期刊文献+
共找到344,958篇文章
< 1 2 250 >
每页显示 20 50 100
Thermal integrity profiling of cast-in-situ piles in sand using fiber-optic distributed temperature sensing
1
作者 Jing Wang Honghu Zhu +4 位作者 Daoyuan Tan Zili Li Jie Li Chao Wei Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3244-3255,共12页
Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature ... Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature profiles of cast-in-situ piles, enabling the detection of structural defects or anomalies at the early stage of construction. However, using this integrity testing method to evaluate potential defects in cast-in-situ piles requires a comprehensive understanding of the mechanism of hydration heat transfer from piles to surrounding soils. In this study, small-scale model tests were conducted in laboratory to investigate the performance of TIP in detecting pile integrity. Fiber-optic distributed temperature sensing (DTS) technology was used to monitor detailed temperature variations along model piles in sand. Additionally, sensors were installed in sand to measure water content and matric suction. An interpretation method against available DTS-based thermal profiles was proposed to reveal the potential defective regions. It shows that the temperature difference between normal and defective piles is more obvious in wet sand. In addition, there is a critical zone of water migration in sand due to the water absorption behavior of cement and temperature transfer-induced water migration in the early-age concrete setting. These findings could provide important insight into the improvement of the TIP testing method for field applications. 展开更多
关键词 Geotechnical monitoring Distributed temperature sensing(DTS) Pile defect Fiber-optic thermal integrity profiling(FO-TIP) Heat transfer Pile‒soil interface
下载PDF
Fabrication of Biomimetic Transparent and Flexible Pectin/PEG Composite Film for Temperature Sensing Applications
2
作者 M.E.Harikumar Sudip K.Batabyal 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第1期47-56,共10页
In the field of robotics to enhance the interaction with humans in real-time and in the bioengineering field to develop prosthetic devices, the need for artificial skin is in high demand. In this work, the hydrogen-bo... In the field of robotics to enhance the interaction with humans in real-time and in the bioengineering field to develop prosthetic devices, the need for artificial skin is in high demand. In this work, the hydrogen-bonded complex network structure of the Pectin/PEG composite has been designed, resulting in the free-standing film functioning as a temperature-sensing device. With the gelation technique and the addition of PEG, the film’s flexibility and conductivity were enhanced. The fabricated device worked at a low voltage of 1 V supply with high throughput. With different dimensions, three devices were fabricated, and the maximum-induced ionic current was 34 µA ± 5%. The device has an average sensitivity of 1.3–2.7 µA/°C over the range of 30 °C to 42 °C. The device's fastest response time to sense the temperature change was 2 s ± 5%. The present device exhibits good stability for a long duration of time. These pectin/PEG films can be used as biomimetic skin to improve the efficiency in sensing the temperature. 展开更多
关键词 Pectin film temperature sensor Ionic current.Thermo-reversible Thin-film NTC
下载PDF
Effect Factors on Measurement Precision of the Embedded Temperature Sensing Fabric
3
作者 张如全 邓南平 +2 位作者 程博闻 张尚勇 吴英 《Journal of Donghua University(English Edition)》 EI CAS 2017年第5期710-718,共9页
The embedded temperature sensing fabric was designed and woven according to the heat transmission model of the fabric.The temperature sensors were embedded into the multi-layered fabric that weft yarns were high-shrin... The embedded temperature sensing fabric was designed and woven according to the heat transmission model of the fabric.The temperature sensors were embedded into the multi-layered fabric that weft yarns were high-shrinkage polyester filaments.And the fabric was treated by a self-designed partial heat device,which can make the sensor be fixed in the fabric.The effects of yarn type,yarn linear density,fabric warp density,fabric structure,fabric layer numbers where the sensor is located,and the ambient temperature on the temperature measured value were investigated.The results demonstrated that when the higher thermal conductivity of yarns and lower density yarns were applied in the fabric as rawmaterials,they were favored to improve the measurement precision.Meanwhile,there were many factors that could make the measured values closer to the real value of the body,such as the plain fabric,the increased warp density of the fabric,the multiple-layer fabric where the sensor was located,the raised ambient testing temperature and the prolonged test time in the certain range. 展开更多
