible Au and Au paragenesis minerals(such as pyrite, chalcopyrite, sphalerite and galena) in combination with tellurium-bearing minerals(hessite, sylvanite and Tellurobismuthite) were studied. Indigenous microbes from mine drainage were isolated and identified as Acidithiobacillus ferrooxidans, which were used in bioleaching after adaption to copper. The effect of the microbial adaption on the bioleaching performance was then compared with the results produced by the non-adaptive process. The microbial adaption enhanced the Au–Ag–Te contents in biological leaching of tellurium-bearing ore minerals. This suggests that bioleaching with adapted microbes can be used both as a pretreatment and in the main recovery processes of valuable metals.
基金supported by the National key research and development program of China(No.2016YFB0700404)the National Natural Science Foundation of China(Nos.51371188,51671122,51671154,51601213,51501216)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA02004210)the Shanghai Sailing Program(No.16YF1414300)the Talent development fund of Shanghai(No.201650)
文摘The embrittlement of nickel-based structural alloys by fission-produced tellurium(Te) is a major challenge for molten salt reactors(MSR). In this study, the effects of thermal exposure time on tellurium diffusion in a candidate MSR structural alloy(Ni–16 Mo–7 Cr–4 Fe) and the consequent mechanical property degradation of the alloy were investigated through surrogate diffusion experiments at 700 °C. The results show that some tellurium reacted with the alloy to form tellurides on the surface,while some tellurium diffused into the alloy along grain boundaries. Ni_3Te_2 and CrTe were the most stable reaction products at the tested temperature, and the formation of CrTe on the surface induced the Cr depletion at grain boundaries of the alloy. The diffusion depth of Te increased gradually with thermal exposure time, and thediffusion rate kept stable within the test duration of up to3000 h. The Te diffusion in the alloy caused the embrittlement of grain boundaries, inducing crack formation and strength degradation in tensile test at room temperature.
文摘A novel mimic was synthesized by modifying hyaluronic acid (HA) with tellurium, whose function is similar to that of glutathione peroxidase (GPX). The structure of TeHA was characterized by means of IR and NMR, the target-Te was located at -CH2OH of the N-acetyl-D- glucosamine of HA. The H202 reducing activity of TeHA, by glutathione (GSH), was 163.6 U/μmol according to Wilson's method. In contrast to other mimics, TeHA displayed the highest activity. Moreover, TeHA accepted many hydroperoxides as its substrates, such as H2O2, cumenyl hydroperoxide (CuOOH) and tert-butyl hydroperoxide (t-BuOOH), and CuOOH was the optimal substrate of TeHA. A ping-pong mechanism was observed in the steady-state kinetic studies of the reactions catalyzed by TeHA.
文摘Selenium and tellurium are recovered from copper anodic slimes by oxidizing selenium and tellurium in werk acidic aqueous solution using H 2O 2 as oxidant and then separated at a proper pH value and reduced by adding the acidity sodium sulfite. The recoveries of selenium and tellurium are 99% and 98% respectively, and their purities are both >99%.
基金supported by the State Key Development Program for Basic Research of China(Grant No.2012CB932302)the National Natural Science Foundation of China(Grant Nos.10974235 and 11174336)
文摘In situ high-pressure angle dispersive x-ray diffraction experiments using synchrotron radiation on Te nanoplates were carried out with a diamond anvil cell at room temperature. The results show that Te-Ⅰ with a trigonal structure transforms to triclinic Te-Ⅱ at about 4.9 GPa, Te-Ⅱ transforms to monoclinic Te-Ⅲ at about 8.0 GPa, Te-Ⅲ turns to rhombohedral Te-Ⅳ at about 23.8 GPa, and Te-Ⅳ changes to body centered cubic Te-Ⅴ at 27.6 GPa. The bulk moduli B0 of Te nanoplates are higher than those of Te bulk materials.