期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
A new complex variable meshless method for transient heat conduction problems 被引量:5
1
作者 王健菲 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期42-50,共9页
In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is pres... In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is presented. The variational method is employed to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. As the transient heat conduction problems are related to time, the Crank-Nicolson difference scheme for two-point boundary value problems is selected for the time discretization. Then the corresponding formulae of the CVMM for 2D heat conduction problems are obtained. In order to demonstrate the applicability of the proposed method, numerical examples are given to show the high convergence rate, good accuracy, and high efficiency of the CVMM presented in this paper. 展开更多
关键词 meshless method improved complex variable moving least-square approximation com-plex variable meshless method transient heat conduction problem
原文传递
An improved complex variable element-free Galerkin method for two-dimensional elasticity problems 被引量:4
2
作者 Bai Fu-Nong Li Dong-Ming +1 位作者 Wang Jian-Fei Cheng Yu-Min 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第2期56-65,共10页
In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squar... In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squares (CVMLS) approximations presented by Cheng and Ren, the ICVMLS approximation has a great computational precision and efficiency. Based on the element-free Galerkin (EFG) method and the ICVMLS approximation, the improved complex variable element-free Galerkin (ICVEFG) method is presented for two-dimensional elasticity problems, and the corresponding formulae are obtained. Compared with the conventional EFC method, the ICVEFG method has a great computational accuracy and efficiency. For the purpose of demonstration, three selected numerical examples are solved using the ICVEFG method. 展开更多
关键词 meshless method improved complex variable moving least-squares approximation improved complex variable element-free Galerkin method ELASTICITY
原文传递
A new complex variable element-free Galerkin method for two-dimensional potential problems 被引量:4
3
作者 程玉民 王健菲 白福浓 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期43-52,共10页
In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-f... In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems, is presented. In the method, the integral weak form of control equations is employed, and the Lagrange multiplier is used to apply the essential boundary conditions. Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained. Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng, the functional in the ICVMLS approximation has an explicit physical meaning. Furthermore, the ICVEFG method has greater computational precision and efficiency. Three numerical examples are given to show the validity of the proposed method. 展开更多
关键词 meshless method improved complex variable moving least-square approximation im- proved complex variable element-free Galerkin method potential problem
原文传递
Analysis of elastoplasticity problems using an improved complex variable element-free Galerkin method 被引量:3
4
作者 程玉民 刘超 +1 位作者 白福浓 彭妙娟 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第10期16-25,共10页
In this paper, based on the conjugate of the complex basis function, a new complex variable moving least-squares approximation is discussed. Then using the new approximation to obtain the shape function, an improved c... In this paper, based on the conjugate of the complex basis function, a new complex variable moving least-squares approximation is discussed. Then using the new approximation to obtain the shape function, an improved complex variable element-free Galerkin(ICVEFG) method is presented for two-dimensional(2D) elastoplasticity problems. Compared with the previous complex variable moving least-squares approximation, the new approximation has greater computational precision and efficiency. Using the penalty method to apply the essential boundary conditions, and using the constrained Galerkin weak form of 2D elastoplasticity to obtain the system equations, we obtain the corresponding formulae of the ICVEFG method for 2D elastoplasticity. Three selected numerical examples are presented using the ICVEFG method to show that the ICVEFG method has the advantages such as greater precision and computational efficiency over the conventional meshless methods. 展开更多