关键词 temperature sensing fabric design of fabric weaving parameter measurement precision of body temperature
下载PDF
Rare Earth Doped Optical Fibers for Temperature Sensing Utilizing Ratio-Based Technology 被引量:1
4
作者 王玉田 耿丽琨 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第z2期171-174,共4页
A new and practical fluorescence temperature detecting system based on fluorescence intensity ratio was proposed. The background theory of fluorescence intensity-ratio method was presented simply. And the characters o... A new and practical fluorescence temperature detecting system based on fluorescence intensity ratio was proposed. The background theory of fluorescence intensity-ratio method was presented simply. And the characters of rare earth doped samples were detailed. The erbium-doped fiber was chosen as the sensing element. The energy levels of 2H11/2 and 4S3/2 are responsible for the emission of radiation at approximately 530 and 555 nm. The erbium-doped (960 ppm) fiber of length 20 cm and core diameter 3.2 μm was used as the sensing part. A silica photodiode transfers the fluorescence signal to electric signal, then the ratio of the average of the two different signals was calculated by the computer and the temperature was obtained. The ratio R of the intensity resulting from the transition between the two levels varies proportionly with temperature interval from 293 K to 373 K. The sensitivity of the sensor is approximately 0.05 K-1. 展开更多
关键词 FLUORESCENCE INTENSITY RATIO RARE-EARTH DOPED material temperature detecting optical FIBER
下载PDF
Numerical Calculation of Seawater Temperature Sensing Based on Polydimethylsiloxane-Coated Microfiber Knot Resonator 被引量:1
5
作者 Hongjuan Yang Shanshan Wang +2 位作者 Kening Mao Guoxiang Li Jing Wang 《Optics and Photonics Journal》 2014年第4期91-97,共7页
A seawater temperature sensing method based on polydimethylsiloxane-coated (PDMS-coated) microfiber knot resonator (MKR) is proposed, which has the advantages of high sensitivity and weak salinity dependence. The depe... A seawater temperature sensing method based on polydimethylsiloxane-coated (PDMS-coated) microfiber knot resonator (MKR) is proposed, which has the advantages of high sensitivity and weak salinity dependence. The dependences of the temperature sensitivity on fiber diameter, coating thickness and probing wavelength are theoretically investigated and the range of coating thickness for weak salinity dependence is obtained. By optimizing the parameters of the seawater temperature sensing system, when the probing wavelength is 1550 nm, the fiber diameter is 1 μm, and the coating thickness is 5 μm, the sensitivity can reach to 0.197 nm/°C. Results shown here are beneficial to find the optimal parameters for the temperature sensors with high sensitivity and weak salinity dependence. 展开更多
关键词 Seawater temperature Sensor MICROFIBER KNOT Resonators COATING
下载PDF
Industrial Temperature Monitoring System Design Based on ZigBee and Infrared Temperature Sensing
6
作者 Di Peng Shengpeng Wan 《Optics and Photonics Journal》 2013年第2期277-280,共4页
In the industrial field, long running of the equipment easily leads local temperature of the equipment to rise. This is a security risk. For this problem, we have designed a set of remote wireless temperature monitori... In the industrial field, long running of the equipment easily leads local temperature of the equipment to rise. This is a security risk. For this problem, we have designed a set of remote wireless temperature monitoring system. Based on ZigBee technology, we have a remote wireless networking temperature monitoring of a lot of equipment scattered in various locations of factories and enterprises. The system uses infrared temperature sensor TS118-3 gathering temperature information. After a signal conditioning circuit, we use a wireless RF single-chip CC2530 wirelessly transmitting the temperature of the measured target to the receiving node. The receiving node uploads the data to a computer by RS232.PC software displays real-time temperature information. 展开更多
