Imaging methods are frequently used to diagnose gastrointestinal diseases and play a crucial role in verifying clinical diagnoses among all diagnostic algorithms.However,these methods have limitations,challenges,benef...Imaging methods are frequently used to diagnose gastrointestinal diseases and play a crucial role in verifying clinical diagnoses among all diagnostic algorithms.However,these methods have limitations,challenges,benefits,and advantages.Addressing these limitations requires the application of objective criteria to assess the effectiveness of each diagnostic method.The diagnostic process is dynamic and requires a consistent algorithm,progressing from clinical subjective data,such as patient history(anamnesis),and objective findings to diagnostics ex juvantibus.Caution must be exercised when interpreting diagnostic results,and there is an urgent need for better diagnostic tests.In the absence of such tests,preliminary criteria and a diagnosis ex juvantibus must be relied upon.Diagnostic imaging methods are critical stages in the diagnostic workflow,with sensitivity,specificity,and accuracy serving as the primary criteria for evaluating clinical,laboratory,and instrumental symptoms.A comprehensive evaluation of all available diagnostic data guarantees an accurate diagnosis.The“gold standard”for diagnosis is typically established through either the results of a pathological autopsy or a lifetime diagnosis resulting from a thorough examination using all diagnostic methods.展开更多
A novel, simple, and sensitive Ultra Performance Liquid Chromatography (UPLC) method was developed and validated for the quantification of process-related impurities and degradants, as well as the assay of Docetaxel. ...A novel, simple, and sensitive Ultra Performance Liquid Chromatography (UPLC) method was developed and validated for the quantification of process-related impurities and degradants, as well as the assay of Docetaxel. The stability-indicating capability of the method was demonstrated through forced degradation studies and a comprehensive mass balance evaluation. Chromatographic separation was achieved using an ACQUITY UPLC BEH C18 column (100 × 2.1 mm, 1.7 µm), with gradient elution. The mobile phase A comprised a mixture of water, methanol, and acetonitrile (500:300:200, v/v/v), while mobile phase B was acetonitrile and water (800:200, v/v). The flow rate was set at 0.4 mL/min, with detection at 232 nm using a photodiode array detector. The method exhibited excellent performance, with a tailing factor of 1.10 for Docetaxel. The method was rigorously validated for precision, accuracy, linearity, LOD, LOQ, ruggedness, specificity, and robustness. Forced degradation studies confirmed the method’s suitability for stability analysis. Stability testing on the drug substance was conducted following ICH guidelines.展开更多
In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the diver...In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the divergence error in the magnetic field,both the local divergence-free basis and the Godunov source term would be employed for the multi-dimensional VRMHD.Rigorous theoretical analyses are presented for one-dimensional and multi-dimensional DG schemes,respectively,showing that the scheme can maintain the positivity-preserving(PP)property under some CFL conditions when combined with the strong-stability-preserving time discretization.Then,general frameworks are established to construct the PP limiter for arbitrary order of accuracy DG schemes.Numerical tests demonstrate the effectiveness of the proposed schemes.展开更多
The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally in...The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally induced positioning error compensation remains the most effective and practical method in this context. However, the efficiency of the compensation process depends on the quality of the model used to predict the thermal errors. The model should consistently reflect the relationships between temperature distribution in the MT structure and thermally induced positioning errors. A judicious choice of the number and location of temperature sensitive points to represent heat distribution is a key factor for robust thermal error modeling. Therefore, in this paper, the temperature sensitive points are selected following a structured thermomechanical analysis carried out to evaluate the effects of various temperature gradients on MT structure deformation intensity. The MT thermal behavior is first modeled using finite element method and validated by various experimentally measured temperature fields using temperature sensors and thermal imaging. MT Thermal behavior validation shows a maximum error of less than 10% when comparing the numerical estimations with the experimental results even under changing operation conditions. The numerical model is used through several series of simulations carried out using varied working condition to explore possible relationships between temperature distribution and thermal deformation characteristics to select the most appropriate temperature sensitive points that will be considered for building an empirical prediction model for thermal errors as function of MT thermal state. Validation tests achieved using an artificial neural network based simplified model confirmed the efficiency of the proposed temperature sensitive points allowing the prediction of the thermally induced errors with an accuracy greater than 90%.展开更多
Additive Runge-Kutta methods designed for preserving highly accurate solutions in mixed-precision computation were previously proposed and analyzed.These specially designed methods use reduced precision for the implic...Additive Runge-Kutta methods designed for preserving highly accurate solutions in mixed-precision computation were previously proposed and analyzed.These specially designed methods use reduced precision for the implicit computations and full precision for the explicit computations.In this work,we analyze the stability properties of these methods and their sensitivity to the low-precision rounding errors,and demonstrate their performance in terms of accuracy and efficiency.We develop codes in FORTRAN and Julia to solve nonlinear systems of ODEs and PDEs using the mixed-precision additive Runge-Kutta(MP-ARK)methods.The convergence,accuracy,and runtime of these methods are explored.We show that for a given level of accuracy,suitably chosen MP-ARK methods may provide significant reductions in runtime.展开更多
Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum s...Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum solvation model to predict the reaction energetics of NO3RR on pure copper surface in alkaline media.The potential-dependent mechanism on the most prevailing Cu(111)and the minor(100)and(110)facets were established,in consideration of NO_(2)_(−),NO,NH_(3),NH_(2)OH,N_(2),and N_(2)O as the main products.The computational results show that the major Cu(111)is the ideal surface to produce ammonia with the highest onset potential at 0.06 V(until−0.37 V)and the highest optimal potential at−0.31 V for ammonia production without kinetic obstacles in activation energies at critical steps.For other minor facets,the secondary Cu(100)shows activity to ammonia from−0.03 to−0.54 V with the ideal potential at−0.50 V,which requires larger overpotential to overcome kinetic activation energy barriers.The least Cu(110)possesses the longest potential range for ammonia yield from−0.27 to−1.12 V due to the higher adsorption coverage of nitrate,but also with higher tendency to generate di-nitrogen species.Experimental evaluations on commercial Cu/C electrocatalyst validated the accuracy of our proposed mechanism.The most influential(111)surface with highest percentage in electrocatalyst determined the trend of ammonia production.In specific,the onset potential of ammonia production at 0.1 V and emergence of yield rate peak at−0.3 V in experiments precisely located in the predicted potentials on Cu(111).Four critical factors for the high ammonia yield and selectivity on Cu surface via NO3RR are summarized,including high NO3RR activity towards ammonia on the dominant Cu(111)facet,more possibilities to produce ammonia along different pathways on each facet,excellent ability for HER inhibition and suitable surface size to suppress di-nitrogen species formation at high nitrate coverage.Overall,our work provides comprehensive potential-dependent insights into the reaction details of NO3RR to ammonia,which can serve as references for the future development of NO3RR electrocatalysts,achieving higher activity and selectivity by maximizing these characteristics of copper-based materials.展开更多
Land use and cover change(LUCC)is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface,with significant impacts on the environment and ...Land use and cover change(LUCC)is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface,with significant impacts on the environment and social economy.Rapid economic development and climate change have resulted in significant changes in land use and cover.The Shiyang River Basin,located in the eastern part of the Hexi Corridor in China,has undergone significant climate change and LUCC over the past few decades.In this study,we used the random forest classification to obtain the land use and cover datasets of the Shiyang River Basin in 1991,1995,2000,2005,2010,2015,and 2020 based on Landsat images.We validated the land use and cover data in 2015 from the random forest classification results(this study),the high-resolution dataset of annual global land cover from 2000 to 2015(AGLC-2000-2015),the global 30 m land cover classification with a fine classification system(GLC_FCS30),and the first Landsat-derived annual China Land Cover Dataset(CLCD)against ground-truth classification results to evaluate the accuracy of the classification results in this study.Furthermore,we explored and compared the spatiotemporal patterns of LUCC in the upper,middle,and lower reaches of the Shiyang River Basin over the past 30 years,and employed the random forest importance ranking method to analyze the influencing factors of LUCC based on natural(evapotranspiration,precipitation,temperature,and surface soil moisture)and anthropogenic(nighttime light,gross domestic product(GDP),and population)factors.The results indicated that the random forest classification results for land use and cover in the Shiyang River Basin in 2015 outperformed the AGLC-2000-2015,GLC_FCS30,and CLCD datasets in both overall and partial validations.Moreover,the classification results in this study exhibited a high level of agreement with the ground truth features.From 1991 to 2020,the area of bare land exhibited a decreasing trend,with changes primarily occurring in the middle and lower reaches of the basin.The area of grassland initially decreased and then increased,with changes occurring mainly in the upper and middle reaches of the basin.In contrast,the area of cropland initially increased and then decreased,with changes occurring in the middle and lower reaches.The LUCC was influenced by both natural and anthropogenic factors.Climatic factors and population contributed significantly to LUCC,and the importance values of evapotranspiration,precipitation,temperature,and population were 22.12%,32.41%,21.89%,and 19.65%,respectively.Moreover,policy interventions also played an important role.Land use and cover in the Shiyang River Basin exhibited fluctuating changes over the past 30 years,with the ecological environment improving in the last 10 years.This suggests that governance efforts in the study area have had some effects,and the government can continue to move in this direction in the future.The findings can provide crucial insights for related research and regional sustainable development in the Shiyang River Basin and other similar arid and semi-arid areas.展开更多
The higher order displacement discontinuity method(HODDM) utilizing special crack tip elements has been used in the solution of linear elastic fracture mechanics(LEFM) problems. The paper has selected several example ...The higher order displacement discontinuity method(HODDM) utilizing special crack tip elements has been used in the solution of linear elastic fracture mechanics(LEFM) problems. The paper has selected several example problems from the fracture mechanics literature(with available analytical solutions) including center slant crack in an infinite and finite body, single and double edge cracks, cracks emanating from a circular hole. The numerical values of Mode Ⅰ and Mode Ⅱ SIFs for these problems using HODDM are in excellent agreement with analytical results(reaching up to 0.001% deviation from their analytical results). The HODDM is also compared with the XFEM and a modified XFEM results. The results show that the HODDM needs a considerably lower computational effort(with less than 400 nodes) than the XFEM and the modified XFEM(which needs more than 10000 nodes) to reach a much higher accuracy. The proposed HODDM offers higher accuracy and lower computation effort for a wide range of problems in LEFM.展开更多
In this study,geochemical anomaly separation was carried out with methods based on the distribution model,which includes probability diagram(MPD),fractal(concentration-area technique),and U-statistic methods.The main ...In this study,geochemical anomaly separation was carried out with methods based on the distribution model,which includes probability diagram(MPD),fractal(concentration-area technique),and U-statistic methods.The main objective is to evaluate the efficiency and accuracy of the methods in separation of anomalies on the shear zone gold mineralization.For this purpose,samples were taken from the secondary lithogeochemical environment(stream sediment samples)on the gold mineralization in Saqqez,NW of Iran.Interpretation of the histograms and diagrams showed that the MPD is capable of identifying two phases of mineralization.The fractal method could separate only one phase of change based on the fractal dimension with high concentration areas of the Au element.The spatial analysis showed two mixed subpopulations after U=0 and another subpopulation with very high U values.The MPD analysis followed spatial analysis,which shows the detail of the variations.Six mineralized zones detected from local geochemical exploration results were used for validating the methods mentioned above.The MPD method was able to identify the anomalous areas higher than 90%,whereas the two other methods identified 60%(maximum)of the anomalous areas.The raw data without any estimation for the concentration was used by the MPD method using aminimum of calculations to determine the threshold values.Therefore,the MPD method is more robust than the other methods.The spatial analysis identified the detail soft hegeological and mineralization events that were affected in the study area.MPD is recommended as the best,and the spatial U-analysis is the next reliable method to be used.The fractal method could show more detail of the events and variations in the area with asymmetrical grid net and a higher density of sampling or at the detailed exploration stage.展开更多
