Since the inaugural international collaboration under the framework of the Collaboratory for the Study of Earthquake Predictability(CSEP)in 2007,numerous forecast models have been developed and operated for earthquake...Since the inaugural international collaboration under the framework of the Collaboratory for the Study of Earthquake Predictability(CSEP)in 2007,numerous forecast models have been developed and operated for earthquake forecasting experiments across CSEP testing centers(Schorlemmer et al.,2018).Over more than a decade,efforts to compare forecasts with observed earthquakes using numerous statistical test methods and insights into earthquake predictability,which have become a highlight of the CSEP platform.展开更多
In recent years, some researchers have studied the paleoearthquake along the Haiyuan fault and revealed a lot of paleoearthquake events. All available information allows more reliable analysis of earthquake recurrence...In recent years, some researchers have studied the paleoearthquake along the Haiyuan fault and revealed a lot of paleoearthquake events. All available information allows more reliable analysis of earthquake recurrence interval and earthquake rupture patterns along the Haiyuan fault. Based on this paleoseismological information, the recur- rence probability and magnitude distribution for M≥6.7 earthquakes in future 100 years along the Haiyuan fault can be obtained through weighted computation by using Poisson and Brownian passage time models and consid- ering different rupture patterns. The result shows that the recurrence probability of MS≥6.7 earthquakes is about 0.035 in future 100 years along the Haiyuan fault.展开更多
Two large earthquakes(an earthquake doublet)occurred in south-central Turkey on February 6,2023,causing massive damages and casualties.The magnitudes and the relative sizes of the two mainshocks are essential informat...Two large earthquakes(an earthquake doublet)occurred in south-central Turkey on February 6,2023,causing massive damages and casualties.The magnitudes and the relative sizes of the two mainshocks are essential information for scientific research and public awareness.There are obvious discrepancies among the results that have been reported so far,which may be revised and updated later.Here we applied a novel and reliable long-period coda moment magnitude method to the two large earthquakes.The moment magnitudes(with one standard error)are 7.95±0.013 and 7.86±0.012,respectively,which are larger than all the previous reports.The first mainshock,which matches the largest recorded earthquakes in the Turkish history,is slightly larger than the second one by 0.11±0.035 in magnitude or by 0.04 to 0.18 at 95%confidence level.展开更多
In recent years, some researchers have studied the paleoearthquake along the Haiyuan fault and revealed a lot of paleoearthquake events. All available information allows more reliable analysis of earthquake recurrenc...In recent years, some researchers have studied the paleoearthquake along the Haiyuan fault and revealed a lot of paleoearthquake events. All available information allows more reliable analysis of earthquake recurrence interval and earthquake rupture patterns along the Haiyuan fault. Based on this paleoseismological information, the recur- rence probability and magnitude distribution for M≥6.7 earthquakes in future 100 years along the Haiyuan fault can be obtained through weighted computation by using Poisson and Brownian passage time models and consid- ering different rupture patterns. The result shows that the recurrence probability of MS≥6.7 earthquakes is about 0.035 in future 100 years along the Haiyuan fault.展开更多
The Tohoku megathrust earthquake, which occurred on March 11, 2011 and had an epicenter that was 70 km east of Tohoku, Japan, resulted in an estimated ten′s of billions of dollars in damage and a death toll of more t...The Tohoku megathrust earthquake, which occurred on March 11, 2011 and had an epicenter that was 70 km east of Tohoku, Japan, resulted in an estimated ten′s of billions of dollars in damage and a death toll of more than 15 thousand lives, yet few studies have documented key spatio-temporal seismogenic characteristics. Specifically, the temporal decay of aftershock activity, the number of strong aftershocks (with magnitudes greater than or equal to 7.0), the magnitude of the greatest aftershock, and area of possible aftershocks. Forecasted results from this study are based on Gutenberg-Richter’s relation, Bath’s law, Omori’s law, and Well’s relation of rupture scale utilizing the magnitude and statistical parameters of earthquakes in USA and China (Landers, Northridge, Hector Mine, San Simeon and Wenchuan earthquakes). The number of strong aftershocks, the parameters of Gutenberg-Richter’s relation, and the modified form of Omori’s law are confirmed based on the aftershock sequence data from the Mw9.0 Tohoku earthquake. Moreover, for a large earthquake, the seismogenic structure could be a fault, a fault system, or an intersection of several faults. The seismogenic structure of the earthquake suggests that the event occurred on a thrust fault near the Japan trench within the overriding plate that subsequently triggered three or more active faults producing large aftershocks.展开更多
It is critical to determine whether a site has potential damage in real-time after an earthquake occurs,which is a challenge in earthquake disaster reduction.Here,we propose a real-time Earthquake Potential Damage pre...It is critical to determine whether a site has potential damage in real-time after an earthquake occurs,which is a challenge in earthquake disaster reduction.Here,we propose a real-time Earthquake Potential Damage predictor(EPDor)based on predicting peak ground velocities(PGVs)of sites.The EPDor is composed of three parts:(1)predicting the magnitude of an earthquake and PGVs of triggered stations based on the machine learning prediction models;(2)predicting the PGVs at distant sites based on the empirical ground motion prediction equation;(3)generating the PGV map through predicting the PGV of each grid point based on an interpolation process of weighted average based on the predicted values in(1)and(2).We apply the EPDor to the 2022 M_(S) 6.9 Menyuan earthquake in Qinghai Province,China to predict its potential damage.Within the initial few seconds after the first station is triggered,the EPDor can determine directly whether there is potential damage for some sites to a certain degree.Hence,we infer that the EPDor has potential application for future earthquakes.Meanwhile,it also has potential in Chinese earthquake early warning system.展开更多
