期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Temperature compensation method for low cost three-axis MEMS digital angular rate gyroscopes
1
作者 涂海峰 刘莉 《Journal of Beijing Institute of Technology》 EI CAS 2016年第1期28-34,共7页
In recent years,a large number of small volume,low cost micro electro mechanical systems(MEMS)digital three-axis angular rate gyroscopes have been developed and widely used in civil and military fields.However,these k... In recent years,a large number of small volume,low cost micro electro mechanical systems(MEMS)digital three-axis angular rate gyroscopes have been developed and widely used in civil and military fields.However,these kinds of gyroscopes have poor performances in initial zero-bias,temperature drift,In-Run bias stability,bias repeatability,etc.,their output errors need to be compensated before being used.Based on a lot of experiments,the temperature drift and the initial zero-bias are the major error sources in the MEMS gyroscopes output data.Due to the poor repeatability of temperature drift,the temperature compensation coefficients need to be recalculated every time before using.In order to recalculate parameters of the temperature compensation model quickly,a 1st-order polynomial model of temperature is established,then a forgetting factor recursive least squares estimator will be adopted to identify the model parameters in real time.Static and dynamic experimental data shows that this method removed/compensated the temperature drift and initial zero-bias from the output of the gyroscopes effectively. 展开更多
关键词 MEMS sensors angular rate gyroscope least squares temperature compensation
下载PDF
High Sensitive Methane Sensor With Temperature Compensation Based on Selectively Liquid-Infiltrated Photonic Crystal Fibers 被引量:1
2
作者 Hai LIU Haoran WANG +4 位作者 Wen ZHANG Cancan CHEN Qing WANG Yi DING Shoufeng TANG 《Photonic Sensors》 SCIE EI CAS CSCD 2019年第3期213-222,共10页
A highly sensitive and temperature-compensated methane sensor based on a liquid-infiltrated photonic crystal fiber (PCF) is proposed. Two bigger holes near the core area are coated with a methane-sensitive compound fi... A highly sensitive and temperature-compensated methane sensor based on a liquid-infiltrated photonic crystal fiber (PCF) is proposed. Two bigger holes near the core area are coated with a methane-sensitive compound film, and specific cladding air holes are infiltrated into the liquid material to form new defective channels. The proposed sensor can achieve accurate measurement of methane concentration through temperature compensation. The sensitivity can reach to 20.07nm/% with a high linearity as the methane concentration is within the range of 0%-3.5% by volume. The proposed methane sensor can not only improve the measurement accuracy, but also reduce the metrical difficulty and simplify the process. 展开更多
关键词 Photonic crystal fiber methane sensor directional resonance coupling temperature compensation
原文传递
Efficiently Writing Bragg Grating in High-Birefringence Elliptical Microfiber for Label-Free Immunosensing with Temperature Compensation
3
作者 Peng Xiao Zhiyuan Xu +5 位作者 Deming Hu Lili Liang Lipeng Sun Jie Li Yang Ran Bai‑Ou Guan 《Advanced Fiber Materials》 CAS 2021年第5期321-330,共10页
Immunosensor is a powerful tool in healthcare and clinic,food and drug industry,and environmental protection.Label-free fiber-optic immunosensors have shown a myriad of advantages,such as high sensitivity,anti-electro... Immunosensor is a powerful tool in healthcare and clinic,food and drug industry,and environmental protection.Label-free fiber-optic immunosensors have shown a myriad of advantages,such as high sensitivity,anti-electromagnetic interference,and afield measurement via the fiber network.However,the fiber-optic based sensor may bear the temperature cross-talk,especially under the warming condition for bio-activating the immune molecules.In this study,we proposed a highly birefringent microfiber Bragg grating for immunosensing with the temperature-compensation.The birefringent microfiber was drawn from the elliptical cladding multimode fiber that was ablated by the CO2 laser.The considerably large energy overlap region offered by the original multimode fiber favored the efficient inscription of FBG with high reflectivity.The dual reso-nances derived by the orthogonal polarization states presented similar temperature responsivities but significantly different ambient refractive index sensitivities,allowing the temperature-compensational RI sensing.The human immunoglobulin G(IgG)molecules were anchored on the surface of the microfiber grating probe by the covalent functionalization technique to enable the specific detection of the anti-IgG molecule.The proposed method promises a high-efficiency and low-cost design for the microfiber Bragg grating-based biosensor without being subjected to the temperature cross-sensitivity. 展开更多