To solve the complex weight matrix derivative problem when using the weighted least squares method to estimate the parameters of the mixed additive and multiplicative random error model(MAM error model),we use an impr...To solve the complex weight matrix derivative problem when using the weighted least squares method to estimate the parameters of the mixed additive and multiplicative random error model(MAM error model),we use an improved artificial bee colony algorithm without derivative and the bootstrap method to estimate the parameters and evaluate the accuracy of MAM error model.The improved artificial bee colony algorithm can update individuals in multiple dimensions and improve the cooperation ability between individuals by constructing a new search equation based on the idea of quasi-affine transformation.The experimental results show that based on the weighted least squares criterion,the algorithm can get the results consistent with the weighted least squares method without multiple formula derivation.The parameter estimation and accuracy evaluation method based on the bootstrap method can get better parameter estimation and more reasonable accuracy information than existing methods,which provides a new idea for the theory of parameter estimation and accuracy evaluation of the MAM error model.展开更多
The internal standard (IS) method is the best method for the analysis of samples, as it is independent of errors in injection volume, changes in sample volumes, and changes in sensitivity of the detector, etc. Use of ...The internal standard (IS) method is the best method for the analysis of samples, as it is independent of errors in injection volume, changes in sample volumes, and changes in sensitivity of the detector, etc. Use of an internal standard allows for the correction of losses due to sample clean-up of complex samples. An ideal IS is a compound that has properties very similar to, and that behaves as the compounds to be analysed. Ideally, only in the last step of analysis (HPLC), the IS should be well separated from the compounds of the mixture to be analysed. After testing several existing compounds with negative results, we decided to synthesise the 19-O-β-D-galactopyranosyl-13-O-β-D-glucopyranosyl-steviol as IS. This is the 19-galactosyl ester of steviolmonoside (13-O-β-D-glucopyranosyl-steviol). The IS was made according to published methods. Steviolmonoside (SM) was made from purified commercial rubusoside (Rub) by refluxing it in 10% KOH for 2 h. SM was precipitated and crystallized from MeOH. The hydroxyls of the glucose unit of SM were protected by acetylation. The acetylated SM was crystallized from acetone and dissolved in 1,2-dichloroethane. Then Ag2CO3 on Celite and tetra-acetylated galactopyranosyl bromide were added and the mixture was refluxed for 2 h. After cooling, BaO in MeOH was added to remove the acetyl groups. The 1,2-dichloroethane fraction was then extracted three times with equal volumes of water and the water fraction containing the IS was further purified on a C18 flash chromatography column. Traces of unreacted SM were removed by preparative HPLC on an Alltima C18 column (250 mm × 22 mm, particle size 10 μm) with AcCN:water (35:65, 20 ml/min). Detection was at 210 nm (KNAUER, “Smartline” UV detector 2500). The collected IS fraction from the HPLC was completely dried. Mixtures of steviol glycosides (SVglys) containing IS could be purified over SPE cartridges without change of the SVgly over IS ratio. The calibration curves for rebaudioside A (RebA) and stevioside (ST) were linear between 0.012 and 0.95 and between 0.013 and 1.13 mM for RebA and ST, respectively. The accuracy was checked by the standard addition method. It was concluded that the IS method gives an excellent precision and accuracy.展开更多
Given that impurities may affect the quality and safety of drug products,impurity identification and profiling is an integral part of drug quality control and is particularly important for newly developed medications ...Given that impurities may affect the quality and safety of drug products,impurity identification and profiling is an integral part of drug quality control and is particularly important for newly developed medications such as solriamfetol,which is used to treat excessive daytime sleepiness.Although the highperformance liquid chromatography analysis of commercial solriamfetol has revealed the presence of several impurities,their synthesis,structure elucidation,and chromatographic determination have not been reported yet.To bridge this gap,we herein identified,synthesized,and isolated eight processrelated solriamfetol impurities,characterized them using spectroscopic and chromatographic techniques,and proposed plausible mechanisms of their formation.Moreover,we developed and validated a prompt impurity analysis method based on ultrahigh-performance liquid chromatography with UV detection,revealing that its selectivity,linearity,accuracy,precision,and quantitation limit meet the acceptance criteria of method validation stipulated by the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use.Thus,the developed method was concluded to be suitable for the routine analysis of solriamfetol substances.展开更多
High performance liquid chromatographic method was developed valdated and applied for the simultaneous determi- nation of lisinopril and NSAIDs in bulk, pharmaceuticals formulations and human serum. A Purospher star C...High performance liquid chromatographic method was developed valdated and applied for the simultaneous determi- nation of lisinopril and NSAIDs in bulk, pharmaceuticals formulations and human serum. A Purospher star C18 (5 μm, 25 × 0.46 cm) column was used with mobile phase consisting of methanol: water: acetonitrile (80:17.5:2.5 v/v, pH 3.0) and quantitative evaluation was performed at 225 nm with a flow rate of 1.0 mL?min–1. The retention time of lisinopril was 2.2 min while naproxen, flurbiprofen, diclofenac sodium and mefenamic acid were found to be 4.0, 4.5, 5.0 and 6.7 min respectively. Suitability of this method for the quantitative determination of the drugs was proved by validation in accordance with the requirements laid down by International Conference on Harmonization (ICH) guidelines. The method is selective, precise, accurate and can be used for analysis of pharmaceutical preparations in quality control and clinical laboratories.展开更多
This research aimed to implement and compare the accuracy of different interpolation methods using cross validation errors for interpolating the spatial pattern of soil properties. This paper investigates whether the ...This research aimed to implement and compare the accuracy of different interpolation methods using cross validation errors for interpolating the spatial pattern of soil properties. This paper investigates whether the use of kriging, instead of traditional interpolation methods, improves the accuracy of prediction of soil properties. To this end, various interpolation (kriging) techniques that rely on the spatial correlation between observations to predict attribute values at ensampled locations are studied. Geostatistics provides descriptive tools such as semivariograms to characterize the spatial pattern of continuous and categorical soil attributes. The maps obtained from Ordinary Kriging, Inverse Distance Weighting and splines show clearly that the map from Universal Kriging (UK) is better than the other three interpolation methods. Therefore, UK can be considered as an accurate method for interpolating soil (EC, pH, CaCO3) properties.展开更多
