期刊文献+
共找到160篇文章
< 1 2 8 >
每页显示 20 50 100
Characteristics of thawed interlayer and its effect on embankment settlement along the Qinghai-Tibet Railway in permafrost regions 被引量:2
1
作者 SUN Zhi-zhong MA Wei +3 位作者 ZHANG Shu-juan MU Yan-hu YUN Han-bo WANG Hong-lei 《Journal of Mountain Science》 SCIE CSCD 2018年第5期1090-1100,共11页
The formation of thawed interlayer beneath embankment can result in embankment settlement in permafrost regions. Based on the data on ground temperatures and deformations beneath the embankment, observed in-situ along... The formation of thawed interlayer beneath embankment can result in embankment settlement in permafrost regions. Based on the data on ground temperatures and deformations beneath the embankment, observed in-situ along the QinghaiTibet Railway in permafrost regions from 2006 to2013, characteristics of the thawed interlayer beneath the embankment and its influence on the embankment settlement are studied. The results indicate that the thawed interlayer hardly forms beneath the natural field, and beneath the embankments from the Qinghai-Tibet Railway the thawed interlayer develops widely, and it can be refrozen totally in the regions with lower mean annual ground temperature, and developed further in the regions with higher mean annual ground temperature.The thawed interlayer is closely related to the embankment settlement. The ice content of permafrost underlying the thawed interlayer influences the settlement of embankment. The higher the ice content is, the larger the settlement is, and vice versa. The increase in thickness of thawed interlayer mainly results from the decline of artificial permafrost table in high-temperature permafrost regions. 展开更多
关键词 IN-SITU monitoring Qinghai-TibetRailway EMBANKMENT SETTLEMENT thawed INTERLAYER
原文传递
Shear properties of thawed natural permafrost by bender elements 被引量:2
2
作者 Feng Zhang ZhaoHui (Joey) Yang +2 位作者 JiaHui Wang HaiPeng Li Benjamin Still 《Research in Cold and Arid Regions》 CSCD 2017年第4期343-351,共9页
Thawed permafrost could cause a serious stability problem for foundations and oil-wells in cold regions. A non-damage testing procedure, employing the Bender Element Method, was used for permafrost samples collected f... Thawed permafrost could cause a serious stability problem for foundations and oil-wells in cold regions. A non-damage testing procedure, employing the Bender Element Method, was used for permafrost samples collected from a continuous frozen core obtained from the North Slope of Alaska, USA. The wave velocity and modulus of thawed permafrost were investigated on various isotropic confining pressure from 0 kPa to 400 kPa per 100 kPa. The received shear wave propagation was recorded, and the elastic wave theory was used to calculate shear modulus. Finally, the shear modulus affected by confining pressure, water content and dry density were analyzed and discussed, and a regression formulation of shear modulus based on the Janbu Model for thawed silty and sandy permafrost were proposed and validation. 展开更多
关键词 SHEAR VELOCITY SHEAR MODULUS thawed NATURAL PERMAFROST bender ELEMENT
下载PDF
Influence of Blastocysts Morphological Score on Pregnancy Outcomes in Frozen-thawed Blastocyst Transfers: a Retrospective Study of 741 Cycles 被引量:2
3
作者 刘琳 李艳辉 +3 位作者 丁晓芳 耿育红 陈春艳 高颖 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2014年第5期750-754,共5页
The influence of inner cell mass (ICM) and trophectoderm (TE) score on pregnancy out- comes in frozen-thawed blastocyst transfer cycles was analyzed. A retrospective analysis of 741 cycles of frozen-thawed blastos... The influence of inner cell mass (ICM) and trophectoderm (TE) score on pregnancy out- comes in frozen-thawed blastocyst transfer cycles was analyzed. A retrospective analysis of 741 cycles of frozen-thawed blastosysts transfer was performed. All cycles were divided into four groups based on the number and morphological score of blastocysts: S-ICM B/TE B group (n=91), the single blastocyst transfer oflCM B and TE B; D-ICM B/TE B group (n=579), double blastocysts transfer oflCM B/TE B; D-1CM B/TE C group (n=35), double blastocysts transfer of ICM B/TE C; and D-ICM C/TE B group (n=36), double blastocysts transfer ofTE B/ICM C. The pregnancy outcomes were compared among the four groups. As compared with D-ICM B/TE C group, the clinical pregnancy rate, implantation rate and multiple pregnancy rate were increased in D-ICM B/TE B group (74.96% vs. 57.14%, 57.43% vs. 37.14%, and .48.62% vs. 25%, respectively, P〈0.05 