The article is devoted to the problem of forecasting strong earthquakes by the geomagnetic method. The geomagnetic method is widely used on this problem in seismically active regions of the world as one of the promisi...The article is devoted to the problem of forecasting strong earthquakes by the geomagnetic method. The geomagnetic method is widely used on this problem in seismically active regions of the world as one of the promising, informative and operational geophysical methods. The results of long-term geomagnetic studies on the problem of forecasting strong earthquakes in Uzbekistan are presented. Geomagnetic studies were carried out on the territories of the Tashkent, Ferghana, and Kyzylkum geodynamic polygons in the epicentral zones of strong earthquakes that occurred. Long-term, medium- and short-term precursors of earthquakes have been identified. Anomalous changes in the geomagnetic field associated with the decline in aftershock activity were also revealed. The dependence between the duration of the manifestation of long-term magnetic precursors and the magnitude of earthquakes is determined. Absolute proton magnetometers MMP-1, MV-01 (Russia), and G-856 (USA) were used to measure the geomagnetic field.展开更多
Seismicity of the Earth (M ≥ 4.5) was compiled from NEIC, IRIS and ISC catalogues and used to compute b-value based on various time windows. It is found that continuous cyclic b-variations occur on both long and sh...Seismicity of the Earth (M ≥ 4.5) was compiled from NEIC, IRIS and ISC catalogues and used to compute b-value based on various time windows. It is found that continuous cyclic b-variations occur on both long and short time scales, the latter being of much higher value and sometimes in excess of 0.7 of the absolute b-value. These variations occur not only yearly or monthly, but also daily. Before the occurrence of large earthquakes, b-values start increasing with variable gradients that are affected by foreshocks. In some cases, the gradient is reduced to zero or to a negative value a few days before the earthquake occurrence. In general, calculated b-values attain maxima 1 day before large earthquakes and minima soon after their occurrence. Both linear regression and maximum likelihood methods give correlatable, but variable results. It is found that an expanding time window technique from a fixed starting point is more effective in the study of b-variations. The calculated b-variations for the whole Earth, its hemispheres, quadrants and the epicentral regions of some large earthquakes are of both local and regional character, which may indicate that in such cases, the geodynamic processes acting within a certain region have a much regional effect within the Earth. The b-variations have long been known to vary with a number of local and regional factors including tectonic stresses. The results reported here indicate that geotectonic stress remains the most significant factor that controls b-variations. It is found that for earthquakes with Mw ≥ 7, an increase of about 0.20 in the b-value implies a stress increase that will result in an earthquake with a magnitude one unit higher.展开更多
The earthquake magnitude probability distribution is one of the underlying input data for certain earthquake analyses, such as probabilistic seismic hazard analysis. Nowadays, the method proposed by McGuire and Arabas...The earthquake magnitude probability distribution is one of the underlying input data for certain earthquake analyses, such as probabilistic seismic hazard analysis. Nowadays, the method proposed by McGuire and Arabasz (1990) is commonly used for obtaining the (simulated) earthquake magnitude probability distributions. However, based on the observed earthquake data in 5 regions (Taiwan, Japan, California, Turkey, and Greece), the model did not fit the observation well. Instead, all of the case studies show that using the newly proposed gamma distribution can improve the simulation significantly compared to the conventional method.展开更多
Liquefaction is one of the major catastrophic geohazards which usually occurs in saturated or partially saturated sandy or silty soils during a seismic event. Evaluating the potential liquefaction risks of a seismical...Liquefaction is one of the major catastrophic geohazards which usually occurs in saturated or partially saturated sandy or silty soils during a seismic event. Evaluating the potential liquefaction risks of a seismically prone area can significantly reduce the loss of lives and damage to civil infrastructures. This research is mainly focused on the earthquake-induced liquefaction risk assessment based on Liquefaction Potential Index (LPI) values at different earthquake magnitudes (M = 5.0, 7.0 and 8.0) with a peak ground acceleration (a<sub>max</sub>) of 0.28 g in the Rohingya Refugee camp and surrounding areas of Ukhiya, Cox’s Bazar, Bangladesh. Standard Penetration Test (SPT) results have been evaluated for potential liquefaction assessment. The soils are mainly composed of very loose to loose sands with some silts and clays. Geotechnical properties of these very loose sandy soils are very much consistent with the criteria of liquefiable soil. It is established from the grain size analysis results;the soil of the study area is mainly sand dominated (SP) with some silty clay (SC) which consists of 93.68% to 99.48% sand, 0.06% to 4.71% gravel and 0% to 6.26% silt and clay. Some Clayey Sand (SC) is also present. The silty clay can be characterized as medium (CI) to high plasticity (CH) inorganic clay soil. LPI values have been calculated to identify risk zones and to prepare risk maps of the investigated area. Based on these obtained LPI values, four (4) susceptible liquefaction risk zones are identified as low, medium, high and very high. The established “Risk Maps” can be used for future geological engineering works as well as for sustainable planning, design and construction purposes relating to adaptation and mitigation of seismic hazards in the investigated area.展开更多
Based on the spherical earth dislocation theory and a fault slip model of the Tohoku-Oki M_(W)9.0 earthquake,the co-seismic Coulomb failure stress changes(ΔCFS)on the northern Tanlu fault zone at depths of 0–40 km a...Based on the spherical earth dislocation theory and a fault slip model of the Tohoku-Oki M_(W)9.0 earthquake,the co-seismic Coulomb failure stress changes(ΔCFS)on the northern Tanlu fault zone at depths of 0–40 km are calculated.By comparing two sets of results from the spherical earth dislocation theory and the semi-infinite space one,the effect of earth curvature on the calculation results is analyzed quantitatively.First,we systematically summarize previous researches related to the northern Tanlu fault zone,divide the fault zone as detailed as possible,give the geometric parameters of each segment,and establish a segmented structural model of the northern Tanlu fault zone.Second,we calculate the Coulomb stress changes on the northern Tanlu fault zone by using the spherical earth dislocation theory.The result shows the Coulomb stress changes are no more than 0.003 MPa,which proves the great earthquake did not significantly change the stress state of the fault zone.Finally,we quantitatively analyze the disparities between the results of semi-infinite space dislocation theory and the spherical earth one.The average disparity between them is about 7.7%on the northern Tanlu fault zone and is 16.8%on the Fangzheng graben,the maximum disparity on this graben reaches up to 25.5%.It indicates that the effect of earth curvature can not be ignored.So it’s necessary to use the spherical earth dislocation theory instead of the semi-infinite space one to study the Coulomb stress change in the far field.展开更多