An imaging accuracy improving method is established, within which a distance coefficient including location information between sparse array configuration and the location of defect is proposed to select higher signal...An imaging accuracy improving method is established, within which a distance coefficient including location information between sparse array configuration and the location of defect is proposed to select higher signal- to-noise ratio data from all experimental data and then to use these selected data for elliptical imaging. Tile relationships among imaging accuracy, distance coefficient and residual direct wave are investigated, and then the residual direct wave is introduced to make the engineering application more convenient. The effectiveness of the proposed method is evaluated experimentally by sparse transducer array of a rectangle, and the results reveal that selecting experimental data of smaller distance coefficient can effectively improve imaging accuracy. Moreover, the direct wave difference increases with the decrease of the distance coefficient, which implies that the imaging accuracy can be effectively improved by using the experimental data of the larger direct wave difference.展开更多
By dividing English learners in Chinese university context into intermediate and advanced level learners, the essay argues that fluency rather than accuracy is needed for most university students. It further discusses...By dividing English learners in Chinese university context into intermediate and advanced level learners, the essay argues that fluency rather than accuracy is needed for most university students. It further discusses some suitable teaching methods in both contexts respectively to balance this pair of objective focus.展开更多
The combined hybrid finite element method is of an intrinsic mechanism of enhancing coarse-mesh-accuracy of lower order displacement schemes. It was confirmed that the combined hybrid scheme without energy error leads...The combined hybrid finite element method is of an intrinsic mechanism of enhancing coarse-mesh-accuracy of lower order displacement schemes. It was confirmed that the combined hybrid scheme without energy error leads to enhancement of accuracy at coarse meshes, and that the combination parameter plays an important role in the enhancement. As an improvement of conforming bilinear Q(4)-plane element, the combined hybrid method adopted the most convenient quadrilateral displacements-stress mode, i.e.,the mode of compatible isoparametric bilinear displacements and pure constant stresses. By adjusting the combined parameter, the optimized version of the combined hybrid element was obtained and numerical tests indicated that this parameter-adjusted version behaves much better than Q(4)-element and is of high accuracy at coarse meshes. Due to elimination of stress parameters at the elemental level, this combined hybrid version is of the same computational cost as that of Q(4)-element.展开更多
This study describes a glucocapparin determination method. Based on rapeseed determination of glucosinolate (GSL), the equation of the average straight regression line is Y = 100.42X – 0.03 (R2 = 0.9998). Enzymatic h...This study describes a glucocapparin determination method. Based on rapeseed determination of glucosinolate (GSL), the equation of the average straight regression line is Y = 100.42X – 0.03 (R2 = 0.9998). Enzymatic hydrolysis of glucocapparin extracted from leaves and fruits of B. senegalensis, analyzed by SPME-GC-MS confirmed the presence of methylisothiocyanate as the main hydrolysis glucocapparin product. Monitoring glucocapparin contents in B. senegalensis leaves and fruits collected in 4 localities in Senegal showed differences between organs according localities and periods of harvest. Glucocapparin content was very high in dry season particularly in January and the lowest rates were recorded during the rainy period between August and November.展开更多
A simple efficient isocratic reversed-phase HPLC method was developed and validated for the determination of clindamycin palmitate hydrochloride (CPH) and its commercially available oral solution products. Separation ...A simple efficient isocratic reversed-phase HPLC method was developed and validated for the determination of clindamycin palmitate hydrochloride (CPH) and its commercially available oral solution products. Separation was achieved on a Phenomenex Zorbax (Luna) cyano column (150 × 4.6 mm, 5 μm) with a Phenomenex cyano guard cartridge (4 × 3.0 mm) on Agilent 1050 series HPLC system. CPH and its resolution standard lincomycin were eluted isocratically at a flow rate of 1 mL/min with a simplified mobile phase (potassium phosphate buffer (5 mM, pH 3.0)—acetonitrile—tetrahydrofuran (20:75:5, v/v/v)) and detected at 210 nm. The column was maintained at 25?C. The method was validated according to USP category I requirements. Robustness and forced degradation studies were also conducted. CPH marketed drug products were obtained from a drug distributor and assayed for potency using the validated method. Validation acceptance criteria were met in all cases. The analytical range for CPH was 15 - 500 μg/mL and the linearity was r2 > 0.999 over three days. The method was determined to be specific and robust. Both accuracy (92.0% - 103.8%) and precision (0.67% - 1.52%) were established across the analytical range for low, intermediate and high QC concentrations. Method applicability was demonstrated by analyzing two marketed products of CPH, in which results showed potency >98%. The method was determined to be an enhancement over the current USP methodology for assay as a result of increased efficiency, reduced organic solvents and the elimination of matrix modifiers. This method was successfully applied for the quality assessment of: 1) currently marketed drug products and 2) will in future assess the product quality of novel dosage forms of CPH for pediatric use.展开更多
Background: The robustness is a measurement of an analytical chemical method and its ability to contain unaffected by little with deliberate variation of analytical chemical method parameters. The analytical chemical ...Background: The robustness is a measurement of an analytical chemical method and its ability to contain unaffected by little with deliberate variation of analytical chemical method parameters. The analytical chemical method variation parameters are based on pH variability of buffer solution of mobile phase, organic ratio composition changes, stationary phase (column) manufacture, brand name and lot number variation;flow rate variation and temperature variation of chromatographic system. The analytical chemical method for assay of Atropine Sulfate conducted for robustness evaluation. The typical variation considered for mobile phase organic ratio change, change of pH, change of temperature, change of flow rate, change of column etc. Purpose: The aim of this study is to develop a cost effective, short run time and robust analytical chemical method for the assay quantification of Atropine in Pharmaceutical Ophthalmic Solution. This