关键词 INFRARED temperature sensing CC2530 ZIGBEE INDUSTRIAL temperature Monitoring
下载PDF
Investigation on Temperature Sensing of Nanostructured Zinc Oxide Synthesized via Oxalate Route
7
作者 Richa Srivastava 《Journal of Sensor Technology》 2012年第1期8-12,共5页
A detailed study is reported of the synthesis and characterization of n- type ZnO nanomaterial and its application as temperature sensor. The ZnO nanomaterial has been synthesized through pyrolysis of the oxalate prod... A detailed study is reported of the synthesis and characterization of n- type ZnO nanomaterial and its application as temperature sensor. The ZnO nanomaterial has been synthesized through pyrolysis of the oxalate produced by a conventional precipitation method. It is synthesized by flash heating the oxalate at 450°C for 15 min. Pellet of this material was prepared and used as a sensing element. The variations in resistance of sensing pellet at different temperatures were recorded. The relative resistance was decreased linearly with increasing temperatures over the range, 120°C - 260°C. The activation energy of ZnO calculated from Arrhenius plot was found 1.12 eV. Temperature response in terms of the relative variation, ΔR, of sensor resistance to a given temperature was measured. Scanning electron micrograph of the sensing element has been studied. Pellet of the ZnO is comprised of nanorods of varying diameters and different lengths. Diameter of ZnO nanorods varies from 75 to 300 nm. X-ray diffraction pattern of the sensing element reveal their nano-crystalline nature. Optical characterization of the sensing material was carried out by UV-visible spectrophotometer. By UV-Vis spectra, the estimated value of band gap of ZnO was found 4.7 eV. 展开更多
关键词 temperature Sensor Activation Energy NANOSTRUCTURE Resistance Surface Morphology
下载PDF
Selective enhancement of green upconversion luminescence of Er-Yb:NaYF4 by surface plasmon resonance of W18O49 nanoflowers and applications in temperature sensing
8
作者 李昂 吴金磊 +3 位作者 许雪松 刘洋 包亚男 董斌 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第9期151-156,共6页
The W_(18)O_(49) nanoflowers with a diameter of 500 nm are prepared by a facile hydrothermal method. The Er-Yb:NaYF4 nanoparticles are adsorbed on the petals(the position of the strongest local electric field on W_(18... The W_(18)O_(49) nanoflowers with a diameter of 500 nm are prepared by a facile hydrothermal method. The Er-Yb:NaYF4 nanoparticles are adsorbed on the petals(the position of the strongest local electric field on W_(18)O_(49) nanoflowers).With a 976 nm laser diode(LD) as an excitation source, the selectively green upconversion luminescence(UCL) is observed to be enhanced by two orders of magnitude in Er-Yb: NaYF4/W_(18)O_(49) nanoflowers heterostructures. It suggests that the near infrared(NIR)-excited localized surface plasmon resonance(LSPR) of W_(18)O_(49) is primarily responsible for the enhanced UCL, which could be partly reabsorbed by the W_(18)O_(49), thus leading to the selective enhancement of green UCL for the Er-Yb: NaYF4. The fluorescence intensity ratio is investigated as a function of temperature based on the intense green UCL, which indicates that Er-Yb: NaYF_4/W_(18)O_(49) nanoflower heterostructures have good potential for developing into temperature sensors. 展开更多
关键词 温度传感器 回声 电浆 表面 应用 激光二极管 UCL 近红外线
原文传递
Modified simulated annealing evolutionary algorithm for fully distributed fiber Bragg grating temperature sensing
9
作者 陈娜 李承林 +4 位作者 陈振宜 庞拂飞 曾祥龙 孙晓岚 王廷云 《Journal of Shanghai University(English Edition)》 CAS 2011年第1期58-62,共5页
In this paper, we present a simple and fast spectra inversion method to reconstruct the temperature distribution along single fiber Bragg grating (FBG) temperature sensor. This is a fully distributed sensing method ba... In this paper, we present a simple and fast spectra inversion method to reconstruct the temperature distribution along single fiber Bragg grating (FBG) temperature sensor. This is a fully distributed sensing method based on the simulated annealing evolutionary (SAE) algorithm. Several modifications are made to improve the algorithm efficiency, including choosing the most superior chromosome, setting up the boundary of every gene according to the density of resonance peaks of the reflection spectrum, and dynamically modifying the boundary with the algorithm running. Numerical simulation results show that both the convergence rate and the fluctuation are significantly improved. A high spatial temperature resolution of 0.25 mm has been achieved at the time cost of 86 s. 展开更多
