Based on the idea of optimization design of pile type, the composite foundations, which include cememt-flyash-gaavel (for short CFG) long piles and cement-soil (for short CS) short piles, and CS piles with CFG core as...Based on the idea of optimization design of pile type, the composite foundations, which include cememt-flyash-gaavel (for short CFG) long piles and cement-soil (for short CS) short piles, and CS piles with CFG core as well, are formed. The method of the site dynamic characteristic tests of the composite foundations is discussed. The test results show that fireworks bomb may replace demolitions as the vibration resource. Vibration time is about 0.1 sec. Horizontal vibration major frequency is at 22.476 - 56.436 Hz, and vertical vibration major frequency is at 15.538 - 55.884 Hz. The pile arrangements of the composite foundation in the same site have more effect on the acceleration peak value. From the point of vibration, the anti-seismic effect of the CS piles with CFG core is better than others.展开更多
This paper deals with a new type of crushed stone grouting pile with a rigid bearing plate. The load transfer characteristics were analyzed, and a settlement model of the composite foundation reinforced with crushed s...This paper deals with a new type of crushed stone grouting pile with a rigid bearing plate. The load transfer characteristics were analyzed, and a settlement model of the composite foundation reinforced with crushed stone grouting pile and rigid bearing plate was built by FEM program. The effects of replacement ratio of capping plate, replacement ratio of pile, replacement ratio of grout diffusion zone, pile-soil modulus ratio, and serous-soil modulus ratio, on the composite foundation settlement were discussed. It is concluded that the proposed crushed stone grouting pile with a rigid bearing plate is effective in decreasing the settlement of composite foundation.展开更多
Based on the double-layered foundation theory, the composite ground with partially penetrated cement fly-ash gravel(CFG) piles was regarded as a double-layered foundation including the surface reinforced area and the ...Based on the double-layered foundation theory, the composite ground with partially penetrated cement fly-ash gravel(CFG) piles was regarded as a double-layered foundation including the surface reinforced area and the underlying untreated stratum. Due to the changing permeability property of CFG piles, the whole consolidation process of the composite ground with CFG piles was divided into two stages, i.e., the early stage(permeable CFG pile bodies) and the later stage(impermeable pile bodies). Then, the consolidation equation of the composite foundation with CFG piles was established by using the Terzaghi one-dimensional consolidation theory. Consequently, the unified formula to calculate the excess pore water pressure was derived with the specific solutions for the consolidation degree of composite ground, reinforced area and underlying stratum under instant load obtained respectively. Finally, combined with a numerical example, influencing rules by main factors(including the replacement rate m, the treatment depth h1, the permeability coefficient Ks1, Kv2 and compression modulus Es1, Es2 of reinforced area and underlying stratum) on the consolidation property of composite ground with CFG piles were discussed in detail. The result shows that the consolidation velocity of underlying stratum is slower than that of the reinforced area. However, the consolidation velocity of underlying stratum is slow at first then fast as a result of the transferring of effective stress to the underlying stratum during the dissipating process of excess pore water pressure.展开更多
With the development of high-speed railway in China, composite foundation with rigid piles has become a stamdard solution of meeting the high requirements of stability and post-construction settlement of embankment on...With the development of high-speed railway in China, composite foundation with rigid piles has become a stamdard solution of meeting the high requirements of stability and post-construction settlement of embankment on soft subgrade. Among several im- provement pattems, plain concrete piles have been extensively used to treat soft ground supported embankment. To investigate the deformation and failure modes of unimproved soft ground and soft ground reinforced by sub-embankment plain concrete piles, and to learn the influences of track and vehicle load, the effect of pile spacing, as well as the compression moduli of soil layers and upper load condition on the failure modes, a series of centrifuge model tests were performed. Test results indicate that the dis- placement of unimproved soft ground under the embankment increases continuously as embankment, track and train loading, and slip circle failure takes place. The deformation law of soft ground reinforced by sub-embankment plain concrete piles depends on pile spacing, compression modulus of the soft ground, and loading conditions. It was also found that plain concrete piles show displacement and failure patterns depending on its location, compression modulus of soft soil around the pile, and loading condi- tions. Furthermore, the evaluation of improved ground stability as well as the model test procedure is also presented.展开更多
Based on the idea of optimization design of pile type, the two kinds of the typical pile type are selected, which containing flexibility pile (e.g. rammed cement-soil pile is for short RCSP), and rigid pile (e.g. ceme...Based on the idea of optimization design of pile type, the two kinds of the typical pile type are selected, which containing flexibility pile (e.g. rammed cement-soil pile is for short RCSP), and rigid pile (e.g. cement-flyash-gravel pile is for short CFGP). The three kinds of the composite foundation are designed, which are CFGP, CFG long pile and CFG short pile (for short CFGLP-CFGSP), CFG long-short pile and rammed cement-soil short pile (for short CFGLP-RCSSP). Natural earthquake is simulated by using the engineering blasting;the dynamic characteristics and dynamic response of the composite foundation are studied through field test. CFGLP-RCSSP is closed to linear relation. The bearing capacity of the four composite foundation of the CFGP, CFGLP-CFGSP, and CFGLP-RCSSP