will help to make analytical decisions quickly for research and development scientists as well as will help with quality control product release for patient consumption. This analytical method will help to meet the market demand through quick quality control test of Atropine Ophthalmic Solution and it is very easy for maintaining (GDP) good documentation practices within the shortest period of time. Method: HPLC method has been selected for developing superior method to Compendial method. Both the compendial HPLC method and developed HPLC method was run into the same HPLC system to prove the superiority of developed method. Sensitivity, precision, reproducibility, accuracy parameters were considered for superiority of method. Mobile phase ratio change, pH of buffer solution, change of stationary phase temperature, change of flow rate and change of column were taken into consideration for robustness study of the developed method. Results: The limit of quantitation (LOQ) of developed method was much low than the compendial method. The % RSD for the six sample assay of developed method was 0.4% where the % RSD of the compendial method was 1.2%. The reproducibility between two analysts was 100.4% for developed method on the contrary the compendial method was 98.4%.展开更多
文摘Imaging methods are frequently used to diagnose gastrointestinal diseases and play a crucial role in verifying clinical diagnoses among all diagnostic algorithms.However,these methods have limitations,challenges,benefits,and advantages.Addressing these limitations requires the application of objective criteria to assess the effectiveness of each diagnostic method.The diagnostic process is dynamic and requires a consistent algorithm,progressing from clinical subjective data,such as patient history(anamnesis),and objective findings to diagnostics ex juvantibus.Caution must be exercised when interpreting diagnostic results,and there is an urgent need for better diagnostic tests.In the absence of such tests,preliminary criteria and a diagnosis ex juvantibus must be relied upon.Diagnostic imaging methods are critical stages in the diagnostic workflow,with sensitivity,specificity,and accuracy serving as the primary criteria for evaluating clinical,laboratory,and instrumental symptoms.A comprehensive evaluation of all available diagnostic data guarantees an accurate diagnosis.The“gold standard”for diagnosis is typically established through either the results of a pathological autopsy or a lifetime diagnosis resulting from a thorough examination using all diagnostic methods.
文摘A novel, simple, and sensitive Ultra Performance Liquid Chromatography (UPLC) method was developed and validated for the quantification of process-related impurities and degradants, as well as the assay of Docetaxel. The stability-indicating capability of the method was demonstrated through forced degradation studies and a comprehensive mass balance evaluation. Chromatographic separation was achieved using an ACQUITY UPLC BEH C18 column (100 × 2.1 mm, 1.7 µm), with gradient elution. The mobile phase A comprised a mixture of water, methanol, and acetonitrile (500:300:200, v/v/v), while mobile phase B was acetonitrile and water (800:200, v/v). The flow rate was set at 0.4 mL/min, with detection at 232 nm using a photodiode array detector. The method exhibited excellent performance, with a tailing factor of 1.10 for Docetaxel. The method was rigorously validated for precision, accuracy, linearity, LOD, LOQ, ruggedness, specificity, and robustness. Forced degradation studies confirmed the method’s suitability for stability analysis. Stability testing on the drug substance was conducted following ICH guidelines.
基金supported by the NSFC Grant 11901555,12271499the Cyrus Tang Foundationsupported by the NSFC Grant 11871448 and 12126604.
文摘In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the divergence error in the magnetic field,both the local divergence-free basis and the Godunov source term would be employed for the multi-dimensional VRMHD.Rigorous theoretical analyses are presented for one-dimensional and multi-dimensional DG schemes,respectively,showing that the scheme can maintain the positivity-preserving(PP)property under some CFL conditions when combined with the strong-stability-preserving time discretization.Then,general frameworks are established to construct the PP limiter for arbitrary order of accuracy DG schemes.Numerical tests demonstrate the effectiveness of the proposed schemes.
文摘The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally induced positioning error compensation remains the most effective and practical method in this context. However, the efficiency of the compensation process depends on the quality of the model used to predict the thermal errors. The model should consistently reflect the relationships between temperature distribution in the MT structure and thermally induced positioning errors. A judicious choice of the number and location of temperature sensitive points to represent heat distribution is a key factor for robust thermal error modeling. Therefore, in this paper, the temperature sensitive points are selected following a structured thermomechanical analysis carried out to evaluate the effects of various temperature gradients on MT structure deformation intensity. The MT thermal behavior is first modeled using finite element method and validated by various experimentally measured temperature fields using temperature sensors and thermal imaging. MT Thermal behavior validation shows a maximum error of less than 10% when comparing the numerical estimations with the experimental results even under changing operation conditions. The numerical model is used through several series of simulations carried out using varied working condition to explore possible relationships between temperature distribution and thermal deformation characteristics to select the most appropriate temperature sensitive points that will be considered for building an empirical prediction model for thermal errors as function of MT thermal state. Validation tests achieved using an artificial neural network based simplified model confirmed the efficiency of the proposed temperature sensitive points allowing the prediction of the thermally induced errors with an accuracy greater than 90%.
基金supported by ONR UMass Dartmouth Marine and UnderSea Technology(MUST)grant N00014-20-1-2849 under the project S31320000049160by DOE grant DE-SC0023164 sub-award RC114586-UMD+2 种基金by AFOSR grants FA9550-18-1-0383 and FA9550-23-1-0037supported by Michigan State University,by AFOSR grants FA9550-19-1-0281 and FA9550-18-1-0383by DOE grant DE-SC0023164.
文摘Additive Runge-Kutta methods designed for preserving highly accurate solutions in mixed-precision computation were previously proposed and analyzed.These specially designed methods use reduced precision for the implicit computations and full precision for the explicit computations.In this work,we analyze the stability properties of these methods and their sensitivity to the low-precision rounding errors,and demonstrate their performance in terms of accuracy and efficiency.We develop codes in FORTRAN and Julia to solve nonlinear systems of ODEs and PDEs using the mixed-precision additive Runge-Kutta(MP-ARK)methods.The convergence,accuracy,and runtime of these methods are explored.We show that for a given level of accuracy,suitably chosen MP-ARK methods may provide significant reductions in runtime.