关键词 光纤布拉格光栅 温度传感器 进化算法 全分布式 模拟退火 反射光谱 动态修改 温度分辨率
下载PDF
Technology of fiber-optic temperature sensing and its application in & temperature measuring of gob area
10
作者 LIU Jing-wen HUANG Li-ming 《Journal of Coal Science & Engineering(China)》 2011年第2期171-175,共5页
关键词 光纤温度传感 传感技术 应用 监测过程 大同煤矿 信号传输 分布式 斯太尔
下载PDF
Aluminium phthalocyanine chloride thin films for temperature sensing
11
作者 Muhammad Tariq Saeed Chani Abdullah M.Asiri +3 位作者 Kh.S.Karimov Atif Khan Niaz Sher Bhadar Khan Khalid.A.Alamry 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第11期629-633,共5页
This study presents the fabrication and temperature sensing properties of sensors based on aluminium phthalocyanine chloride(AlPcCl)thin films.To fabricate the sensors,50-nm-thick electrodes with 50-μm gaps between t... This study presents the fabrication and temperature sensing properties of sensors based on aluminium phthalocyanine chloride(AlPcCl)thin films.To fabricate the sensors,50-nm-thick electrodes with 50-μm gaps between them are deposited on glass substrates.AlPcCl thin films with thickness of 50–100 nm are deposited in the gap between electrodes by thermal evaporation.The resistance of the sensors decreases with increasing thickness and the annealing at 100℃ results in an increase in the initial resistance of sensors up to 24%.The sensing mechanism is based on the change in resistance with temperature.For temperature varying from 25℃ to 80℃,the change in resistance is up to 60%.Simulation is carried out and results obtained coincide with experimental data with an error of±1%. 展开更多
关键词 温度传感 酞菁薄膜 铝酞菁 纳米厚度 传感器 传感特性 玻璃基底
原文传递
Fast-Response Fiber-Optic FPI Temperature Sensing System Based on Modulated Grating Y-Branch Tunable Laser
12
作者 Yang CHEUNG Zhenguo JING +6 位作者 Qiang LIU Ang LI Yueying LIU Yihang GUO Sen ZHANG Dapeng ZHOU Wei PENG 《Photonic Sensors》 SCIE EI CSCD 2024年第1期59-72,共14页
In this paper,a cost-effective and miniaturized instrument is proposed,which is based on a tunable modulated grating Y-branch(MG-Y)laser for rapid temperature measurement using a Fabry-Perot interferometer(FPI)sensor.... In this paper,a cost-effective and miniaturized instrument is proposed,which is based on a tunable modulated grating Y-branch(MG-Y)laser for rapid temperature measurement using a Fabry-Perot interferometer(FPI)sensor.The FPI sensor with a 1463-μm cavity length is a short segment of a capillary tube sandwiched by two sections of single-mode fibers(SMFs).This system has a broad tunable range(1527 nm-1567 nm)with a wavelength interval of 8 pm and a tuning rate of 100 Hz.Temperature sensing experiments are carried out to investigate the performance of the system by demodulating the absolute cavity length of the FPI sensor using a cross-correlation algorithm.Experimental results show that the sensor can reach the response time as short as 94 ms with the sensitivity of 802 pm/C.Benefiting from the homemade and integrated essential electrical circuits,the entire system has the small size,low cost,and practical application potential to be used in the harsh environment for rapid temperature measurement. 展开更多
关键词 MG-Y laser INTERROGATOR rapid temperature measurement cross-correlation algorithm
原文传递
A Novel Sensing Imaging Equipment Under Extremely Dim Light for Blast Furnace Burden Surface:Starlight High-Temperature Industrial Endoscope
13
作者 Zhipeng Chen Xinyi Wang +3 位作者 Weihua Gui Jilin Zhu Chunhua Yang Zhaohui Jiang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期893-906,共14页