关键词 meshless method complex variable moving least-squares approximation improved complex vari- able element-free Galerkin method elastoplasticity
原文传递
Complex variable element-free Galerkin method for viscoelasticity problems 被引量:2
5
作者 程玉民 李荣鑫 彭妙娟 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期60-71,共12页
Based on the complex variable moving least-square (CVMLS) approximation, the complex variable element-free Galerkin (CVEFG) method for two-dimensional viscoelasticity problems under the creep condition is presente... Based on the complex variable moving least-square (CVMLS) approximation, the complex variable element-free Galerkin (CVEFG) method for two-dimensional viscoelasticity problems under the creep condition is presented in this paper. The Galerkin weak form is employed to obtain the equation system, and the penalty method is used to apply the essential boundary conditions, then the corresponding formulae of the CVEFG method for two-dimensional viscoelasticity problems under the creep condition are obtained. Compared with the element-free Galerkin (EFG) method, with the same node distribution, the CVEFG method has higher precision, and to obtain the similar precision, the CVEFG method has greater computational efficiency. Some numerical examples are given to demonstrate the validity and the efficiency of the method. 展开更多
关键词 meshless method complex variable moving least-square approximation complex variableelement-free Galerkin method VISCOELASTICITY
原文传递
The complex variable meshless local Petrov-Galerkin method of solving two-dimensional potential problems 被引量:1
6
作者 杨秀丽 戴保东 张伟伟 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期49-55,共7页
Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential proble... Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square(MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local Petrov-Galerkin(MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method. 展开更多
关键词 meshless method complex variable moving least-square method complex variable meshless local Petrov-Galerkin method potential problems
原文传递
New complex variable meshless method for advection-diffusion problems 被引量:1
7
作者 王健菲 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期92-98,共7页
In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equi... In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equivalent functional of two-dimensional advection-diffusion problems is formed,the variation method is used to obtain the equation system,and the penalty method is employed to impose the essential boundary conditions.The difference method for twopoint boundary value problems is used to obtain the discrete equations.Then the corresponding formulas of the ICVMM for advection-diffusion problems are presented.Two numerical examples with different node distributions are used to validate and investigate the accuracy and efficiency of the new method in this paper.It is shown that ICVMM is very effective for advection-diffusion problems,and has a good convergent character,accuracy,and computational efficiency. 展开更多
关键词 meshless method improved complex variable moving least-square approximation improved complex variable meshless method advection-diffusion problem
原文传递
A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems
8
作者 王启防 戴保东 栗振锋 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期238-244,共7页