in the site are 225 kPa, 179 kPa, and 197 kPa, separately increases 150%, 98.8% and 119% compared to the natural foundation. The vibration main frequency is mainly depended on properties of foundation soil and piles between vibration source and measuring point, pilling load value. Horizontal vibration main frequency greater than the vertical vibration main frequency and the vertical vibration main frequency close to the first-order natural frequency of composite foundation. With the pilling load increasing, the CFGLP-RCSSP pile composite foundation combined frequency decreased. Under the same blast energy, the acceleration peak on the CFG pile composite foundation is less than CFGLP-CFGSP the corresponding values, as the load increases, the peak acceleration gently. CFG pile composite foundation is favorable on seismic. The distribution of peak acceleration is consistent within 4 m from pile top in the CFGLP_RCSSP composite foundation. The maximum of the horizontal acceleration peak along the pile body occurs at a distance of pile top 4 m or the pile top, and that of vertical acceleration peak occurred at a pile top.展开更多
Grouting pile is a new soft soil foundation treatment method with characteristics such as no vibration, no noise, no soil compaction, light construction machines and quick construction velocity and so on. At present, ...Grouting pile is a new soft soil foundation treatment method with characteristics such as no vibration, no noise, no soil compaction, light construction machines and quick construction velocity and so on. At present, study on reinforcement mechanism and design calculation method of composite foundation of grouting pile is initially started without design specifications, so it is usually required to draw on design specifications of stump pile when designing composite foundation of grouting pile while grouting pile has its characteristics and difference although reinforcement mechanisms and construction processes of two types of piles are similar. Sedimentation formula of composite foundation of grouting pile with cover plate is educed and a suitable deformation mode is proposed by aiming to deformation characteristics of composite foundation of grouting pile with cover plate under embankment load on basis of relevant sedimentation theories of composite foundation by combination of characteristics of composite foundation of grouting pile. The sedimentation calculation formula of grouting pile with cover plate under embankment load is educed according to balance relation of force and displacement coordination conditions by elastic theory and sedimentation calculation model established is validated by sedimentation monitoring documents of one expressway in China.展开更多
Based on deeply discussing the deformation mechanism of composite foundation with discrete material pile, firstly, the settlement of composite foundation in rigid foundation conditions was assumed to consist of two pa...Based on deeply discussing the deformation mechanism of composite foundation with discrete material pile, firstly, the settlement of composite foundation in rigid foundation conditions was assumed to consist of two parts, an expanding part and an un-expanding part. Then, in view of the differences of deformation properties between the expanding part and the un-expanding part, the relationships between the pile modulus and the applied load in these two parts were respectively developed. Thirdly, by introducing the above relationships into settlement analysis, a new method to calculate displacement of composite foundation with discrete material pile was proposed by using the multi-stage loading theory and the layer-wise summation approach. This method is effective not only for accounting for the effect of variations of pores on deformation modulus of the pile body in different depths, but also for describing the characteristics of different deformation mechanisms of the pile body with varying depth. Finally, the proposed method was used to a practical composite foundation problem, whose theoretical results were presented and compared to those of other methods. The rationality and feasibility of this method are identified through comparative analysis.展开更多
A set of serf-developed apparatus for foundation physical model were utilized to conduct model tests of the multi-element composite foundation with a steel pipe pile and several gravel piles. Some load-bearing charact...A set of serf-developed apparatus for foundation physical model were utilized to conduct model tests of the multi-element composite foundation with a steel pipe pile and several gravel piles. Some load-bearing characteristics of the multi-element Composite foundation, including the curves of foundation settlement, stresses of piles, pile-soil stress ratio, and load-sharing ratio of piles and soil, were obtained to study its working performances in silty sand soil. The experimental results revealed that the multi-element composite foundation with steel pipe pile and gravel pile contributed more than the gravel pile composite foundation in improving the bearing capacity of the silty fine sand.展开更多
Reducing the cost of offshore platform construction is an urgent issue for marginal oilfield development.The offshore oil well structure includes a riser and a surface casing.The riser,surface casing and oil well ceme...Reducing the cost of offshore platform construction is an urgent issue for marginal oilfield development.The offshore oil well structure includes a riser and a surface casing.The riser,surface casing and oil well cement can be considered special variable cross-section piles.Replacing or partially replacing the steel pipe pile foundation with a variable cross-section pile to provide the required bearing capacity for an offshore oil platform can reduce the cost of foundation construction and improve the economic efficiency of production.In this paper,the finite element analysis method is used to investigate the variable cross-section bearing mode of composite piles composed of a riser and a surface casing in saturated clay under a vertical load.The calculation formula of the bearing capacity at the variable section is derived based on the theory of spherical cavity expansion,the influencing factors of the bearing capacity coefficient N_(c) are revealed,and the calculation method of N_(c) is proposed.By comparing the calculation results with the results of the centrifuge test,the accuracy and applicability of the calculation method are verified.The results show that the riser composite pile has a rigid core in the soil under the variable cross-section,which increases the bearing capacity at the variable cross-section.展开更多