for all). Clinical pregnancy rate and implantation rate in D-ICM B/TE B group were also higher than in D-ICM C/TE B group (74.96% vs. 50%, and 57.43% vs. 33.33%, both P〈0.05). Multivariable Logistic regression analysis indicated that ICM score was a better predictive parameter for clinical pregnancy (OR=3.05, CI 1.70-5.46, P〈0.001), while the trophectoderm score was a better one for early abortion (OR=0.074, CI 0.03-0.19, P〈0.001). Clinical pregnancy rate and multiple pregnancy rate in S-ICM B/TE B group were significantly lower than those in D-ICM B/TE B group (46.15% vs. 74.96%, and 2.38% vs. 48.62%, both P〈0.05), but there was no si~,,niflcant difference in the implantation rate between the two groups. It was suggested that the higher score of ICM and TE may be indicative of the better pregnancy outcomes. The ICM score is a better predictor of clinical pregnancy than TE, while TE score is a better one in predicting early abortion. Sin- gle ICM B/TE B blastocyst transfer in frozen-thawed cycles can also get satisfactory pregnancy out- comes. 展开更多
关键词 thawed embryos transfer vitrification cryopreservation inner cell mass trophectoderm cell pregnancy outcome
下载PDF
Characteristics of thawed interlayer and its effect on settlement beneath embankment in permafrost regions--A case study for the Qinghai-Tibet Highway
4
作者 ZhiZhong Sun HongLei Wang +2 位作者 WenJie Feng YongZhi Liu ShuJuan Zhang 《Research in Cold and Arid Regions》 CSCD 2017年第5期447-454,共8页
Based on ground temperatures and deformations monitored at the Xieshuihe site along the Qinghai-Tibet Highway(QTH)in permafrost regions from 2004 to 2015,variation of artificial permafrost table(APT),maximum frozen de... Based on ground temperatures and deformations monitored at the Xieshuihe site along the Qinghai-Tibet Highway(QTH)in permafrost regions from 2004 to 2015,variation of artificial permafrost table(APT),maximum frozen depth(MFD),thawed interlayer thickness(TIT)and ground temperature beneath embankment is analyzed,respectively.The results indicate that under the embankment,the change of APT occurred from October to December of that year and presented a deepening trend.The change of MFD occurred from April to June of that year with no obvious change trend,and TIT had an increasing trend year by year,which mainly resulted from the deepening artificial permafrost table.Mean annual ground temperature at 0.5 m depth was 3.91°C higher beneath the embankment center than that under the natural field.The rising ground temperature at shallow layer of embankment resulted in the development of thawed interlayer beneath the embankment and warming of underlying permafrost.Embankment settlement is closely associated with TIT.Greater settlement easily occurs when permafrost with higher ice content exists under the thawed interlayer,and in turn the settlement is smaller when permafrost with lower ice content exists under the thawed interlayer. 展开更多
关键词 thawed INTERLAYER EMBANKMENT IN-SITU monitoring SETTLEMENT Qinghai-Tibet HIGHWAY
下载PDF
Improvement of Live Birth Rate Following Frozen-Thawed Blastocyst Transfer by Combination of Prednisolone Administration and Stimulation of Endometrium Embryo Transfer
5
作者 Taketo Inoue Yoshiyuki Ono +2 位作者 Yukiko Yonezawa Junji Kishi Nobuyuki Emi 《Open Journal of Obstetrics and Gynecology》 2014年第13期745-750,共6页
The endometrial condition is a significant factor for successful pregnancy. To regulate endometrial function in fertility treatment, prednisolone (PSL) is administered for suppression of increased natural killer cells... The endometrial condition is a significant factor for successful pregnancy. To regulate endometrial function in fertility treatment, prednisolone (PSL) is administered for suppression of increased natural killer cells and stimulation of endometrium embryo transfer (SEET) to enhance communication between embryo and maternal tissues. We attempted to improve the endometrial condition by PSL administration and SEET during frozen–thawed blastocyst transfer (FBT). Patients took PSL (5 mg) 3 times daily for 3 days after ovulation during the FBT cycle. To analyse effects of PSL combined with SEET, we determined rates of chemical pregnancy, clinical pregnancy, foetal heart movement (FHM) and live birth. Rates of chemical pregnancy, clinical pregnancy and FHM were significantly higher in the PSL(+)/SEET(+) (57.7%, 50.0% and 46.2%, respectively) and PSL(+)/SEET(-) (53.3%, 46.7% and 46.7%, respectively) groups than in the PSL(-)/SEET(+) (30.3%, 18.2% and 18.2%, respectively) and PSL(-)/SEET(-) (22.4%, 22.4% and 18.4%;P = 0.0043, 0.0081 and 0.0055, respectively) groups. The live birth rate was significantly higher in the PSL(+)/SEET(+) group than in the PSL(+)/SEET(-), PSL(-)/SEET(+) and PSL(-)/SEET(-) groups (42.3%, 26.7%, 18.2% and 12.2%, respectively;P = 0.0237). PSL combined with SEET may be a useful adjunct to assisted reproductive technology in women who repeatedly fail to conceive by infertility treatment. 展开更多