Blast furnace(BF)burden surface contains the most abundant,intuitive and credible smelting information and acquiring high-definition and high-brightness optical images of which is essential to realize precise material... Blast furnace(BF)burden surface contains the most abundant,intuitive and credible smelting information and acquiring high-definition and high-brightness optical images of which is essential to realize precise material charging control,optimize gas flow distribution and improve ironmaking efficiency.It has been challengeable to obtain high-quality optical burden surface images under high-temperature,high-dust,and extremelydim(less than 0.001 Lux)environment.Based on a novel endoscopic sensing detection idea,a reverse telephoto structure starlight imaging system with large field of view and large aperture is designed.Combined with a water-air dual cooling intelligent self-maintenance protection device and the imaging system,a starlight high-temperature industrial endoscope is developed to obtain clear optical burden surface images stably under the harsh environment.Based on an endoscope imaging area model,a material flow trajectory model and a gas-dust coupling distribution model,an optimal installation position and posture configuration method for the endoscope is proposed,which maximizes the effective imaging area and ensures large-area,safe and stable imaging of the device in a confined space.Industrial experiments and applications indicate that the proposed method obtains clear and reliable large-area optical burden surface images and reveals new BF conditions,providing key data support for green iron smelting. 展开更多
关键词 Blast furnace(BF) burden surface extremely dim light industrial endoscope sensing imaging STARLIGHT
下载PDF
Tailoring MXene Thickness and Functionalization for Enhanced Room‑Temperature Trace NO_(2) Sensing
14
作者 Muhammad Hilal Woochul Yang +1 位作者 Yongha Hwang Wanfeng Xie 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期71-86,共16页
In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method... In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method involving high-pressure processing,stirring,and immiscible solutions,sub-100 nm MXene flake thickness is achieved within the MXene film on the Si-wafer.Functionalization control is achieved by defunctionalizing MXene at 650℃ under vacuum and H2 gas in a CVD furnace,followed by refunctionalization with iodine and bromine vaporization from a bubbler attached to the CVD.Notably,the introduction of iodine,which has a larger atomic size,lower electronegativity,reduce shielding effect,and lower hydrophilicity(contact angle:99°),profoundly affecting MXene.It improves the surface area(36.2 cm^(2) g^(-1)),oxidation stability in aqueous/ambient environments(21 days/80 days),and film conductivity(749 S m^(-1)).Additionally,it significantly enhances the gas-sensing performance,including the sensitivity(0.1119Ωppm^(-1)),response(0.2% and 23%to 50 ppb and 200 ppm NO_(2)),and response/recovery times(90/100 s).The reduced shielding effect of the–I-terminals and the metallic characteristics of MXene enhance the selectivity of I-MXene toward NO2.This approach paves the way for the development of stable and high-performance gas-sensing two-dimensional materials with promising prospects for future studies. 展开更多
关键词 Controlled MXene thickness Gaseous functionalization approach Lower electronegativity functional groups Enhanced MXene stability Trace NO_(2)sensing
下载PDF
Gd^(3+) ion induced UV upconversion emission and temperature sensing in Tm^(3+)/Yb^(3+):Y_(2)O_(3) phosphor 被引量:1
15
作者 Madan M.Upadhyay Kaushal Kumar 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第9期1295-1301,I0001,共8页
Cubic phase Tm^(3+)/Yb^(3+):Y_(2)O_(3) and Tm^(3+)/Yb^(3+)/Gd^(3+):Y_(2)O_(3) phosphors were prepared by low temperature combustion technique for upconversion emission in UV-visible range.The 980 nm excitation has gen... Cubic phase Tm^(3+)/Yb^(3+):Y_(2)O_(3) and Tm^(3+)/Yb^(3+)/Gd^(3+):Y_(2)O_(3) phosphors were prepared by low temperature combustion technique for upconversion emission in UV-visible range.The 980 nm excitation has generated UV emission at 314 nm in tridoped phosphor due to the energy transfer from Tm^(3+) to Gd^(3+)ion.Characteristic emission bands from Tm^(3+) are also observed in both the phosphors.Thermally coupled Stark sublevels ^(1)G_(4(a))(476 nm) and ^(1)G_(4(b))(488 nm) of Tm^(3+) ion were utilised for optical thermometry using fluorescent intensity ratio(FIR) method.The result shows that maximum absolute sensitivity in tridoped phosphor is observed to be 1.33 × 10^(-3) K^(-1) at 298 K.Moreover,temperature rise of phosphor at various pump power densities was also measured and it is estimated to achieve 407 K at the pump power density of 38.46 W/cm^(2). 展开更多