基金supported by is supported by the Shanghai Municipal Science and Technology Major Projectthe support from Shanghai Super Postdoctoral Incentive Program
文摘Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum solvation model to predict the reaction energetics of NO3RR on pure copper surface in alkaline media.The potential-dependent mechanism on the most prevailing Cu(111)and the minor(100)and(110)facets were established,in consideration of NO_(2)_(−),NO,NH_(3),NH_(2)OH,N_(2),and N_(2)O as the main products.The computational results show that the major Cu(111)is the ideal surface to produce ammonia with the highest onset potential at 0.06 V(until−0.37 V)and the highest optimal potential at−0.31 V for ammonia production without kinetic obstacles in activation energies at critical steps.For other minor facets,the secondary Cu(100)shows activity to ammonia from−0.03 to−0.54 V with the ideal potential at−0.50 V,which requires larger overpotential to overcome kinetic activation energy barriers.The least Cu(110)possesses the longest potential range for ammonia yield from−0.27 to−1.12 V due to the higher adsorption coverage of nitrate,but also with higher tendency to generate di-nitrogen species.Experimental evaluations on commercial Cu/C electrocatalyst validated the accuracy of our proposed mechanism.The most influential(111)surface with highest percentage in electrocatalyst determined the trend of ammonia production.In specific,the onset potential of ammonia production at 0.1 V and emergence of yield rate peak at−0.3 V in experiments precisely located in the predicted potentials on Cu(111).Four critical factors for the high ammonia yield and selectivity on Cu surface via NO3RR are summarized,including high NO3RR activity towards ammonia on the dominant Cu(111)facet,more possibilities to produce ammonia along different pathways on each facet,excellent ability for HER inhibition and suitable surface size to suppress di-nitrogen species formation at high nitrate coverage.Overall,our work provides comprehensive potential-dependent insights into the reaction details of NO3RR to ammonia,which can serve as references for the future development of NO3RR electrocatalysts,achieving higher activity and selectivity by maximizing these characteristics of copper-based materials.
基金supported by the Central Government to Guide Local Technological Development(23ZYQH0298)the Science and Technology Project of Gansu Province(20JR10RA656,22JR5RA416)the Science and Technology Project of Wuwei City(WW2202YFS006).
文摘Land use and cover change(LUCC)is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface,with significant impacts on the environment and social economy.Rapid economic development and climate change have resulted in significant changes in land use and cover.The Shiyang River Basin,located in the eastern part of the Hexi Corridor in China,has undergone significant climate change and LUCC over the past few decades.In this study,we used the random forest classification to obtain the land use and cover datasets of the Shiyang River Basin in 1991,1995,2000,2005,2010,2015,and 2020 based on Landsat images.We validated the land use and cover data in 2015 from the random forest classification results(this study),the high-resolution dataset of annual global land cover from 2000 to 2015(AGLC-2000-2015),the global 30 m land cover classification with a fine classification system(GLC_FCS30),and the first Landsat-derived annual China Land Cover Dataset(CLCD)against ground-truth classification results to evaluate the accuracy of the classification results in this study.Furthermore,we explored and compared the spatiotemporal patterns of LUCC in the upper,middle,and lower reaches of the Shiyang River Basin over the past 30 years,and employed the random forest importance ranking method to analyze the influencing factors of LUCC based on natural(evapotranspiration,precipitation,temperature,and surface soil moisture)and anthropogenic(nighttime light,gross domestic product(GDP),and population)factors.The results indicated that the random forest classification results for land use and cover in the Shiyang River Basin in 2015 outperformed the AGLC-2000-2015,GLC_FCS30,and CLCD datasets in both overall and partial validations.Moreover,the classification results in this study exhibited a high level of agreement with the ground truth features.From 1991 to 2020,the area of bare land exhibited a decreasing trend,with changes primarily occurring in the middle and lower reaches of the basin.The area of grassland initially decreased and then increased,with changes occurring mainly in the upper and middle reaches of the basin.In contrast,the area of cropland initially increased and then decreased,with changes occurring in the middle and lower reaches.The LUCC was influenced by both natural and anthropogenic factors.Climatic factors and population contributed significantly to LUCC,and the importance values of evapotranspiration,precipitation,temperature,and population were 22.12%,32.41%,21.89%,and 19.65%,respectively.Moreover,policy interventions also played an important role.Land use and cover in the Shiyang River Basin exhibited fluctuating changes over the past 30 years,with the ecological environment improving in the last 10 years.This suggests that governance efforts in the study area have had some effects,and the government can continue to move in this direction in the future.The findings can provide crucial insights for related research and regional sustainable development in the Shiyang River Basin and other similar arid and semi-arid areas.
文摘The higher order displacement discontinuity method(HODDM) utilizing special crack tip elements has been used in the solution of linear elastic fracture mechanics(LEFM) problems. The paper has selected several example problems from the fracture mechanics literature(with available analytical solutions) including center slant crack in an infinite and finite body, single and double edge cracks, cracks emanating from a circular hole. The numerical values of Mode Ⅰ and Mode Ⅱ SIFs for these problems using HODDM are in excellent agreement with analytical results(reaching up to 0.001% deviation from their analytical results). The HODDM is also compared with the XFEM and a modified XFEM results. The results show that the HODDM needs a considerably lower computational effort(with less than 400 nodes) than the XFEM and the modified XFEM(which needs more than 10000 nodes) to reach a much higher accuracy. The proposed HODDM offers higher accuracy and lower computation effort for a wide range of problems in LEFM.