关键词 Frozen–thawed BLASTOCYST TRANSFER Infertility Live Birth PREDNISOLONE STIMULATION of ENDOMETRIUM Embryo TRANSFER (SEET)
下载PDF
Comparison of platelet functions between apheresis and handmade sources after thawed from cryopreservation at-80℃
6
《中国输血杂志》 CAS CSCD 2001年第S1期351-,共1页
关键词 Comparison of platelet functions between apheresis and handmade sources after thawed from cryopreservation at-80
下载PDF
Morphology and survival of cryopreserved-thawed ovarian tissues after heterotopic autotransplantation
7
作者 Rumana Jafarey Jing Yang 《The Chinese-German Journal of Clinical Oncology》 CAS 2014年第3期110-114,共5页
Objective: The aim of our study was to observe the survival and morphological changes of thawed ovarian tis- sues after heterotopic transplantation. Methods: Twenty SPF-SD female rats (5-6 weeks old) were equally ... Objective: The aim of our study was to observe the survival and morphological changes of thawed ovarian tis- sues after heterotopic transplantation. Methods: Twenty SPF-SD female rats (5-6 weeks old) were equally randomized into the control group and experimental group. In control group, the freshly isolated ovaries were fixed in formalin. In experimental group, the freshly isolated ovaries were vitrified immediately and cut into thin slices. After stored in liquid nitrogen for 21 days, the tissues of experimental group were rapidly thawed and transplanted into back muscles of rats for 2 or 4 weeks, respectively. After that, all rats in experimental group were sacrificed and the ovarian tissues were collected and fixed in 4% formaldehyde solution. Then the ovarian tissues were stained with HE and observed under the light confocal microscope. Re- suits: With the naked eyes, there was no specific alteration except the size reduction with color changing. Under microscopy, we found normal cortex and medulla in the ovary, and the primordial follicles and follicles in various stages were observed in the cortex. The normal oocytes in ovarian tissues of experimental group were significant decreased than in the control group. Conclusion: The ovarian tissues survive well in experimental group and there is no significant difference in the proportion of follicles between different times (2 and 4 weeks) after grafting. Our results suggest that thawed ovarian tissues could survive after heterotopic transplantation into back muscles of rat models and maintain their morphology and function. 展开更多
关键词 ovarian tissue MORPHOLOGY heterotopic transplantation thawing
下载PDF
Analysis of Factors Influencing Pregnancy Rate in Frozenthawed Embryo Transfer
8
作者 Lu LI Xiao-xi SUN Jun-ling CHEN Xiao-hong GAO Yong-wei WANG Jie-wei TAO Li-nan CHENG 《Journal of Reproduction and Contraception》 CAS 2004年第4期239-244,共6页
Objective To analyse factors influencing the outcome of frozen-thawed embryo transfer (FET). Method A retrospective analysis was performed in our center on 129 thawing cycles from March 2001 to April 2003. The relat... Objective To analyse factors influencing the outcome of frozen-thawed embryo transfer (FET). Method A retrospective analysis was performed in our center on 129 thawing cycles from March 2001 to April 2003. The related parameters were compared between conceived and non-conceived cycles. Results There were totally 129 clinical pregnancies in these transfers (pregnancy rate: 27.1%). Frozen-thawed embryos were transferred to natural cycles and CC cycling and hormone replacement treatment had equal success. Groups of IVF and ICSI did not differ significantly in pregnancy rates (P〉0.05). The pregnancy rates for one, two, three and four pre-embryos transfer were 0, 20.0%,44.1% and 75.0%, respectively (P〈0.05). There were statistical differences between pregnancy group or non- pregnancy group in the endometrial thickness, CES, CES/No. of embryo. A higher pregnancy rate was observed in embryo transfers which had at least one 4-cell grade I embryo (d 2)(P〈0.01). Conclusions The most important factors influencing the implantation rate and pregnancy rate of frozen-thawed embryo transfer are age, endometrium thickness, and the number, morphology and growth rate of transferred frozen embryos of women participants. 展开更多