关键词 UPCONVERSION UV emission Combustion synthesis temperature sensing Optical heating Gd^(3+)emission
原文传递
White up-conversion luminescence and highly-sensitive optical temperature sensing in Na_(3)La(VO_(4))_(2):Yb,Er,Tm,Ho phosphors 被引量:1
16
作者 Qi Xiao Xiumei Yin +4 位作者 Lin Lv Xinyao Dong Na Zhou Kuichao Liu Xixian Luo 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第7期981-988,I0001,共9页
In this work,tunable white up-conversion luminescence was achieved in the Yb^(3+),Er^(3+),Tm^(3+),Ho^(3+) codoped Na_(3)La(VO_(4))_(2) phosphors under 980 nm excitation.The emissions of three primary colors are mainly... In this work,tunable white up-conversion luminescence was achieved in the Yb^(3+),Er^(3+),Tm^(3+),Ho^(3+) codoped Na_(3)La(VO_(4))_(2) phosphors under 980 nm excitation.The emissions of three primary colors are mainly attributed to the ~2H_(11/2)/~4S_(3/2)→~4I_(15/2) transitions of Er^(3+),~1G_(4)→~3H_6 transition of Tm^(3+),and_5F_5→~5I_8 transition of Ho^(3+).White luminescence characteristics and mechanisms of up-conversion system were investigated in detail.In addition,the temperature sensing behaviors of multiple levels emission combinations for Na_(3)La(VO_(4))_(2):Yb^(3+),Er^(3+),Tm^(3+),Ho^(3+) were analyzed by employing thermally coupled and non-thermally coupled energy levels.Based on the emissions of ~3F_(2,3)/~1G_(4) energy levels,the maximum relative and absolute sensitivities were obtained to be 2.20%/K and 0.279 K^(-1).The design of up-conversion luminescence materials with high-quality white luminescence and excellent sensitivity performance is critical in the field of optical applications. 展开更多
关键词 UP-CONVERSION Na_(3)La(VO_(4))_(2) White luminescence temperature sensing Sensitivity Rare earths
原文传递
Experimental Research on Temperature Sensing of Seawater Based on Three Interferometers Incorporated With Bow Tie Fiber
17
作者 Changxin ZHAI Yu LI +3 位作者 Shanshan WANG Jibo XU Zheng WEN Jing WANG 《Photonic Sensors》 SCIE EI CSCD 2023年第4期1-11,共11页
Three interferometers(the Sagnac sensor,the linear polarization interferometer,and the reflecting polarization interferometer)incorporated with the bow tie fiber are proposed to detect the seawater temperature.Bow tie... Three interferometers(the Sagnac sensor,the linear polarization interferometer,and the reflecting polarization interferometer)incorporated with the bow tie fiber are proposed to detect the seawater temperature.Bow tie fiber,a kind of polarization maintaining fiber,has stress induced birefringence.The three interferometers are categorized as transmission and reflection types to analyze the sensing principles.Related experiments are performed to explore the influence of the wavelength and length of the bow tie fiber on the sensitivity and free spectral range(FSR).The sensitivity and FSR both increase with the wavelength increasing.The sensitivity fluctuates in a small range and FSR decreases with the length increasing.The reflecting polarization interferometer has the bigger sensitivity of–1.19 nm/℃than the other two.And it has the advantages of easy fabrication,simple operation,and good stability,so it is applicable in real ocean exploration.Our work can provide a reference to researchers who do oceanographic research. 展开更多
关键词 Seawater temperature sensing fiber optic sensor INTERFEROMETER high sensitivity
原文传递
Hyperelastic Graphene Aerogels Reinforced by In‑suit Welding Polyimide Nano Fiber with Leaf Skeleton Structure and Adjustable Thermal Conductivity for Morphology and Temperature Sensing 被引量:1
18
作者 Weida Yin Mengmeng Qin +2 位作者 Huitao Yu Jinxu Sun Wei Feng 《Advanced Fiber Materials》 SCIE EI 2023年第3期1037-1049,共13页
Graphene-aerogel-based flexible sensors have heat tolerances and electric-resistance sensitivities superior to those of polymer-based sensors.However,graphene sheets are prone to slips under repeated compression due t... Graphene-aerogel-based flexible sensors have heat tolerances and electric-resistance sensitivities superior to those of polymer-based sensors.However,graphene sheets are prone to slips under repeated compression due to inadequate chemical con-nections.In addition,the heat-transfer performance of existing compression strain sensors under stress is unclear and lacks research,making it difficult to perform real-temperature detections.To address these issues,a hyperelastic polyimide fiber/graphene aerogel(PINF/GA)with a