关键词 Fiber-optic biosensors MICROFIBER Fiber Bragg grating BIREFRINGENCE temperature compensation IMMUNOSENSING
原文传递
Experimental Study of Effect of Temperature Variations on the Impedance Signature of PZT Sensors for Fatigue Crack Detection
4
作者 Saqlain Abbas Fucai Li +3 位作者 Zulkarnain Abbas Taufeeq Ur Rehman Abbasi Xiaotong Tu Riffat Asim Pasha 《Sound & Vibration》 EI 2021年第1期1-18,共18页
Structural health monitoring(SHM)is recognized as an efficient tool to interpret the reliability of a wide variety of infrastructures.To identify the structural abnormality by utilizing the electromechanical coupling ... Structural health monitoring(SHM)is recognized as an efficient tool to interpret the reliability of a wide variety of infrastructures.To identify the structural abnormality by utilizing the electromechanical coupling property of piezoelectric transducers,the electromechanical impedance(EMI)approach is preferred.However,in real-time SHM applications,the monitored structure is exposed to several varying environmental and operating conditions(EOCs).The previous study has recognized the temperature variations as one of the serious EOCs that affect the optimal performance of the damage inspection process.In this framework,an experimental setup is developed in current research to identify the presence of fatigue crack in stainless steel(304)beam using EMI approach and estimate the effect of temperature variations on the electrical impedance of the piezoelectric sensors.A regular series of experiments are executed in a controlled temperature environment(25°C–160°C)using 202 V1 Constant Temperature Drying Oven Chamber(Q/TBXR20-2005).It has been observed that the dielectric constantð"33 TÞwhich is recognized as the temperature-dependent constant of PZT sensor has sufficiently influenced the electrical impedance signature.Moreover,the effective frequency shift(EFS)approach is optimized in term of significant temperature compensation for the current impedance signature of PZT sensor relative to the reference signature at the extended frequency bandwidth of the developed measurement system with better outcomes as compared to the previous literature work.Hence,the current study also deals efficiently with the critical issue of the width of the frequency band for temperature compensation based on the frequency shift in SHM.The results of the experimental study demonstrate that the proposed methodology is qualified for the damage inspection in real-time monitoring applications under the temperature variations.It is capable to exclude one of the major reasons of false fault diagnosis by compensating the consequence of elevated temperature at extended frequency bandwidth in SHM. 展开更多
关键词 Electromechanical impedance structural health monitoring piezoelectric sensors fatigue crack temperature compensation
下载PDF
Compensation temperature and hysteresis behaviors of a graphene-like bilayer:Monte Carlo Study
5
作者 Bo-chen Li Dan Lv +3 位作者 Wei Wang Lei Sun Zi-Ming Hao Jia Bao 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第4期131-143,共13页
Using the Monte Carlo method,the compensation temperature and hysteresis loops of a ferrimagnetic mixed spin-3/2 and spin-5/2 Ising-type graphene-like bilayer are investigated induced by different physical parameters ... Using the Monte Carlo method,the compensation temperature and hysteresis loops of a ferrimagnetic mixed spin-3/2 and spin-5/2 Ising-type graphene-like bilayer are investigated induced by different physical parameters such as crystal field,exchange coupling,external magnetic field,and temperature.The variations of magnetization,magnetic susceptibility,specific heat,and internal energy with the change of temperature are discussed.In addition,we also plot the phase diagrams including transition temperature and compensation temperature.Finally,multiple hysteresis loops under certain parameters are given. 展开更多
关键词 graphene-like bilayer MAGNETIZATION compensation temperature hysteresis loop Monte Carlo method
原文传递
Temperature Bias Drift Phase-Based Compensation for a MEMS Accelerometer with Stiffness-Tuning Double-Sided Parallel Plate Capacitors
6
作者 Mingkang Li Zhipeng Ma +4 位作者 Tengfei Zhang Yiming Jin Ziyi Ye Xudong Zheng Zhonghe Jin 《Nanomanufacturing and Metrology》 EI 2023年第3期29-40,共12页