The correlation of the scaled energy,e = Es/ Mo, versus earthquake magnitude, Ms, is studied based on two models: (1) Model 1 based on the use of the time function of the average displacements, with a ω^-2 source ...The correlation of the scaled energy,e = Es/ Mo, versus earthquake magnitude, Ms, is studied based on two models: (1) Model 1 based on the use of the time function of the average displacements, with a ω^-2 source spectrum, across a fault plane; and (2) Model 2 based on the use of the time function of the average displacements, with a ω^-3 source spectrum, across a fault plane. For the second model, there are two cases: (a) As ζ= T, where r is the rise time and T the rupture time, lg(e) - -Ms; and (b) As ζ 〈〈 T, lg(e)- -(1/2)Ms. The second model leads to a negative value of e. This means that Model 2 cannot work for studying the present problem. The results obtained from Model 1 suggest that the source model is a factor, yet not a unique one, in controlling the correlation of e versus Ms.展开更多
Long-term seismic activity prior to the December 26, 2004, off the west coast of northern Sumatra, Indonesia, MW=9.0 earthquake was investigated using the Harvard CMT catalogue. It is observed that before this great e...Long-term seismic activity prior to the December 26, 2004, off the west coast of northern Sumatra, Indonesia, MW=9.0 earthquake was investigated using the Harvard CMT catalogue. It is observed that before this great earth-quake, there exists an accelerating moment release (AMR) process with the temporal scale of a quarter century and the spatial scale of 1 500 km. Within this spatial range, the MW=9.0 event falls into the piece-wise power-law-like frequency-magnitude distribution. Therefore, in the perspective of the critical-point-like model of earthquake preparation, the failure to forecast/predict the approaching and/or the size of this earthquake is not due to the physically intrinsic unpredictability of earthquakes.展开更多
Using 116 earthquakes over M_L3.8 in the Inner Mongolia region from 2008 to 2015, the local earthquake magnitude M_L and surface wave magnitude M_S are remeasured. Based on norm linear regression(SR1 and SR2) and norm...Using 116 earthquakes over M_L3.8 in the Inner Mongolia region from 2008 to 2015, the local earthquake magnitude M_L and surface wave magnitude M_S are remeasured. Based on norm linear regression(SR1 and SR2) and norm(OR) orthogonal regression method, we established the conversion relationship between M_L and M_S. The results were tested with Gaussian disturbance. The result shows that the orthogonal regression method(OR) result has the best fitting curve, and the conversion relation is M_S=0.96 M_L-0.10. The difference between our result and Guo Lücan's(M_S=1.13 M_L-1.08) may be caused by regional tectonic characteristics. M_(S Inner Mongolia) value is significantly higher than the M_(S empirical) value, with an average difference of 0.23, the difference distribution of empirical relation and the rectified relation is in the range of 0.2-0.3.展开更多
Based on digital seismic waveform data from Inner Mongolia Digital Seismic Network,the source spectrum parameters of 182 small and moderate earthquakes from January,2009to September,2016 are derived,and the seismic mo...Based on digital seismic waveform data from Inner Mongolia Digital Seismic Network,the source spectrum parameters of 182 small and moderate earthquakes from January,2009to September,2016 are derived,and the seismic momentmoment magnitude MW of the earthquakes are calculated.Theand the relationship between stress drop and magnitude are obtained using the linear regression method.It is clear that incorporating the moment magnitude into the seismic quick report catalog and the official earthquake catalog can enrich earthquake observation report content,thus providing better service for earthquake emergency and earthquake scientific research.展开更多
On March 11,2011, a M_W9.0 earthquake occurred in the Japan Trench, causing tremendous casualties,and attracting extensive concern. Based on the results of related research,this paper analyzes the observations,phenome...On March 11,2011, a M_W9.0 earthquake occurred in the Japan Trench, causing tremendous casualties,and attracting extensive concern. Based on the results of related research,this paper analyzes the observations,phenomena and understandings of the earthquake from varied aspects,and obtains four main conclusions.(1) The earthquake,occurring in the subduction zone in the Japan Trench located in the northwest boundary of the pacific plate has two zones of concentrated coseismic slip at different depths,and the slip in the deep zone is relatively small. Though there have been many M7. 0 historical earthquakes,slips in the shallow zone are large,but there have been few historical strong earthquakes.(2) Constrained by GPS data,the study of fault movement shows that fault movement in the Japan Trench has a background of widely distributed stability and locking( the locking zone is equivalent that of coseismic rupture zone). Perturbation occurred after the 2008 M8. 0 Hokkaido earthquake,several M7. 0 events had after slips larger than the coseismic slip,and two obvious slow slip events were recorded in 2008 and2011. Eventually,the March 9,2011 M7. 0 foreshock and the March 11,2011 M_W9.0 mainshock occurred. The pre-earthquake changing of the fault movement in the Japan Trench is quite clear.(3) Traditional precursory observation show no obvious anomaly,possibly due to monitoring reason. Anomaly before earthquake consists of high stress state in focal zone reflected by some seismic activity parameters,short period anomaly in regional ground motion,etc.(4) The analysis of physical property in focal zone aroused more scientific issues,for example,is there obvious difference between physical property in focal zone and its vicinity? Does frictional property of fault determine seismogenic ability and rupture process? Whether pre-earthquake fault movement include pre-slips? Could deep fluid affect fault movement in focal zone? Experience is the best teacher,and authors hope this paper could be a modest spur to induce others in basic research in earthquake forecast and prediction.展开更多
Within one month of the magnitude 6.6 Qinghai,China Earthquake on 01/07/2022,several articles were published online in peer-reviewed journals and websites focusing on different aspects of this significant event.