On the basis of the complex variable moving least-square (CVMLS) approximation, a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems. The method is ... On the basis of the complex variable moving least-square (CVMLS) approximation, a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems. The method is developed based on the CVMLS approximation for constructing shape functions at scattered points, and the Heaviside step function is used as a test function in each sub-domain to avoid the need for a domain integral in symmetric weak form. In the construction of the well-performed shape function, the trial function of a two-dimensional (2D) problem is formed with a one-dimensional (1D) basis function, thus improving computational efficiency. The numerical results are compared with the exact solutions of the problems and the finite element method (FEM). This comparison illustrates the accuracy as well as the capability of the CVMLPG method. 展开更多
关键词 meshless method complex variable moving least-square method complex variable meshless localPetrov-Galerkin method transient heat conduction problems
原文传递
An improved interpolating element-free Galerkin method with a nonsingular weight function for two-dimensional potential problems 被引量:15
9
作者 王聚丰 孙凤欣 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期53-59,共7页
In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the II... In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. The number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method. 展开更多
关键词 meshless method improved interpolating moving least-square method improved inter-polating element-free Galerkin method potential problem
原文传递
Interpolating Isogeometric Boundary Node Method and Isogeometric Boundary Element Method Based on Parameter Space 被引量:1
10
作者 Hongyin Yang Jiwei Zhong +2 位作者 Ying Wang Xingquan Chen Xiaoya Bian 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第9期807-824,共18页
In this paper,general interpolating isogeometric boundary node method(IIBNM)and isogeometric boundary element method(IBEM)based on parameter space are proposed for 2D elasticity problems.In both methods,the integral c... In this paper,general interpolating isogeometric boundary node method(IIBNM)and isogeometric boundary element method(IBEM)based on parameter space are proposed for 2D elasticity problems.In both methods,the integral cells and elements are defined in parameter space,which can reproduce the geometry exactly at all the stages.In IIBNM,the improved interpolating moving leastsquare method(IIMLS)is applied for field approximation and the shape functions have the delta function property.The Lagrangian basis functions are used for field approximation in IBEM.Thus,the boundary conditions can be imposed directly in both methods.The shape functions are defined in 1D parameter space and no curve length needs to be computed.Besides,most methods for the treatment of the singular integrals in the boundary element method can be applied in IIBNM and IBEM directly.Numerical examples have demonstrated the accuracy of the proposed methods. 展开更多
关键词 interpolating isogeometric boundary node method isogeometric boundary element method parameter space improved interpolating moving least-square method Lagrangian basis functions
下载PDF
An improved interpolating element-free Galerkin method for elasticity 被引量:4
11
作者 孙凤欣 王聚丰 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期43-50,共8页
Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity proble... Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method. 展开更多
关键词 meshless method improved interpolating moving least-squares (ⅡMLS) method improved interpolating element-free Galerkin (ⅡEFG) method elasticity
原文传递
A complex variable meshless method for fracture problems 被引量:16
12
作者 CHENG Yumin1 & LI Jiuhong2 1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China 2. Department of Building Engineering, Xi’an University of Technology, Xi’an 710048, China 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2006年第1期46-59,共14页