文摘In this study,geochemical anomaly separation was carried out with methods based on the distribution model,which includes probability diagram(MPD),fractal(concentration-area technique),and U-statistic methods.The main objective is to evaluate the efficiency and accuracy of the methods in separation of anomalies on the shear zone gold mineralization.For this purpose,samples were taken from the secondary lithogeochemical environment(stream sediment samples)on the gold mineralization in Saqqez,NW of Iran.Interpretation of the histograms and diagrams showed that the MPD is capable of identifying two phases of mineralization.The fractal method could separate only one phase of change based on the fractal dimension with high concentration areas of the Au element.The spatial analysis showed two mixed subpopulations after U=0 and another subpopulation with very high U values.The MPD analysis followed spatial analysis,which shows the detail of the variations.Six mineralized zones detected from local geochemical exploration results were used for validating the methods mentioned above.The MPD method was able to identify the anomalous areas higher than 90%,whereas the two other methods identified 60%(maximum)of the anomalous areas.The raw data without any estimation for the concentration was used by the MPD method using aminimum of calculations to determine the threshold values.Therefore,the MPD method is more robust than the other methods.The spatial analysis identified the detail soft hegeological and mineralization events that were affected in the study area.MPD is recommended as the best,and the spatial U-analysis is the next reliable method to be used.The fractal method could show more detail of the events and variations in the area with asymmetrical grid net and a higher density of sampling or at the detailed exploration stage.
基金supported by the National Natural Science Foundation of China(No.42174011 and No.41874001).
文摘To solve the complex weight matrix derivative problem when using the weighted least squares method to estimate the parameters of the mixed additive and multiplicative random error model(MAM error model),we use an improved artificial bee colony algorithm without derivative and the bootstrap method to estimate the parameters and evaluate the accuracy of MAM error model.The improved artificial bee colony algorithm can update individuals in multiple dimensions and improve the cooperation ability between individuals by constructing a new search equation based on the idea of quasi-affine transformation.The experimental results show that based on the weighted least squares criterion,the algorithm can get the results consistent with the weighted least squares method without multiple formula derivation.The parameter estimation and accuracy evaluation method based on the bootstrap method can get better parameter estimation and more reasonable accuracy information than existing methods,which provides a new idea for the theory of parameter estimation and accuracy evaluation of the MAM error model.
文摘The internal standard (IS) method is the best method for the analysis of samples, as it is independent of errors in injection volume, changes in sample volumes, and changes in sensitivity of the detector, etc. Use of an internal standard allows for the correction of losses due to sample clean-up of complex samples. An ideal IS is a compound that has properties very similar to, and that behaves as the compounds to be analysed. Ideally, only in the last step of analysis (HPLC), the IS should be well separated from the compounds of the mixture to be analysed. After testing several existing compounds with negative results, we decided to synthesise the 19-O-β-D-galactopyranosyl-13-O-β-D-glucopyranosyl-steviol as IS. This is the 19-galactosyl ester of steviolmonoside (13-O-β-D-glucopyranosyl-steviol). The IS was made according to published methods. Steviolmonoside (SM) was made from purified commercial rubusoside (Rub) by refluxing it in 10% KOH for 2 h. SM was precipitated and crystallized from MeOH. The hydroxyls of the glucose unit of SM were protected by acetylation. The acetylated SM was crystallized from acetone and dissolved in 1,2-dichloroethane. Then Ag2CO3 on Celite and tetra-acetylated galactopyranosyl bromide were added and the mixture was refluxed for 2 h. After cooling, BaO in MeOH was added to remove the acetyl groups. The 1,2-dichloroethane fraction was then extracted three times with equal volumes of water and the water fraction containing the IS was further purified on a C18 flash chromatography column. Traces of unreacted SM were removed by preparative HPLC on an Alltima C18 column (250 mm × 22 mm, particle size 10 μm) with AcCN:water (35:65, 20 ml/min). Detection was at 210 nm (KNAUER, “Smartline” UV detector 2500). The collected IS fraction from the HPLC was completely dried. Mixtures of steviol glycosides (SVglys) containing IS could be purified over SPE cartridges without change of the SVgly over IS ratio. The calibration curves for rebaudioside A (RebA) and stevioside (ST) were linear between 0.012 and 0.95 and between 0.013 and 1.13 mM for RebA and ST, respectively. The accuracy was checked by the standard addition method. It was concluded that the IS method gives an excellent precision and accuracy.
基金This research was funded by the Deanship of Scientific Research at the German-Jordanian University and the Deanship of Scientific Research at Zarqa University.The graphical abstract was created with BioRender software.
文摘Given that impurities may affect the quality and safety of drug products,impurity identification and profiling is an integral part of drug quality control and is particularly important for newly developed medications such as solriamfetol,which is used to treat excessive daytime sleepiness.Although the highperformance liquid chromatography analysis of commercial solriamfetol has revealed the presence of several impurities,their synthesis,structure elucidation,and chromatographic determination have not been reported yet.To bridge this gap,we herein identified,synthesized,and isolated eight processrelated solriamfetol impurities,characterized them using spectroscopic and chromatographic techniques,and proposed plausible mechanisms of their formation.Moreover,we developed and validated a prompt impurity analysis method based on ultrahigh-performance liquid chromatography with UV detection,revealing that its selectivity,linearity,accuracy,precision,and quantitation limit meet the acceptance criteria of method validation stipulated by the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use.Thus,the developed method was concluded to be suitable for the routine analysis of solriamfetol substances.
文摘High performance liquid chromatographic method was developed valdated and applied for the simultaneous determi- nation of lisinopril and NSAIDs in bulk, pharmaceuticals formulations and human serum. A Purospher star C18 (5 μm, 25 × 0.46 cm) column was used with mobile phase consisting of methanol: water: acetonitrile (80:17.5:2.5 v/v, pH 3.0) and quantitative evaluation was performed at 225 nm with a flow rate of 1.0 mL?min–1. The retention time of lisinopril was 2.2 min while naproxen, flurbiprofen, diclofenac sodium and mefenamic acid were found to be 4.0, 4.5, 5.0 and 6.7 min respectively. Suitability of this method for the quantitative determination of the drugs was proved by validation in accordance with the requirements laid down by International Conference on Harmonization (ICH) guidelines. The method is selective, precise, accurate and can be used for analysis of pharmaceutical preparations in quality control and clinical laboratories.