In connection with conversion from energy class KR (KR = log10E R, where ER — seismic energy, J) to the universal magnitude estimation of the Tien Shan crustal earthquakes the development of the self-coordinated corr...In connection with conversion from energy class KR (KR = log10E R, where ER — seismic energy, J) to the universal magnitude estimation of the Tien Shan crustal earthquakes the development of the self-coordinated correlation of the magnitudes (mb , ML, Ms ) and KR with the seismic moment M0 as the base scale became necessary. To this purpose, the first attempt to develop functional correlations in the magnitude—seismic moment system subject to the previous studies has been done. It is assumed that in the expression M (mb , ML , Ms) = Ki + zi log10M0 , the coefficients ki? and zi? are controlled by the parameters of ratio?(where;f0 —corner frequency, Brune, 1970, 1971;M0, N×m). According to the new theoretical predictions common functional correlation of the advanced magnitudes Mm (mbm = mb , MLm = ML , MSm = MS ) from log10M0,? log10t0? and the elastic properties (Ci) can be presented as , where , and , for the averaged elastic properties of the Earth’s crust for thembmthe coefficients Ci= –11.30 and di = 1.0, for MLm: Ci = –14.12, di = 7/6;for MSm : Ci = –16.95 and di = 4/3. For theTien Shan earthquakes (1960-2012 years) it was obtained that , and on the basis of the above expressions we received that MSm = 1.59mbm – 3.06. According to the instrumental data the correlation Ms = 1.57mb – 3.05 was determined. Some other examples of comparison of the calculated and observed magnitude - seismic moment ratios for earthquakes of California, the Kuril Islands, Japan, Sumatra and South America are presented.展开更多
On the basis of the previous studies of the layered crustal model in the Yutian area,combined with the field GPS continuous observation data,we roughly estimate the viscous coefficient of each layer. With the viscoela...On the basis of the previous studies of the layered crustal model in the Yutian area,combined with the field GPS continuous observation data,we roughly estimate the viscous coefficient of each layer. With the viscoelastic horizontal layer model,we calculate the viscoelastic co-seismic Coulomb stress change caused by the Yutian M_S7. 3 earthquakes 2008 and 2014 respectively. Based on the Coulomb stress change,using the calculation method of "direct "aftershock frequency,we come up with the theoretical earthquake frequency directly related to the mainshock and the co-seismic Coulomb stress change in the study area. Then we put forward a method,based on the comparison of theoretical and actual earthquake frequency or the comparison between theoretical and practical earthquake frequency-distance decay curve fitting residuals,to estimate the magnitude of a maximum sequent earthquake,directly related to the mainshock co-seismic Coulomb stress change. Results calculated by different methods show that the maximum follow-up earthquake magnitude caused by the coseismic Coulomb stress change lies from M_S7. 2 to M_S7. 5 following Yutian M_S7. 3 earthquake in 2008; but that of the 2014 Yutian M_S7. 3 earthquake is M_S6. 3. The former is very close to the Yutian M_S7. 3 earthquake in 2014.Because of the same magnitude,relatively close spatial distance,short time interval,the same region of the external force,the strong correlation between two seismic tectonic and a clear stress interaction,we thus consider that the two Yutian M_S7. 3 earthquakes in 2008 and 2014 constitute a pair of generalized double shock type earthquake. This is consistent with the sequence type characteristic of past "double shock"earthquakes in the region. In this paper,the influence of the magnitude lower limit and the b-value in the relationship of G-R on the results is discussed. As a result,when the viscoelastic coseismic Coulomb stress variation is determined,the lower limit of magnitude has little effect on the maximum sequent earthquake magnitude estimation,but b-value of G-R has a greater impact on the results.展开更多
We compile a regional catalogue of earthquakes with moment magnitude of the Center-Southern Asia test area(20°-35°N,85°-105°E)for the Global Seismic Hazard Assessment Program(GSHAP).There are signi...We compile a regional catalogue of earthquakes with moment magnitude of the Center-Southern Asia test area(20°-35°N,85°-105°E)for the Global Seismic Hazard Assessment Program(GSHAP).There are significant inhomogeneous and uncompleted data,and n uniformity of earthquake magnitudes in this test area because this region is situated on the boundaries of many countries,such as China,India,Nepal,Vietnam,etc.We establish a relationship between Gutenberg surface-wave magnitude and IASPEI surface-wave magnitude,which can be used for conversion of different magnitude scales into moment magnitude for this catalogue.A catalogue of events with Mw≥6.0 of this test area is given at the end of this paper.展开更多
基金granted by the National Natural Science Foundation of China(Grant No.42004038)Earthquake Tracking Orientation Tasks of CEA(Grant No.2024020104)+1 种基金the Special Fund of IEFCEA(Grant No.CEAIEF2022030206)the China Scholarship Council(CSC)exchange program(Grant No.202204190019)。
文摘Since the inaugural international collaboration under the framework of the Collaboratory for the Study of Earthquake Predictability(CSEP)in 2007,numerous forecast models have been developed and operated for earthquake forecasting experiments across CSEP testing centers(Schorlemmer et al.,2018).Over more than a decade,efforts to compare forecasts with observed earthquakes using numerous statistical test methods and insights into earthquake predictability,which have become a highlight of the CSEP platform.