Based on the moving least-square (MLS) approximation, the complex variable moving least-square approximation (CVMLS) is discussed in this paper. The complex variable moving least-square approximation cannot form ill-c... Based on the moving least-square (MLS) approximation, the complex variable moving least-square approximation (CVMLS) is discussed in this paper. The complex variable moving least-square approximation cannot form ill-conditioned equations, and has greater precision and computational efficiency. Using the analytical solution near the tip of a crack, the trial functions in the complex variable moving least-square approxi- mation are extended, and the corresponding approximation function is obtained. And from the minimum potential energy principle, a complex variable meshless method for fracture problems is presented, and the formulae of the complex variable meshless method are obtained. The complex variable meshless method in this paper has greater precision and computational efficiency than the conventional meshless method. Some examples are given. 展开更多
关键词 moving least-square approximation complex variable moving least-square approximation MESHLESS method complex variable MESHLESS method fracture.
原文传递
An improved boundary element-free method (IBEFM) for two-dimensional potential problems 被引量:8
13
作者 任红萍 程玉民 张武 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第10期4065-4073,共9页
The interpolating moving least-squares (IMLS) method is discussed first in this paper. And the formulae of the IMLS method obtained by Lancaster are revised. Then on the basis of the boundary element-free method (B... The interpolating moving least-squares (IMLS) method is discussed first in this paper. And the formulae of the IMLS method obtained by Lancaster are revised. Then on the basis of the boundary element-free method (BEFM), combining the boundary integral equation (BIE) method with the IMLS method, the improved boundary element-free method (IBEFM) for two-dimensional potential problems is presented, and the corresponding formulae of the IBEFM are obtained. In the BEFM, boundary conditions are applied directly, but the shape function in the MLS does not satisfy the property of the Kronecker ~ function. This is a problem of the BEFM, and must be solved theoretically. In the IMLS method, when the shape function satisfies the property of the Kronecker 5 function, then the boundary conditions, in the meshless method based on the IMLS method, can be applied directly. Then the IBEFM, based on the IMLS method, is a direct meshless boundary integral equation method in which the basic unknown quantity is the real solution of the nodal variables, and the boundary conditions can be applied directly and easily, thus it gives a greater computational precision. Some numerical examples are presented to demonstrate the method. 展开更多
关键词 moving least-squares approximation interpolating moving least-squares method mesh- less method improved boundary element-free method potential problem
原文传递
An interpolating boundary element-free method (IBEFM) for elasticity problems 被引量:5
14
作者 REN HongPing 1 , CHENG YuMin 2 & ZHANG Wu 1 1 School of Computer Engineering and Science, Shanghai University, Shanghai 200072, China 2 Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2010年第4期758-766,共9页
The paper begins by discussing the interpolating moving least-squares (IMLS) method. Then the formulae of the IMLS method obtained by Lancaster are revised. On the basis of the boundary element-free method (BEFM), com... The paper begins by discussing the interpolating moving least-squares (IMLS) method. Then the formulae of the IMLS method obtained by Lancaster are revised. On the basis of the boundary element-free method (BEFM), combining the boundary integral equation method with the IMLS method improved in this paper, the interpolating boundary element-free method (IBEFM) for two-dimensional elasticity problems is presented, and the corresponding formulae of the IBEFM for two-dimensional elasticity problems are obtained. In the IMLS method in this paper, the shape function satisfies the property of Kronecker δ function, and then in the IBEFM the boundary conditions can be applied directly and easily. The IBEFM is a direct meshless boundary integral equation method in which the basic unknown quantity is the real solution to the nodal variables. Thus it gives a greater computational precision. Numerical examples are presented to demonstrate the method. 展开更多
关键词 moving least-squares (MLS) approximation interpolating moving least-squares (IMLS) method BOUNDARY integral equation MESHLESS method BOUNDARY element-free method (BEFM) interpolating BOUNDARY element-free method (IBEFM) elasticity problem