This paper reports an approach of in-operation temperature bias drift compensation based on phase-based calibration for a stiffness-tunable MEMS accelerometer with double-sided parallel plate(DSPP)capacitors.The tempe... This paper reports an approach of in-operation temperature bias drift compensation based on phase-based calibration for a stiffness-tunable MEMS accelerometer with double-sided parallel plate(DSPP)capacitors.The temperature drifts of the components of the accelerometer are characterized,and analytical models are built on the basis of the measured drift results.Results reveal that the temperature drift of the acceleration output bias is dominated by the sensitive mechanical stiffness.An out-of-bandwidth AC stimulus signal is introduced to excite the accelerometer,and the interference with the acceleration measurement is minimized.The demodulated phase of the excited response exhibits a monotonic relationship with the effective stiffness of the accelerometer.Through the proposed online compensation approach,the temperature drift of the effective stiffness can be detected by the demodulated phase and compensated in real time by adjusting the stiffness-tuning voltage of DSPP capacitors.The temperature drift coefficient(TDC)of the accelerometer is reduced from 0.54 to 0.29 mg/℃,and the Allan variance bias instability of about 2.8μg is not adversely affected.Meanwhile,the pull-in resulting from the temperature drift of the effective stiffness can be prevented.TDC can be further reduced to 0.04 mg/℃through an additional offline calibration based on the demodulated carrier phase representing the temperature drift of the readout circuit. 展开更多
关键词 MEMS accelerometer Stiffness tuning Double-sided parallel plates temperature drift compensation
原文传递
Effects of Material and Dimension on TCF,Frequency,and Q of Radial Contour Mode AlN-on-Si MEMS Resonators 被引量:2
7
作者 Thi Dep Ha 《Journal of Electronic Science and Technology》 CAS CSCD 2021年第4期319-334,共16页
This paper investigates the effects of material and dimension parameters on the frequency splitting,frequency drift,and quality factor(Q)of aluminium nitride(AlN)-on-n-doped/pure silicon(Si)microelectromechanical syst... This paper investigates the effects of material and dimension parameters on the frequency splitting,frequency drift,and quality factor(Q)of aluminium nitride(AlN)-on-n-doped/pure silicon(Si)microelectromechanical systems(MEMS)disk resonators through analysis and simulation.These parameters include the crystallographic orientation,dopant,substrate thickness,and temperature.The resonators operate in the elliptical,higher order,and flexural modes.The simulation results show that i)the turnover points of the resonators exist at 55°C,-50°C,40°C,and-10°C for n-doped silicon with the doping concentration of 2×1019 cm-3 and the Si thickness of 3.5μm,and these points are shifted with the substrate thickness and mode variations;ii)compared with pure Si,the modal-frequency splitting for n-doped Si is higher and increases from 5%to 10%for all studied modes;iii)Q of the resonators depends on the temperature and dopant.Therefore,the turnover,modal-frequency splitting,and Q of the resonators depend on the thickness and material of the substrate and the temperature.This work offers an analysis and design platform for high-performance MEMS gyroscopes as well as oscillators in terms of the temperature compensation by n-doped Si. 展开更多
关键词 Anisotropic contour mode doping GYROSCOPE microelectromechanical systems(MEMS)resonator PIEZOELECTRIC temperature coefficient of frequency(TCF) temperature compensation thin-film piezoelectric-on-substrate(TPoS)
下载PDF
Investigation of Strain-Temperature Cross-Sensitivity of FBG Strain Sensors Embedded Onto Different Substrates 被引量:1
8
作者 Heying QIN Pengfei TANG +2 位作者 Jing LEI Hongbin CHEN Boguang LUO 《Photonic Sensors》 SCIE EI CSCD 2023年第1期85-101,共17页
The strain-temperature cross-sensitivity problem easily occurs in the engineering strain monitoring of the self-sensing embedded with fiber Bragg grating(FBG)sensors.In this work,a theoretical investigation of the str... The strain-temperature cross-sensitivity problem easily occurs in the engineering strain monitoring of the self-sensing embedded with fiber Bragg grating(FBG)sensors.In this work,a theoretical investigation of the strain-temperature cross-sensitivity has been performed using the temperature reference grating method.To experimentally observe and theoretically verify the problem,the substrate materials,the preloading technique,and the FBG initial central wavelength were taken as main parameters.And a series of sensitivity coefficients calibration tests and temperature compensation tests have been designed and carried out.It was found that when the FBG sensors were embedded on different substrates,their coefficients of the temperature sensitivity were significantly changed.Besides,the larger the coefficients of thermal expansion(CTE)of substrates were,the higher the temperature sensitivity coefficients would be.On the other hand,the effect of the preloading technique and FBG initial wavelength was negligible on both the strain monitoring and temperature compensation.In the case of similar substrates,we did not observe any difference between temperature sensitivity coefficients of the temperature compensation FBG with one free end or two free ends.The curves of the force along with temperature were almost overlapped with minor differences(less than 1%)gained by FBG sensors and pressure sensors,which verified the accuracy of the temperature compensation method.We suggest that this work can provide efficient solutions to the strain-temperature cross-sensitivity for engineering strain monitoring with the self-sensing element embedded with FBG sensors. 展开更多