基金Joint Seismological Science Foundationof China (103034) and Major Research ″Research on Assessment of Seismic Safety″ from China Earthquake Administration during the tenth Five-year Plan.
文摘In recent years, some researchers have studied the paleoearthquake along the Haiyuan fault and revealed a lot of paleoearthquake events. All available information allows more reliable analysis of earthquake recurrence interval and earthquake rupture patterns along the Haiyuan fault. Based on this paleoseismological information, the recur- rence probability and magnitude distribution for M≥6.7 earthquakes in future 100 years along the Haiyuan fault can be obtained through weighted computation by using Poisson and Brownian passage time models and consid- ering different rupture patterns. The result shows that the recurrence probability of MS≥6.7 earthquakes is about 0.035 in future 100 years along the Haiyuan fault.
基金the National Key R&D Program of China(No.2022YFF0800601)the National Natural Science Foundation of China(No.U1939204).
文摘Two large earthquakes(an earthquake doublet)occurred in south-central Turkey on February 6,2023,causing massive damages and casualties.The magnitudes and the relative sizes of the two mainshocks are essential information for scientific research and public awareness.There are obvious discrepancies among the results that have been reported so far,which may be revised and updated later.Here we applied a novel and reliable long-period coda moment magnitude method to the two large earthquakes.The moment magnitudes(with one standard error)are 7.95±0.013 and 7.86±0.012,respectively,which are larger than all the previous reports.The first mainshock,which matches the largest recorded earthquakes in the Turkish history,is slightly larger than the second one by 0.11±0.035 in magnitude or by 0.04 to 0.18 at 95%confidence level.
基金Joint Seismological Science Foundation of China (103034) and Major Research "Research on Assessment of Seismic Safety" from China Earthquake Administration during the tenth Five-year Plan.
文摘In recent years, some researchers have studied the paleoearthquake along the Haiyuan fault and revealed a lot of paleoearthquake events. All available information allows more reliable analysis of earthquake recurrence interval and earthquake rupture patterns along the Haiyuan fault. Based on this paleoseismological information, the recur- rence probability and magnitude distribution for M≥6.7 earthquakes in future 100 years along the Haiyuan fault can be obtained through weighted computation by using Poisson and Brownian passage time models and consid- ering different rupture patterns. The result shows that the recurrence probability of MS≥6.7 earthquakes is about 0.035 in future 100 years along the Haiyuan fault.
基金supported by the National Natural Science Foundation of China (No. 51278474)Special Research Project of Earthquake Engineering (No. 201108003)International Science and Technology Cooperation Program of China (No. 2011DFA21460)
文摘The Tohoku megathrust earthquake, which occurred on March 11, 2011 and had an epicenter that was 70 km east of Tohoku, Japan, resulted in an estimated ten′s of billions of dollars in damage and a death toll of more than 15 thousand lives, yet few studies have documented key spatio-temporal seismogenic characteristics. Specifically, the temporal decay of aftershock activity, the number of strong aftershocks (with magnitudes greater than or equal to 7.0), the magnitude of the greatest aftershock, and area of possible aftershocks. Forecasted results from this study are based on Gutenberg-Richter’s relation, Bath’s law, Omori’s law, and Well’s relation of rupture scale utilizing the magnitude and statistical parameters of earthquakes in USA and China (Landers, Northridge, Hector Mine, San Simeon and Wenchuan earthquakes). The number of strong aftershocks, the parameters of Gutenberg-Richter’s relation, and the modified form of Omori’s law are confirmed based on the aftershock sequence data from the Mw9.0 Tohoku earthquake. Moreover, for a large earthquake, the seismogenic structure could be a fault, a fault system, or an intersection of several faults. The seismogenic structure of the earthquake suggests that the event occurred on a thrust fault near the Japan trench within the overriding plate that subsequently triggered three or more active faults producing large aftershocks.
基金financially supported by the National Natural Science Foundation of China (U2039209, U1839208, and 51408564)the Natural Science Foundation of Heilongjiang Province (LH2021E119)+1 种基金Spark Program of Earthquake Science (XH23027YB)the National Key Research and Development Program of China (2018YFC1504003).