CFG pile (i.e., pile constructed by granular materials of cement, fly-ash and gravel) composite foundation is applied in subsoil treatment widely and successfully. In order to have a further study of this kind of subs...CFG pile (i.e., pile constructed by granular materials of cement, fly-ash and gravel) composite foundation is applied in subsoil treatment widely and successfully. In order to have a further study of this kind of subsoil treatment technology, the influencing factors and calculation methods of the vertical bearing capacity of single CFG pile and the CFG pile composite foundation were discussed respectively. And based on the obtained solutions, effects by the cushion and measurements to reduce negative friction area were analyzed. Moreover, the developing law of settlement and bearing capacity eigenvalue controlled by the material strength with the increase of load were given for the CFG composite foundation. The in-situ static load test was tested for CFG pile. The results of test show that the maximum test load or half of the ultimate load is used from all the points of test, the average bearing capacity eigenvalue of single pile is 390 kN, and slightly greater than the design value of bearing capacity. The bearing capacity eigenvalues of composite foundation for 3 piles are greater than 300 kPa, and the mechanical properties of CFG pile composite foundation are almost identical in the case of the same load and cushion thickness. The pile-soil stress ratio and the load-sharing ratio can be adjusted through setting up cushion thickness.展开更多
A new construction method of pile foundation in composite ground, in which, prior to installing piles, the ground is improved around the heads of the piles in soft ground or ground subject to liquefaction, which is in...A new construction method of pile foundation in composite ground, in which, prior to installing piles, the ground is improved around the heads of the piles in soft ground or ground subject to liquefaction, which is introduced in this paper. This construction method uses a combination of pile foundation construction together with common ground improvement methods, including deep mixing, preloading and sand compaction piling, and it is referred to as the composite ground pile method. Since an artificial ground with relatively high rigidity comparing with that of the original ground was formed around the pile in this method, and the seismic performance has not been made clear, thus the seismic performance of piles in composite ground was systematically analyzed through a series of centrifuge model tests and numerical analyses by using dynamic nonlinear finite element method, and a verification method for the seismic performance of piles in composite ground was proposed on the basis of the experimental and numerical results.展开更多
In the current theory of bridge foundation design,all of the loads above the cap are loaded by the pile,and the bearing capacity of the soil among piles is not taken into account.In order to analyze the bearing capaci...In the current theory of bridge foundation design,all of the loads above the cap are loaded by the pile,and the bearing capacity of the soil among piles is not taken into account.In order to analyze the bearing capacity of the soil among piles in bridge pile foundation,a model of pile foundation is established based on a bridge foundation which is under construction,and by the finite element analysis software ANSYS.According to the results of finite element analysis(FEA)and current bridge foundation design theory,a feasible composite pile foundation which can be applied in the design of bridge foundation,is recommended.Additionally,a number of modifications are made to the original design.It was confirmed that these modifications derived from numerical simulations can improve the performance of the foundation.展开更多
Field tests on settlement characteristics were carried out on the cement fly-ash gravel (CFG) pile-plate composite foundation on Beijing-Xuzhou section of Beijing-Shanghai high-speed railway. The settlements of the ...Field tests on settlement characteristics were carried out on the cement fly-ash gravel (CFG) pile-plate composite foundation on Beijing-Xuzhou section of Beijing-Shanghai high-speed railway. The settlements of the piles and the soil between pries were measured and analyzed. The results show that the settlement-time dependency experienced three phases: rapid development phase, stable development phase and stable phase. Therefore, surcharge preloading was necessary to reduce the settlement after construction. The finite element software Plaxis was used to calculate the deformations of the pile top and the soil between piles at the embankment center, as well as the settlements of CFG pile reinforcement area and the underlying stratum under surcharge preloading. The calculation results and the field test results were compared and analyzed. Both the results show that the settlement of the composite foundation mainly occured in underlying stratum. The settlement characteristics of pile-plate composite foundation under high embankment are also concluded.展开更多
文摘Based on the idea of optimization design of pile type, the composite foundations, which include cememt-flyash-gaavel (for short CFG) long piles and cement-soil (for short CS) short piles, and CS piles with CFG core as well, are formed. The method of the site dynamic characteristic tests of the composite foundations is discussed. The test results show that fireworks bomb may replace demolitions as the vibration resource. Vibration time is about 0.1 sec. Horizontal vibration major frequency is at 22.476 - 56.436 Hz, and vertical vibration major frequency is at 15.538 - 55.884 Hz. The pile arrangements of the composite foundation in the same site have more effect on the acceleration peak value. From the point of vibration, the anti-seismic effect of the CS piles with CFG core is better than others.