关键词 FBG sensor self-sensing element embedded FBG sensor cross sensitivity of strain and temperature temperature compensation
原文传递
A low drift curvature-compensated bandgap reference with trimming resistive circuit 被引量:4
9
作者 Zhi-hua NING Le-nian HE 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2011年第8期698-706,共9页
A low temperature drift curvature-compensated complementary metal oxide semiconductor (CMOS) bandgap ref-erence is proposed.A dual-differential-pair amplifier was employed to add compensation with a high-order term of... A low temperature drift curvature-compensated complementary metal oxide semiconductor (CMOS) bandgap ref-erence is proposed.A dual-differential-pair amplifier was employed to add compensation with a high-order term of TlnT (T is the thermodynamic temperature) to the traditional 1st-order compensated bandgap.To reduce the offset of the amplifier and noise of the bandgap reference,input differential metal oxide semiconductor field-effect transistors (MOSFETs) of large size were used in the amplifier and to keep a low quiescent current,these MOSFETs all work in weak inversion.The voltage reference's temperature curvature has been further corrected by trimming a switched resistor network.The circuit delivers an output voltage of 3 V with a low dropout regulator (LDO).The chip was fabricated in Taiwan Semiconductor Manufacturing Company (TSMC)'s 0.35-μm CMOS process,and the temperature coefficient (TC) was measured to be only 2.1×10 6/°C over the temperature range of 40-125 °C after trimming.The power supply rejection (PSR) was 100 dB @ DC and the noise was 42 μV (rms) from 0.1 to 10 Hz. 展开更多
关键词 Voltage reference Bandgap temperature compensation Low drift Resistive trimming
原文传递
Analysis and suppression of thermal effect of an ultra-stable laser interferometer for space-based gravitational waves detection 被引量:1
10
作者 王观芳 李祝 +7 位作者 黄家玲 段会宗 黄祥青 刘洪凡 刘祺 杨山清 涂良成 叶贤基 《Chinese Optics Letters》 SCIE EI CAS CSCD 2022年第1期43-48,共6页
In this paper,we present a suppression method for the thermal drift of an ultra-stable laser interferometer.The detailed analysis on the Michelson interferometer indicates that the change in optical path length induce... In this paper,we present a suppression method for the thermal drift of an ultra-stable laser interferometer.The detailed analysis on the Michelson interferometer indicates that the change in optical path length induced by temperature variation can be effectively reduced by choosing proper thickness and/or incident angle of a compensator.Taking the optical bench of the Laser Interferometer Space Antenna Pathfinder as an example,we analyze the optical bench model with a compensator and show that the temperature coefficient of this laser interferometer can be reduced down to 1 pm/K with an incident angle of 0.267828 rad.The method presented in this paper can be used in the design of ultra-stable laser interferometers,especially for space-based gravitational waves detection. 展开更多
关键词 gravitational waves detection laser interferometer temperature compensation optical path calculation
原文传递
Design of the longitudinal-gradient dipole magnets for HEPS
11
作者 Qing Li Fusan Chen +1 位作者 Chunhua Li Minxian Li 《Radiation Detection Technology and Methods》 CSCD 2021年第1期1-7,共7页
TheHigh Energy Photon Source(HEPS)is the fourth generation light source with high brilliance and lowemittance.The lattice of the storage ring consists of five different dipoles with longitudinal gradients.The longitud... TheHigh Energy Photon Source(HEPS)is the fourth generation light source with high brilliance and lowemittance.The lattice of the storage ring consists of five different dipoles with longitudinal gradients.The longitudinal-gradient dipoles(BLGs)are permanent magnets.This paper presents the construction of BLGs and the magnetic field results using OPERA3D.By optimizing the shape of the polar surface,the magnetic field uniformity is optimized to about 2×10−4.With some adjustable screws,the magnetic field is controlled accurately.Some temperature compensation shunt sheets are arranged to make the temperature stability of magnets better than±50 ppm/°C.At last,the mechanical tolerances of the magnets are studied. 展开更多
关键词 Longitudinal-gradient dipoles Permanent magnets design Adjustable magnets temperature compensation‚mechanical tolerances
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部