文摘It is critical to determine whether a site has potential damage in real-time after an earthquake occurs,which is a challenge in earthquake disaster reduction.Here,we propose a real-time Earthquake Potential Damage predictor(EPDor)based on predicting peak ground velocities(PGVs)of sites.The EPDor is composed of three parts:(1)predicting the magnitude of an earthquake and PGVs of triggered stations based on the machine learning prediction models;(2)predicting the PGVs at distant sites based on the empirical ground motion prediction equation;(3)generating the PGV map through predicting the PGV of each grid point based on an interpolation process of weighted average based on the predicted values in(1)and(2).We apply the EPDor to the 2022 M_(S) 6.9 Menyuan earthquake in Qinghai Province,China to predict its potential damage.Within the initial few seconds after the first station is triggered,the EPDor can determine directly whether there is potential damage for some sites to a certain degree.Hence,we infer that the EPDor has potential application for future earthquakes.Meanwhile,it also has potential in Chinese earthquake early warning system.
文摘The article is devoted to the problem of forecasting strong earthquakes by the geomagnetic method. The geomagnetic method is widely used on this problem in seismically active regions of the world as one of the promising, informative and operational geophysical methods. The results of long-term geomagnetic studies on the problem of forecasting strong earthquakes in Uzbekistan are presented. Geomagnetic studies were carried out on the territories of the Tashkent, Ferghana, and Kyzylkum geodynamic polygons in the epicentral zones of strong earthquakes that occurred. Long-term, medium- and short-term precursors of earthquakes have been identified. Anomalous changes in the geomagnetic field associated with the decline in aftershock activity were also revealed. The dependence between the duration of the manifestation of long-term magnetic precursors and the magnitude of earthquakes is determined. Absolute proton magnetometers MMP-1, MV-01 (Russia), and G-856 (USA) were used to measure the geomagnetic field.
文摘Seismicity of the Earth (M ≥ 4.5) was compiled from NEIC, IRIS and ISC catalogues and used to compute b-value based on various time windows. It is found that continuous cyclic b-variations occur on both long and short time scales, the latter being of much higher value and sometimes in excess of 0.7 of the absolute b-value. These variations occur not only yearly or monthly, but also daily. Before the occurrence of large earthquakes, b-values start increasing with variable gradients that are affected by foreshocks. In some cases, the gradient is reduced to zero or to a negative value a few days before the earthquake occurrence. In general, calculated b-values attain maxima 1 day before large earthquakes and minima soon after their occurrence. Both linear regression and maximum likelihood methods give correlatable, but variable results. It is found that an expanding time window technique from a fixed starting point is more effective in the study of b-variations. The calculated b-variations for the whole Earth, its hemispheres, quadrants and the epicentral regions of some large earthquakes are of both local and regional character, which may indicate that in such cases, the geodynamic processes acting within a certain region have a much regional effect within the Earth. The b-variations have long been known to vary with a number of local and regional factors including tectonic stresses. The results reported here indicate that geotectonic stress remains the most significant factor that controls b-variations. It is found that for earthquakes with Mw ≥ 7, an increase of about 0.20 in the b-value implies a stress increase that will result in an earthquake with a magnitude one unit higher.
文摘The earthquake magnitude probability distribution is one of the underlying input data for certain earthquake analyses, such as probabilistic seismic hazard analysis. Nowadays, the method proposed by McGuire and Arabasz (1990) is commonly used for obtaining the (simulated) earthquake magnitude probability distributions. However, based on the observed earthquake data in 5 regions (Taiwan, Japan, California, Turkey, and Greece), the model did not fit the observation well. Instead, all of the case studies show that using the newly proposed gamma distribution can improve the simulation significantly compared to the conventional method.
文摘Liquefaction is one of the major catastrophic geohazards which usually occurs in saturated or partially saturated sandy or silty soils during a seismic event. Evaluating the potential liquefaction risks of a seismically prone area can significantly reduce the loss of lives and damage to civil infrastructures. This research is mainly focused on the earthquake-induced liquefaction risk assessment based on Liquefaction Potential Index (LPI) values at different earthquake magnitudes (M = 5.0, 7.0 and 8.0) with a peak ground acceleration (a<sub>max</sub>) of 0.28 g in the Rohingya Refugee camp and surrounding areas of Ukhiya, Cox’s Bazar, Bangladesh. Standard Penetration Test (SPT) results have been evaluated for potential liquefaction assessment. The soils are mainly composed of very loose to loose sands with some silts and clays. Geotechnical properties of these very loose sandy soils are very much consistent with the criteria of liquefiable soil. It is established from the grain size analysis results;the soil of the study area is mainly sand dominated (SP) with some silty clay (SC) which consists of 93.68% to 99.48% sand, 0.06% to 4.71% gravel and 0% to 6.26% silt and clay. Some Clayey Sand (SC) is also present. The silty clay can be characterized as medium (CI) to high plasticity (CH) inorganic clay soil. LPI values have been calculated to identify risk zones and to prepare risk maps of the investigated area. Based on these obtained LPI values, four (4) susceptible liquefaction risk zones are identified as low, medium, high and very high. The established “Risk Maps” can be used for future geological engineering works as well as for sustainable planning, design and construction purposes relating to adaptation and mitigation of seismic hazards in the investigated area.