原文传递
The interpolating element-free Galerkin method for elastic large deformation problems 被引量:5
15
作者 WU Qiang PENG PiaoPiao CHENG YuMin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第2期364-374,共11页
This paper presents an interpolating element-free Galerkin(IEFG) method for solving the two-dimensional(2D) elastic large deformation problems. By using the improved interpolating moving least-squares method to form s... This paper presents an interpolating element-free Galerkin(IEFG) method for solving the two-dimensional(2D) elastic large deformation problems. By using the improved interpolating moving least-squares method to form shape function, and using the Galerkin weak form of 2D elastic large deformation problems to obtain the discrete equations, we obtain the formulae of the IEFG method for 2D elastic large deformation problems. As the displacement boundary conditions can be applied directly, the IEFG method can acquire higher computational efficiency and accuracy than the traditional element-free Galerkin(EFG)method, which is based on the moving least-squares approximation and can not apply the displacement boundary conditions directly. To analyze the influences of node distribution, scale parameter of influence domain and the loading step on the numerical solutions of the IEFG method, three numerical examples are proposed. The IEFG method has almost the same high accuracy as the EFG method, and for some 2D elastic large deformation problems the IEFG method even has higher computational accuracy. 展开更多
关键词 meshless method improved interpolating moving least-squares method interpolating element-free Galerkin method elastic large deformation
原文传递
复变量移动最小二乘法及其应用 被引量:41
16
作者 程玉民 彭妙娟 李九红 《力学学报》 EI CSCD 北大核心 2005年第6期719-723,共5页
提出了复变量移动最小二乘法,并详细讨论了基于正交基函数的复变量移动最小二乘法.然后,将复变量移动最小二乘法和弹性力学的边界无单元法结合,提出了弹性力学的复变量边界无单元法,推导了相应的公式,并给出了数值算例.基于正交基函数... 提出了复变量移动最小二乘法,并详细讨论了基于正交基函数的复变量移动最小二乘法.然后,将复变量移动最小二乘法和弹性力学的边界无单元法结合,提出了弹性力学的复变量边界无单元法,推导了相应的公式,并给出了数值算例.基于正交基函数的复变量移动最小二乘法的优点是不形成病态方程组、精度高,所形成的无网格方法计算量小.复变量边界无单元法是边界积分方程的无网格方法的直接列式法,容易引入边界条件,且具有更高的精度. 展开更多
关键词 复变量移动最小二乘法 正交基函数 弹性力学 边界积分方程 边界无单元法
下载PDF
基于代理模型的变复杂度方法在板料成形优化中的应用 被引量:7
17
作者 孙光永 李光耀 龚志辉 《机械工程学报》 EI CAS CSCD 北大核心 2009年第9期201-209,共9页
板料成形优化中存在一些缺陷问题,如一步法与优化算法相结合时精度低、增量法与优化算法直接结合时效率低以及通过传统构造代理模型的方法构造高精度的代理模型时需要大量增量法模拟结果。为了充分发挥一步法和增量法各自的优点,提出采... 板料成形优化中存在一些缺陷问题,如一步法与优化算法相结合时精度低、增量法与优化算法直接结合时效率低以及通过传统构造代理模型的方法构造高精度的代理模型时需要大量增量法模拟结果。为了充分发挥一步法和增量法各自的优点,提出采用变复杂度方法通过较少次数的试验样本点数据先在一步法和增量法间建立一个差值补偿响应面模型。通过一步法和差值补偿响应面模型构造新的试验样本点,在新构样本点和原有用增量法计算的样本点数据基础上建立移动最小二乘法代理模型,建立的移动最小二乘法代理模型精度和效率都较高。利用粒子群优化算法对移动最小二乘法代理模型进行优化求解。将该方法应用到了汽车某内板的成形性优化中,优化的结果显著地提高了板料的成形性。算例表明,该方法具有较高的精度和较强的工程实用性。 展开更多
关键词 变复杂度 板料成形 优化 移动最小二乘法
下载PDF
复变量移动最小二乘近似在Sobolev空间中的误差估计 被引量:9
18
作者 孙新志 李小林 《应用数学和力学》 CSCD 北大核心 2016年第4期416-425,共10页
复变量移动最小二乘近似是形成无网格法形函数的重要方法,为了研究相应的无网格方法的误差估计,需要先分析复变量移动最小二乘近似的逼近误差.首先介绍了复变量移动最小二乘近似,接着在权函数满足一定假设的条件下,详细讨论了复变量移... 复变量移动最小二乘近似是形成无网格法形函数的重要方法,为了研究相应的无网格方法的误差估计,需要先分析复变量移动最小二乘近似的逼近误差.首先介绍了复变量移动最小二乘近似,接着在权函数满足一定假设的条件下,详细讨论了复变量移动最小二乘近似逼近函数在Sobolev空间中的误差估计,给出了逼近函数在Hk范数下的误差界,分析结果表明逼近函数的误差随着节点间距的减小而降低.最后给出了一个数值算例来验证理论分析的正确性. 展开更多
关键词 复变量移动最小二乘近似 无网格法 SOBOLEV空间 误差分析
下载PDF
移动最小二乘法研究进展与述评 被引量:42
19
作者 程玉民 《计算机辅助工程》 2009年第2期5-11,20,共8页
为使移动最小二乘法能更好地应用到无网格方法中,详细阐述移动最小二乘逼近法、移动最小二乘插值法、MUKHERJEE改进的移动最小二乘法以及程玉民等提出的改进的移动最小二乘法和复变量移动最小二乘法等的研究进展,述评各种移动最小二乘... 为使移动最小二乘法能更好地应用到无网格方法中,详细阐述移动最小二乘逼近法、移动最小二乘插值法、MUKHERJEE改进的移动最小二乘法以及程玉民等提出的改进的移动最小二乘法和复变量移动最小二乘法等的研究进展,述评各种移动最小二乘法的优缺点,并概述各种移动最小二乘法形成的无网格方法的研究进展. 展开更多
关键词 移动最小二乘逼近法 移动最小二乘插值法 改进的移动最小二乘法 复变量移动最小 二乘法 无网格方法
下载PDF
一维六方准晶中星形静态裂纹和运动裂纹的解析解 被引量:6
20
作者 赵雪芬 李星 《力学季刊》 CSCD 北大核心 2015年第4期645-654,共10页
利用复变函数方法研究了一维六方准晶中星形静态裂纹和运动裂纹的反平面剪切问题,得到了星形裂纹尖端处应力强度因子和动应力强度因子的解析解.当裂纹条数给定时,由此可得到直线裂纹,Griffith裂纹,共点均匀分布三裂纹,对称十字形裂纹,... 利用复变函数方法研究了一维六方准晶中星形静态裂纹和运动裂纹的反平面剪切问题,得到了星形裂纹尖端处应力强度因子和动应力强度因子的解析解.当裂纹条数给定时,由此可得到直线裂纹,Griffith裂纹,共点均匀分布三裂纹,对称十字形裂纹,米字型裂纹(对称八裂纹)静力学和动力学问题的解析解.当k=4时,用数值算例讨论了声子场-相位子场耦合系数和裂纹运动速度对动应力强度因子的影响.当速度趋于0时,运动裂纹的解可以退化为静态裂纹的解. 展开更多
关键词 一维六方准晶 星形静态裂纹 星形运动裂纹 应力强度因子 动应力强度因子 复变函数方法
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部