关键词 frozen thaw embryo transfer pregnancy rate
下载PDF
Stress states of thawed soil subgrade
9
作者 Andrei Petriaev 《Research in Cold and Arid Regions》 CSCD 2015年第4期348-353,共6页
The article presents the field measurement results of the stress states of roadbed thawed soil subgrade during the passage of trains. The dependences of the vertical and horizontal stresses on the velocity of the roll... The article presents the field measurement results of the stress states of roadbed thawed soil subgrade during the passage of trains. The dependences of the vertical and horizontal stresses on the velocity of the rolling stock motion, the axle load, and the distance from the sleeper sole have been obtained. 展开更多
关键词 dynamic vibration impact vertical and horizontal stresses thawing subgrade stress rise rate
下载PDF
Field experimental study on the effect of thawed depth of frozen alpine meadow soil on rill erosion by snowmelt waterflow 被引量:1
10
作者 Ying Zheng Xiaonan Shi +5 位作者 Fan Zhang Tingwu Lei Chen Zeng Xiong Xiao Li Wang Guanxing Wang 《International Soil and Water Conservation Research》 SCIE CSCD 2024年第1期54-63,共10页
Soil erosion by snow or ice melt waterflow is an important type of soil erosion in many high-altitude and high-latitude regions and is further aggravated by climate warming.The snowmelt waterflow erosion process is af... Soil erosion by snow or ice melt waterflow is an important type of soil erosion in many high-altitude and high-latitude regions and is further aggravated by climate warming.The snowmelt waterflow erosion process is affected by soil freeze-thaws and is highly dynamically variable.In this study,a methodology was developed to conduct in situ field experiments to investigate the effects of the thawed depth of the frozen soil profile on snowmelt waterflow erosion.The method was implemented on an alpine meadow soil slope at an altitude of 3700 m on the northeastern Tibetan Plateau.The erosion experiments involved five thawed soil depths of 0,10,30(35),50,and 80(100)mm under two snowmelt waterflow rates(3 and 5 L/min).When the topsoil was fully frozen or shallow-thawed(≤10 mm),its hydrothermal and structural properties caused a significant lag in the initiation of runoff and delayed soil erosion in the initial stage.The runoff and sediment concentration curves for fully frozen and shallow-thawed soil showed two-stage patterns characteristic of a sediment supply limited in the early stage and subject to hydrodynamic-controlled processes in the later stage.However,this effect did not exist where the thawed soil depth was greater than 30 mm.The deep-thawed cases(≥30 mm)showed normal hydrograph and sedigraph patterns similar to those of the unfrozen soil.The findings of this study are important for understanding the erosion rates of partially thawed soil and for improving erosion simulations in cold regions. 展开更多
关键词 Snowmelt waterflow erosion Hillslope erosion process Soil freeze and thaw Runoff generation In situ experimental method
原文传递
Effects of thawing-induced softening on fracture behaviors of frozen rock 被引量:1
11
作者 Ting Wang Hailiang Jia +2 位作者 Qiang Sun Xianjun Tan Liyun Tang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期979-989,共11页
Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors ... Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors of frozen rock is evaluated by testing the tension fracture toughness(KIC)of frozen rock at different temperatures(i.e.-20℃,-15℃,-12℃,-10℃,-8℃,-6℃,-4℃,-2℃,and 0℃).Acoustic emission(AE)and digital image correlation(DIC)methods are utilized to analyze the microcrack propagation during fracturing.The melting of pore ice is measured using nuclear magnetic resonance(NMR)method.The results indicate that:(1)The KIC of frozen rock decreases moderately between-20℃ and-4℃,and rapidly between-4℃ and 0℃.(2)At-20℃ to-4℃,the fracturing process,deduced from the DIC results at the notch tip,exhibits three stages:elastic deformation,microcrack propagation and microcrack coalescence.However,at-4℃e0℃,only the latter two stages are observed.(3)At-4℃e0℃,the AE activities during fracturing are less than that at-20℃ to-4℃,while more small events are reported.(4)The NMR results demonstrate a reverse variation trend in pore ice content with increasing temperature,that is,a moderate decrease is followed by a sharp decrease and-4℃ is exactly the critical temperature.Next,we interpret the thawing-induced softening effect by linking the evolution in microscopic structure of frozen rock with its macroscopic fracture behaviors as follow:from-20℃ to-4℃,the thickening of the unfrozen water film diminishes the cementation strength between ice and rock skeleton,leading to the decrease in fracture parameters.From-4℃ to 0℃,the cementation effect of ice almost vanishes,and the filling effect of pore ice is reduced significantly,which facilitates microcrack propagation and thus the easier fracture of frozen rocks. 展开更多