基金This study was supported financially by the National Key R&D Program of China(No.2018YFC1503704)the National Natural Science Foundation of China(No.41874003)。
文摘Based on the spherical earth dislocation theory and a fault slip model of the Tohoku-Oki M_(W)9.0 earthquake,the co-seismic Coulomb failure stress changes(ΔCFS)on the northern Tanlu fault zone at depths of 0–40 km are calculated.By comparing two sets of results from the spherical earth dislocation theory and the semi-infinite space one,the effect of earth curvature on the calculation results is analyzed quantitatively.First,we systematically summarize previous researches related to the northern Tanlu fault zone,divide the fault zone as detailed as possible,give the geometric parameters of each segment,and establish a segmented structural model of the northern Tanlu fault zone.Second,we calculate the Coulomb stress changes on the northern Tanlu fault zone by using the spherical earth dislocation theory.The result shows the Coulomb stress changes are no more than 0.003 MPa,which proves the great earthquake did not significantly change the stress state of the fault zone.Finally,we quantitatively analyze the disparities between the results of semi-infinite space dislocation theory and the spherical earth one.The average disparity between them is about 7.7%on the northern Tanlu fault zone and is 16.8%on the Fangzheng graben,the maximum disparity on this graben reaches up to 25.5%.It indicates that the effect of earth curvature can not be ignored.So it’s necessary to use the spherical earth dislocation theory instead of the semi-infinite space one to study the Coulomb stress change in the far field.
基金sponsored by Academia Sinica and the National Science Council(under Grant No.NSC101-2119-M-001-01)
文摘The correlation of the scaled energy,e = Es/ Mo, versus earthquake magnitude, Ms, is studied based on two models: (1) Model 1 based on the use of the time function of the average displacements, with a ω^-2 source spectrum, across a fault plane; and (2) Model 2 based on the use of the time function of the average displacements, with a ω^-3 source spectrum, across a fault plane. For the second model, there are two cases: (a) As ζ= T, where r is the rise time and T the rupture time, lg(e) - -Ms; and (b) As ζ 〈〈 T, lg(e)- -(1/2)Ms. The second model leads to a negative value of e. This means that Model 2 cannot work for studying the present problem. The results obtained from Model 1 suggest that the source model is a factor, yet not a unique one, in controlling the correlation of e versus Ms.
基金Ministry of Science and Technology Project (2004CB418406).
文摘Long-term seismic activity prior to the December 26, 2004, off the west coast of northern Sumatra, Indonesia, MW=9.0 earthquake was investigated using the Harvard CMT catalogue. It is observed that before this great earth-quake, there exists an accelerating moment release (AMR) process with the temporal scale of a quarter century and the spatial scale of 1 500 km. Within this spatial range, the MW=9.0 event falls into the piece-wise power-law-like frequency-magnitude distribution. Therefore, in the perspective of the critical-point-like model of earthquake preparation, the failure to forecast/predict the approaching and/or the size of this earthquake is not due to the physically intrinsic unpredictability of earthquakes.
基金sponsored by Science for the Earthquake Resilience,China Earthquake Administration(XH18012)the Major Science and Technology Projects "Application Demonstration Research of Key Engineering Monitoring System Based on Microseismic Location Technology",Inner Mongolia Autonomous Region
文摘Using 116 earthquakes over M_L3.8 in the Inner Mongolia region from 2008 to 2015, the local earthquake magnitude M_L and surface wave magnitude M_S are remeasured. Based on norm linear regression(SR1 and SR2) and norm(OR) orthogonal regression method, we established the conversion relationship between M_L and M_S. The results were tested with Gaussian disturbance. The result shows that the orthogonal regression method(OR) result has the best fitting curve, and the conversion relation is M_S=0.96 M_L-0.10. The difference between our result and Guo Lücan's(M_S=1.13 M_L-1.08) may be caused by regional tectonic characteristics. M_(S Inner Mongolia) value is significantly higher than the M_(S empirical) value, with an average difference of 0.23, the difference distribution of empirical relation and the rectified relation is in the range of 0.2-0.3.
基金sponsored by the Major Science and Technology Projects in Inner Mongolia Autonomous Region “Research,Development,Popularization and Demonstration of Earthquake Prediction and Early Warning Technology in Key Areas”
文摘Based on digital seismic waveform data from Inner Mongolia Digital Seismic Network,the source spectrum parameters of 182 small and moderate earthquakes from January,2009to September,2016 are derived,and the seismic momentmoment magnitude MW of the earthquakes are calculated.Theand the relationship between stress drop and magnitude are obtained using the linear regression method.It is clear that incorporating the moment magnitude into the seismic quick report catalog and the official earthquake catalog can enrich earthquake observation report content,thus providing better service for earthquake emergency and earthquake scientific research.