文摘This research aimed to implement and compare the accuracy of different interpolation methods using cross validation errors for interpolating the spatial pattern of soil properties. This paper investigates whether the use of kriging, instead of traditional interpolation methods, improves the accuracy of prediction of soil properties. To this end, various interpolation (kriging) techniques that rely on the spatial correlation between observations to predict attribute values at ensampled locations are studied. Geostatistics provides descriptive tools such as semivariograms to characterize the spatial pattern of continuous and categorical soil attributes. The maps obtained from Ordinary Kriging, Inverse Distance Weighting and splines show clearly that the map from Universal Kriging (UK) is better than the other three interpolation methods. Therefore, UK can be considered as an accurate method for interpolating soil (EC, pH, CaCO3) properties.
文摘An imaging accuracy improving method is established, within which a distance coefficient including location information between sparse array configuration and the location of defect is proposed to select higher signal- to-noise ratio data from all experimental data and then to use these selected data for elliptical imaging. Tile relationships among imaging accuracy, distance coefficient and residual direct wave are investigated, and then the residual direct wave is introduced to make the engineering application more convenient. The effectiveness of the proposed method is evaluated experimentally by sparse transducer array of a rectangle, and the results reveal that selecting experimental data of smaller distance coefficient can effectively improve imaging accuracy. Moreover, the direct wave difference increases with the decrease of the distance coefficient, which implies that the imaging accuracy can be effectively improved by using the experimental data of the larger direct wave difference.
文摘By dividing English learners in Chinese university context into intermediate and advanced level learners, the essay argues that fluency rather than accuracy is needed for most university students. It further discusses some suitable teaching methods in both contexts respectively to balance this pair of objective focus.
文摘The combined hybrid finite element method is of an intrinsic mechanism of enhancing coarse-mesh-accuracy of lower order displacement schemes. It was confirmed that the combined hybrid scheme without energy error leads to enhancement of accuracy at coarse meshes, and that the combination parameter plays an important role in the enhancement. As an improvement of conforming bilinear Q(4)-plane element, the combined hybrid method adopted the most convenient quadrilateral displacements-stress mode, i.e.,the mode of compatible isoparametric bilinear displacements and pure constant stresses. By adjusting the combined parameter, the optimized version of the combined hybrid element was obtained and numerical tests indicated that this parameter-adjusted version behaves much better than Q(4)-element and is of high accuracy at coarse meshes. Due to elimination of stress parameters at the elemental level, this combined hybrid version is of the same computational cost as that of Q(4)-element.
文摘This study describes a glucocapparin determination method. Based on rapeseed determination of glucosinolate (GSL), the equation of the average straight regression line is Y = 100.42X – 0.03 (R2 = 0.9998). Enzymatic hydrolysis of glucocapparin extracted from leaves and fruits of B. senegalensis, analyzed by SPME-GC-MS confirmed the presence of methylisothiocyanate as the main hydrolysis glucocapparin product. Monitoring glucocapparin contents in B. senegalensis leaves and fruits collected in 4 localities in Senegal showed differences between organs according localities and periods of harvest. Glucocapparin content was very high in dry season particularly in January and the lowest rates were recorded during the rainy period between August and November.
文摘A simple efficient isocratic reversed-phase HPLC method was developed and validated for the determination of clindamycin palmitate hydrochloride (CPH) and its commercially available oral solution products. Separation was achieved on a Phenomenex Zorbax (Luna) cyano column (150 × 4.6 mm, 5 μm) with a Phenomenex cyano guard cartridge (4 × 3.0 mm) on Agilent 1050 series HPLC system. CPH and its resolution standard lincomycin were eluted isocratically at a flow rate of 1 mL/min with a simplified mobile phase (potassium phosphate buffer (5 mM, pH 3.0)—acetonitrile—tetrahydrofuran (20:75:5, v/v/v)) and detected at 210 nm. The column was maintained at 25?C. The method was validated according to USP category I requirements. Robustness and forced degradation studies were also conducted. CPH marketed drug products were obtained from a drug distributor and assayed for potency using the validated method. Validation acceptance criteria were met in all cases. The analytical range for CPH was 15 - 500 μg/mL and the linearity was r2 > 0.999 over three days. The method was determined to be specific and robust. Both accuracy (92.0% - 103.8%) and precision (0.67% - 1.52%) were established across the analytical range for low, intermediate and high QC concentrations. Method applicability was demonstrated by analyzing two marketed products of CPH, in which results showed potency >98%. The method was determined to be an enhancement over the current USP methodology for assay as a result of increased efficiency, reduced organic solvents and the elimination of matrix modifiers. This method was successfully applied for the quality assessment of: 1) currently marketed drug products and 2) will in future assess the product quality of novel dosage forms of CPH for pediatric use.
文摘Background: The robustness is a measurement of an analytical chemical method and its ability to contain unaffected by little with deliberate variation of analytical chemical method parameters. The analytical chemical method variation parameters are based on pH variability of buffer solution of mobile phase, organic ratio composition changes, stationary phase (column) manufacture, brand name and lot number variation;flow rate variation and temperature variation of chromatographic system. The analytical chemical method for assay of Atropine Sulfate conducted for robustness evaluation. The typical variation considered for mobile phase organic ratio change, change of pH, change of temperature, change of flow rate, change of column etc. Purpose: The aim of this study is to develop a cost effective, short run time and robust analytical chemical method for the assay quantification of Atropine in Pharmaceutical Ophthalmic Solution. This will help to make analytical decisions quickly for research and development scientists as well as will help with quality control product release for patient consumption. This analytical method will help to meet the market demand through quick quality control test of Atropine Ophthalmic Solution and it is very easy for maintaining (GDP) good documentation practices within the shortest period of time. Method: HPLC method has been selected for developing superior method to Compendial method. Both the compendial HPLC method and developed HPLC method was run into the same HPLC system to prove the superiority of developed method. Sensitivity, precision, reproducibility, accuracy parameters were considered for superiority of method. Mobile phase ratio change, pH of buffer solution, change of stationary phase temperature, change of flow rate and change of column were taken into consideration for robustness study of the developed method. Results: The limit of quantitation (LOQ) of developed method was much low than the compendial method. The % RSD for the six sample assay of developed method was 0.4% where the % RSD of the compendial method was 1.2%. The reproducibility between two analysts was 100.4% for developed method on the contrary the compendial method was 98.4%.