关键词 Frozen sandstone Different thawing temperature Fracture toughness Microcrack propagation process Unfrozen water content
下载PDF
Effects of freeze-thaw cycles on sandstone in sunny and shady slopes
12
作者 Dian Xiao Xiaoyan Zhao +3 位作者 Corrado Fidelibus Roberto Tomás Qiu Lu Hongwei Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2503-2515,共13页
A growing rock engineering activity in cold regions is facing the threat of freeze-thaw(FT)weathering,especially in high mountains where the sunny-shady slope effects strongly control the difference in weathering beha... A growing rock engineering activity in cold regions is facing the threat of freeze-thaw(FT)weathering,especially in high mountains where the sunny-shady slope effects strongly control the difference in weathering behavior of rocks.In this paper,an investigation of the degradation of petrophysical characteristics of sandstone specimens subjected to FT cycle tests to simulate the sunny-shady slope effects is presented.To this aim,non-destructive and repeatable testing techniques including weight,ultrasonic waves,and nuclear magnetic resonance methods on standard specimens were performed.For the sunny slope specimens,accompanied by the enlargement of small pores,100 FT cycles caused a significant decrease in P-wave velocity with an average of 23%,but a consistent rise of 0.18%in mass loss,34%in porosity,67%in pore geometrical mean radius,and a remarkable 14.5-fold increase in permeability.However,slight changes with some abnormal trends in physical parameters of the shady slope specimens were observed during FT cycling,which can be attributed to superficial granular disaggregation and pore throat obstruction.Thermal shocks enhance rock weathering on sunny slopes during FT cycles,while FT weathering on shady slopes is restricted to the small pores and the superficial cover.These two factors are primarily responsible for the differences in FT weathering intensity between sunny and shady slopes.The conclusions derived from the interpretation of the experimental results may provide theoretical guidance for the design of slope-failure prevention measures and the selection of transportation routes in cold mountainous regions. 展开更多
关键词 Sunny-shady slope Freeze and thaw Pore structure Tight rocks Talus slope Cold regions
下载PDF
Quantification of the concrete freeze–thaw environment across the Qinghai–Tibet Plateau based on machine learning algorithms
13
作者 QIN Yanhui MA Haoyuan +3 位作者 ZHANG Lele YIN Jinshuai ZHENG Xionghui LI Shuo 《Journal of Mountain Science》 SCIE CSCD 2024年第1期322-334,共13页
The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering ma... The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering managers should take into account. In this paper, we propose a more realistic method to calculate the number of concrete freeze–thaw cycles(NFTCs) on the QTP. The calculated results show that the NFTCs increase as the altitude of the meteorological station increases with the average NFTCs being 208.7. Four machine learning methods, i.e., the random forest(RF) model, generalized boosting method(GBM), generalized linear model(GLM), and generalized additive model(GAM), are used to fit the NFTCs. The root mean square error(RMSE) values of the RF, GBM, GLM, and GAM are 32.3, 4.3, 247.9, and 161.3, respectively. The R^(2) values of the RF, GBM, GLM, and GAM are 0.93, 0.99, 0.48, and 0.66, respectively. The GBM method performs the best compared to the other three methods, which was shown by the results of RMSE and R^(2) values. The quantitative results from the GBM method indicate that the lowest, medium, and highest NFTC values are distributed in the northern, central, and southern parts of the QTP, respectively. The annual NFTCs in the QTP region are mainly concentrated at 160 and above, and the average NFTCs is 200 across the QTP. Our results can provide scientific guidance and a theoretical basis for the freezing resistance design of concrete in various projects on the QTP. 展开更多