three-dimensional interconnected structure was fabricated by simple one-pot compound-ing and in-situ welding methods.The welding of fiber lap joints promotes in-suit formation of three-dimensional crosslinked networks of polyimide fibers,which can effectively avoid slidings between fibers to form reinforced ribs,preventing graphene from damage during compression.In particular,the inner core of the fiber maintains its macromolecular chain structure and toughness during welding.Thus,PINF/GA has good structural stabilities under a large strain compression(99%).Moreover,the thermal and electrical conductivities of PINF/GA could not only change with various stresses and strains but also keep the change steady at specific stresses and strains,with its thermal-conductivity change ratio reaching up to 9.8.Hyperelastic PINF/GA,with dynamically stable thermal and electrical conductivity,as well as high heat tolerance,shows broad applica-tion prospects as sensors in detecting the shapes and temperatures of unknown objects in extreme environments. 展开更多
关键词 Graphene aerogel Fiber welding Highly compressible High and low temperature resistance Cyclic stability Flexible tactile sensor
原文传递
Record-breaking High-temperature Outlook for 2023: An Assessment Based on the China Global Merged Temperature(CMST) Dataset
19
作者 Zichen LI Qingxiang LI Tianyi CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期369-376,共8页
According to the latest version(version 2.0) of the China global Merged Surface Temperature(CMST2.0) dataset, the global mean surface temperature(GMST) in the first half of 2023 reached its third warmest value since t... According to the latest version(version 2.0) of the China global Merged Surface Temperature(CMST2.0) dataset, the global mean surface temperature(GMST) in the first half of 2023 reached its third warmest value since the period of instrumental observation began, being only slightly lower than the values recorded in 2016 and 2020, and historically record-breaking GMST emerged from May to July 2023. Further analysis also indicates that if the surface temperature in the last five months of 2023 approaches the average level of the past five years, the annual average surface temperature anomaly in 2023 of approximately 1.26°C will break the previous highest surface temperature, which was recorded in 2016of approximately 1.25°C(both values relative to the global pre-industrialization period, i.e., the average value from 1850 to1900). With El Ni?o triggering a record-breaking hottest July, record-breaking average annual temperatures will most likely become a reality in 2023. 展开更多
关键词 CMST2.0 global mean surface temperature record-breaking temperature El Ni?o
下载PDF
Remote sensing of quality traits in cereal and arable production systems:A review
20
作者 Zhenhai Li Chengzhi Fan +8 位作者 Yu Zhao Xiuliang Jin Raffaele Casa Wenjiang Huang Xiaoyu Song Gerald Blasch Guijun Yang James Taylor Zhenhong Li 《The Crop Journal》 SCIE CSCD 2024年第1期45-57,共13页
Cereal is an essential source of calories and protein for the global population.Accurately predicting cereal quality before harvest is highly desirable in order to optimise management for farmers,grading harvest and c... Cereal is an essential source of calories and protein for the global population.Accurately predicting cereal quality before harvest is highly desirable in order to optimise management for farmers,grading harvest and categorised storage for enterprises,future trading prices,and policy planning.The use of remote sensing data with extensive spatial coverage demonstrates some potential in predicting crop quality traits.Many studies have also proposed models and methods for predicting such traits based on multiplatform remote sensing data.In this paper,the key quality traits that are of interest to producers and consumers are introduced.The literature related to grain quality prediction was analyzed in detail,and a review was conducted on remote sensing platforms,commonly used methods,potential gaps,and future trends in crop quality prediction.This review recommends new research directions that go beyond the traditional methods and discusses grain quality retrieval and the associated challenges from the perspective of remote sensing data. 展开更多
关键词 Remote sensing Quality traits Grain protein CEREAL
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部