基金sponsored by the Special Fund for Earthquake Scientific Research(201408019)the Basic Scientific Research Program,Institute of Earth Science,CEA(2016IE0301)
文摘On March 11,2011, a M_W9.0 earthquake occurred in the Japan Trench, causing tremendous casualties,and attracting extensive concern. Based on the results of related research,this paper analyzes the observations,phenomena and understandings of the earthquake from varied aspects,and obtains four main conclusions.(1) The earthquake,occurring in the subduction zone in the Japan Trench located in the northwest boundary of the pacific plate has two zones of concentrated coseismic slip at different depths,and the slip in the deep zone is relatively small. Though there have been many M7. 0 historical earthquakes,slips in the shallow zone are large,but there have been few historical strong earthquakes.(2) Constrained by GPS data,the study of fault movement shows that fault movement in the Japan Trench has a background of widely distributed stability and locking( the locking zone is equivalent that of coseismic rupture zone). Perturbation occurred after the 2008 M8. 0 Hokkaido earthquake,several M7. 0 events had after slips larger than the coseismic slip,and two obvious slow slip events were recorded in 2008 and2011. Eventually,the March 9,2011 M7. 0 foreshock and the March 11,2011 M_W9.0 mainshock occurred. The pre-earthquake changing of the fault movement in the Japan Trench is quite clear.(3) Traditional precursory observation show no obvious anomaly,possibly due to monitoring reason. Anomaly before earthquake consists of high stress state in focal zone reflected by some seismic activity parameters,short period anomaly in regional ground motion,etc.(4) The analysis of physical property in focal zone aroused more scientific issues,for example,is there obvious difference between physical property in focal zone and its vicinity? Does frictional property of fault determine seismogenic ability and rupture process? Whether pre-earthquake fault movement include pre-slips? Could deep fluid affect fault movement in focal zone? Experience is the best teacher,and authors hope this paper could be a modest spur to induce others in basic research in earthquake forecast and prediction.
文摘Within one month of the magnitude 6.6 Qinghai,China Earthquake on 01/07/2022,several articles were published online in peer-reviewed journals and websites focusing on different aspects of this significant event.
文摘In connection with conversion from energy class KR (KR = log10E R, where ER — seismic energy, J) to the universal magnitude estimation of the Tien Shan crustal earthquakes the development of the self-coordinated correlation of the magnitudes (mb , ML, Ms ) and KR with the seismic moment M0 as the base scale became necessary. To this purpose, the first attempt to develop functional correlations in the magnitude—seismic moment system subject to the previous studies has been done. It is assumed that in the expression M (mb , ML , Ms) = Ki + zi log10M0 , the coefficients ki? and zi? are controlled by the parameters of ratio?(where;f0 —corner frequency, Brune, 1970, 1971;M0, N×m). According to the new theoretical predictions common functional correlation of the advanced magnitudes Mm (mbm = mb , MLm = ML , MSm = MS ) from log10M0,? log10t0? and the elastic properties (Ci) can be presented as , where , and , for the averaged elastic properties of the Earth’s crust for thembmthe coefficients Ci= –11.30 and di = 1.0, for MLm: Ci = –14.12, di = 7/6;for MSm : Ci = –16.95 and di = 4/3. For theTien Shan earthquakes (1960-2012 years) it was obtained that , and on the basis of the above expressions we received that MSm = 1.59mbm – 3.06. According to the instrumental data the correlation Ms = 1.57mb – 3.05 was determined. Some other examples of comparison of the calculated and observed magnitude - seismic moment ratios for earthquakes of California, the Kuril Islands, Japan, Sumatra and South America are presented.
基金sponsored by the Scientific Research Fund of the Department of Earthquake Monitoring and Prediction,CEA
文摘On the basis of the previous studies of the layered crustal model in the Yutian area,combined with the field GPS continuous observation data,we roughly estimate the viscous coefficient of each layer. With the viscoelastic horizontal layer model,we calculate the viscoelastic co-seismic Coulomb stress change caused by the Yutian M_S7. 3 earthquakes 2008 and 2014 respectively. Based on the Coulomb stress change,using the calculation method of "direct "aftershock frequency,we come up with the theoretical earthquake frequency directly related to the mainshock and the co-seismic Coulomb stress change in the study area. Then we put forward a method,based on the comparison of theoretical and actual earthquake frequency or the comparison between theoretical and practical earthquake frequency-distance decay curve fitting residuals,to estimate the magnitude of a maximum sequent earthquake,directly related to the mainshock co-seismic Coulomb stress change. Results calculated by different methods show that the maximum follow-up earthquake magnitude caused by the coseismic Coulomb stress change lies from M_S7. 2 to M_S7. 5 following Yutian M_S7. 3 earthquake in 2008; but that of the 2014 Yutian M_S7. 3 earthquake is M_S6. 3. The former is very close to the Yutian M_S7. 3 earthquake in 2014.Because of the same magnitude,relatively close spatial distance,short time interval,the same region of the external force,the strong correlation between two seismic tectonic and a clear stress interaction,we thus consider that the two Yutian M_S7. 3 earthquakes in 2008 and 2014 constitute a pair of generalized double shock type earthquake. This is consistent with the sequence type characteristic of past "double shock"earthquakes in the region. In this paper,the influence of the magnitude lower limit and the b-value in the relationship of G-R on the results is discussed. As a result,when the viscoelastic coseismic Coulomb stress variation is determined,the lower limit of magnitude has little effect on the maximum sequent earthquake magnitude estimation,but b-value of G-R has a greater impact on the results.
文摘We compile a regional catalogue of earthquakes with moment magnitude of the Center-Southern Asia test area(20°-35°N,85°-105°E)for the Global Seismic Hazard Assessment Program(GSHAP).There are significant inhomogeneous and uncompleted data,and n uniformity of earthquake magnitudes in this test area because this region is situated on the boundaries of many countries,such as China,India,Nepal,Vietnam,etc.We establish a relationship between Gutenberg surface-wave magnitude and IASPEI surface-wave magnitude,which can be used for conversion of different magnitude scales into moment magnitude for this catalogue.A catalogue of events with Mw≥6.0 of this test area is given at the end of this paper.