关键词 Freeze–thaw cycles Quantification Machine learning algorithms Qinghai–Tibet Plateau CONCRETE
原文传递
Surface crack evolution patterns in freeze-thaw damage of fissured rock bodies
14
作者 KANG Zhiqiang WANG Zhilei +2 位作者 SHAO Luhang FENG Jiangjiang YAO Xulong 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3094-3107,共14页
To explore the effects of freeze‒thaw cycles on the mechanical properties and crack evolution of fissured sandstone,biaxial compression experiments were carried out on sandstone subjected to freeze‒thaw cycles to char... To explore the effects of freeze‒thaw cycles on the mechanical properties and crack evolution of fissured sandstone,biaxial compression experiments were carried out on sandstone subjected to freeze‒thaw cycles to characterize the changes in the physical and mechanical properties of fissured sandstone caused by freeze‒thaw cycles.The crack evolution and crack change process on the surface of the fissured sandstone were recorded and analysed in detail via digital image technology(DIC).Numerical simulation was used to reveal the expansion process and damage mode of fine-scale cracks under the action of freeze‒thaw cycles,and the simulation results were compared and analysed with the experimental data to verify the reliability of the numerical model.The results show that the mass loss,porosity,peak stress and elastic modulus all increase with increasing number of freeze‒thaw cycles.With an increase in the number of freeze‒thaw cycles,a substantial change in displacement occurs around the prefabricated cracks,and a stress concentration appears at the crack tip.As new cracks continue to sprout at the tips of the prefabricated cracks until the microcracks gradually penetrate into the main cracks,the displacement cloud becomes obviously discontinuous,and the contours of the displacement field in the crack fracture damage area simply intersect with the prefabricated cracks to form an obvious fracture.The damage patterns of the fractured sandstone after freeze‒thaw cycles clearly differ,forming a symmetrical"L"-shaped damage pattern at zero freeze‒thaw cycles,a symmetrical"V"-shaped damage pattern at 10 freeze‒thaw cycles,and a"V"-shaped damage pattern at 20 freeze‒thaw cycles.After 20 freeze‒thaw cycles,a"V"-shaped destruction pattern and"L"-shaped destruction pattern are formed;after 30 freeze‒thaw cycles,an"N"-shaped destruction pattern is formed.This shows that the failure mode of fractured sandstone gradually becomes more complicated with an increasing number of freeze‒thaw cycles.The effects of freeze‒thaw cycles on the direction and rate of crack propagation are revealed through a temperature‒load coupled model,which provides an important reference for an in-depth understanding of the freeze‒thaw failure mechanisms of fractured rock masses. 展开更多
关键词 Freeze‒thaw cycles Fissured sandstone Particle flow software Rock mechanics Crack extension pattern DIC technique
原文传递
A moving boundary problem derived from heat and water transfer processes in frozen and thawed soils and its numerical simulation 被引量:4
15
作者 XIE ZhengHui SONG LiYe FENG XiaoBing 《Science China Mathematics》 SCIE 2008年第8期1510-1521,共12页
The seasonal change in depths of the frozen and thawed soils within their active layer is reduced to a moving boundary problem, which describes the dynamics of the total ice content using an independent mass balance e... The seasonal change in depths of the frozen and thawed soils within their active layer is reduced to a moving boundary problem, which describes the dynamics of the total ice content using an independent mass balance equation and treats the soil frost/thaw depths as moving (sharp) interfaces governed by some Stefan-type moving boundary conditions, and hence simultaneously describes the liquid water and solid ice states as well as the positions of the frost/thaw depths in soil. An adaptive mesh method for the moving boundary problem is adopted to solve the relevant equations and to determine frost/thaw depths, water content and temperature distribution. A series of sensitivity experiments by the numerical model under the periodic sinusoidal upper boundary condition for temperature are conducted to validate the model, and to investigate the effects of the model soil thickness, ground surface temperature, annual amplitude of ground surface temperature and thermal conductivity on frost/thaw depths and soil temperature. The simulated frost/thaw depths by the model with a periodical change of the upper boundary condition have the same period as that of the upper boundary condition, which shows that it can simulate the frost/thaw depths reasonably for a periodical forcing. 展开更多
关键词 frost and thaw depth moving boundary Stefan problem heat and water transfer numerical solution 80A22
原文传递
EFFECT OF UNI-DIRECTION ACCUMULATION OF UNFROZEN WATER IN SEASONALLY FROZEN AND THAWED GROUND
16
作者 程国栋 《Chinese Science Bulletin》 SCIE EI CAS 1982年第9期984-989,共6页
In the section of fine-grained soil of regions with perennial and deep seasonally frozen ground, a crux to protect railroad, highway, water conservancy and other buildings from, frost damages is to reveal the laws of ... In the section of fine-grained soil of regions with perennial and deep seasonally frozen ground, a crux to protect railroad, highway, water conservancy and other buildings from, frost damages is to reveal the laws of water migration in the frozen, freezing and thawing soil. Most of the previous works on this subject have been concentrated on solving the problem of water migration from the unfrozen part of freezing ground towards the freezing front. However, in recent years it has been discovered that 展开更多
关键词 migration FROZEN FROST FREEZING DAMAGES moisture PERENNIAL thawing favorable saturated
下载PDF
Determination method of permafrost table in seasonal frozen soil areas under“Water-Heat-Salt”coupling
17
作者 WANG Fang YANG Zhong +1 位作者 LIU Kai LU Chang-long 《Journal of Mountain Science》 SCIE CSCD 2023年第11期3266-3282,共17页
The permafrost table is an important index for the design and construction of roads in cold regions,so it is necessary to find a convenient,accurate and fast judgment method to determine the permafrost table.In this s... The permafrost table is an important index for the design and construction of roads in cold regions,so it is necessary to find a convenient,accurate and fast judgment method to determine the permafrost table.In this study,a three-field coupled model was established based on the hydrothermal salt coupling within the permafrost and the similarity theory,and the changes of the permafrost table under different temperature,moisture and salt conditions were numerically simulated by considering the transient temperature change and the influence of the permafrost layer on the seasonally thawed layer.In addition,an accelerated permafrost table test method was designed based on the time-domain variation and hydrothermal salt coupling by the similarity theory,which rapidly simulated the permafrost table change under different temperatures,moisture,and salts in the natural environment.Comparing the simulation and test results with the measured values in the field,the errors are less than 3%,which verified the feasibility of the method for determining the permafrost table,and the simulated results are better than the test results.Results show that the results of determining the permafrost table with a single index have different degrees of deviation,and the permafrost table obtained by the temperature index is the most accurate in general,and it is more accurate to use the average value of the three indexes as the permafrost table compared with a single index. 展开更多
关键词 Permafrost table Hydrothermal salt coupling Seasonally thawed layer Numerical simulation Accelerated test
原文传递
Seepage influence of supra-permafrost groundwater on thermal field of embankment on Qinghai-Tibet Plateau,China
18
作者 MingTang Chai Yuan Luo +2 位作者 Yu Gao Wei Ma YanHu Mu 《Research in Cold and Arid Regions》 CSCD 2023年第3期132-140,共9页
As a unique hydro-geological phenomenon in permafrost regions,the seepage of supra-permafrost groundwater will carry a large amount of heat and cause differential settlement in the embankment.This paper presents the r... As a unique hydro-geological phenomenon in permafrost regions,the seepage of supra-permafrost groundwater will carry a large amount of heat and cause differential settlement in the embankment.This paper presents the results of a field study monitoring the supra-permafrost groundwater levels on both sides of an embankment in permafrost regions.It describes a two-dimensional coupled hydro-thermal model and uses it to analyze the influence of seepage on its temperature field considering climate warming.The results show that seepage exacerbates permafrost thawing and thickens the active layer.The thermal influence on the sunny side of the embankment toe is more significant than that on the shady side,which will cause differential settlement in the embankment.After 50 years of operation,the embankment soil temperature with seepage during freezing is 0.2C warmer than that without seepage,and the thermal influence diminished with the increase in depth.Additionally,seepage influences the thermal regime in vertical and horizontal directions of the embankment.During freezing seasons,the thaw depth increases,and the horizontal thaw range decreases.During thawing seasons,the thaw range grows both vertically and horizontally. 展开更多
关键词 PERMAFROST EMBANKMENT Hydro-thermal coupling thawed inter-layer
下载PDF
Coupling of the Calculated Freezing and Thawing Front Parameterization in the Earth System Model CAS-ESM 被引量:3
19
作者 Ruichao LI Jinbo XIE +5 位作者 Zhenghui XIE Binghao JIA Junqiang GAO Peihua QIN Longhuan WANG Si CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第9期1671-1688,共18页
The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydro... The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydrology,and carbon and nitrogen cycles.In this study,the calculation of freezing and thawing front parameterization was implemented into the earth system model of the Chinese Academy of Sciences(CAS-ESM)and its land component,the Common Land Model(CoLM),to investigate the dynamic change of freezing and thawing fronts and their effects.Our results showed that the developed models could reproduce the soil freezing and thawing process and the dynamic change of freezing and thawing fronts.The regionally averaged value of active layer thickness in the permafrost regions was 1.92 m,and the regionally averaged trend value was 0.35 cm yr–1.The regionally averaged value of maximum freezing depth in the seasonally frozen ground regions was 2.15 m,and the regionally averaged trend value was–0.48 cm yr–1.The active layer thickness increased while the maximum freezing depth decreased year by year.These results contribute to a better understanding of the freezing and thawing cycle process. 展开更多
关键词 frozen ground freezing and thawing fronts maximum freezing depth active layer thickness earth system model CAS-ESM
下载PDF
Response of Freezing/Thawing Indexes to the Wetting Trend under Warming Climate Conditions over the Qinghai–Tibetan Plateau during 1961–2010:A Numerical Simulation 被引量:2
20
作者 Xuewei FANG Zhi LI +5 位作者 Chen CHENG Klaus FRAEDRICH Anqi WANG Yihui CHEN Yige XU Shihua LYU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第2期211-222,共12页
Since the 1990s,the Qinghai–Tibetan Plateau(QTP)has experienced a strikingly warming and wetter climate that alters the thermal and hydrological properties of frozen ground.A positive correlation between the warming ... Since the 1990s,the Qinghai–Tibetan Plateau(QTP)has experienced a strikingly warming and wetter climate that alters the thermal and hydrological properties of frozen ground.A positive correlation between the warming and thermal degradation in permafrost or seasonally frozen ground(SFG)has long been recognized.Still,a predictive relationship between historical wetting under warming climate conditions and frozen ground has not yet been well demonstrated,despite the expectation that it will become even more important because precipitation over the QTP has been projected to increase continuously in the near future.This study investigates the response of the thermal regime to historical wetting in both permafrost and SFG areas and examines their relationships separately using the Community Land Surface Model version 4.5.Results show that wetting before the 1990s across the QTP mainly cooled the permafrost body in the arid and semiarid zones,with significant correlation coefficients of 0.60 and 0.48,respectively.Precipitation increased continually at the rate of 6.16 mm decade–1 in the arid zone after the 1990s but had a contrasting warming effect on permafrost through a significant shortening of the thawing duration within the active layer.However,diminished rainfall in the humid zone after the 1990s also significantly extended the thawing duration of SFG.The relationship between the ground thawing index and precipitation was significantly negatively correlated(−0.75).The dual effects of wetting on the thermal dynamics of the QTP are becoming critical because of the projected increases in future precipitation. 展开更多
关键词 freezing/thawing indexes numerical modeling wetting process frozen ground Qinghai–Tibetan Plateau
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部