文摘This paper deals with a new type of crushed stone grouting pile with a rigid bearing plate. The load transfer characteristics were analyzed, and a settlement model of the composite foundation reinforced with crushed stone grouting pile and rigid bearing plate was built by FEM program. The effects of replacement ratio of capping plate, replacement ratio of pile, replacement ratio of grout diffusion zone, pile-soil modulus ratio, and serous-soil modulus ratio, on the composite foundation settlement were discussed. It is concluded that the proposed crushed stone grouting pile with a rigid bearing plate is effective in decreasing the settlement of composite foundation.
基金Project(51378197)supported by the National Natural Science Foundation of China
文摘Based on the double-layered foundation theory, the composite ground with partially penetrated cement fly-ash gravel(CFG) piles was regarded as a double-layered foundation including the surface reinforced area and the underlying untreated stratum. Due to the changing permeability property of CFG piles, the whole consolidation process of the composite ground with CFG piles was divided into two stages, i.e., the early stage(permeable CFG pile bodies) and the later stage(impermeable pile bodies). Then, the consolidation equation of the composite foundation with CFG piles was established by using the Terzaghi one-dimensional consolidation theory. Consequently, the unified formula to calculate the excess pore water pressure was derived with the specific solutions for the consolidation degree of composite ground, reinforced area and underlying stratum under instant load obtained respectively. Finally, combined with a numerical example, influencing rules by main factors(including the replacement rate m, the treatment depth h1, the permeability coefficient Ks1, Kv2 and compression modulus Es1, Es2 of reinforced area and underlying stratum) on the consolidation property of composite ground with CFG piles were discussed in detail. The result shows that the consolidation velocity of underlying stratum is slower than that of the reinforced area. However, the consolidation velocity of underlying stratum is slow at first then fast as a result of the transferring of effective stress to the underlying stratum during the dissipating process of excess pore water pressure.
基金supported by Program for New Century Excellent Talents in University of China (Grant No.NCET-12-0941)the Fundamental Research Funds for the Central Universities of China (Grant No.A0920502051206-3)
文摘With the development of high-speed railway in China, composite foundation with rigid piles has become a stamdard solution of meeting the high requirements of stability and post-construction settlement of embankment on soft subgrade. Among several im- provement pattems, plain concrete piles have been extensively used to treat soft ground supported embankment. To investigate the deformation and failure modes of unimproved soft ground and soft ground reinforced by sub-embankment plain concrete piles, and to learn the influences of track and vehicle load, the effect of pile spacing, as well as the compression moduli of soil layers and upper load condition on the failure modes, a series of centrifuge model tests were performed. Test results indicate that the dis- placement of unimproved soft ground under the embankment increases continuously as embankment, track and train loading, and slip circle failure takes place. The deformation law of soft ground reinforced by sub-embankment plain concrete piles depends on pile spacing, compression modulus of the soft ground, and loading conditions. It was also found that plain concrete piles show displacement and failure patterns depending on its location, compression modulus of soft soil around the pile, and loading condi- tions. Furthermore, the evaluation of improved ground stability as well as the model test procedure is also presented.
文摘Based on the idea of optimization design of pile type, the two kinds of the typical pile type are selected, which containing flexibility pile (e.g. rammed cement-soil pile is for short RCSP), and rigid pile (e.g. cement-flyash-gravel pile is for short CFGP). The three kinds of the composite foundation are designed, which are CFGP, CFG long pile and CFG short pile (for short CFGLP-CFGSP), CFG long-short pile and rammed cement-soil short pile (for short CFGLP-RCSSP). Natural earthquake is simulated by using the engineering blasting;the dynamic characteristics and dynamic response of the composite foundation are studied through field test. CFGLP-RCSSP is closed to linear relation. The bearing capacity of the four composite foundation of the CFGP, CFGLP-CFGSP, and CFGLP-RCSSP in the site are 225 kPa, 179 kPa, and 197 kPa, separately increases 150%, 98.8% and 119% compared to the natural foundation. The vibration main frequency is mainly depended on properties of foundation soil and piles between vibration source and measuring point, pilling load value. Horizontal vibration main frequency greater than the vertical vibration main frequency and the vertical vibration main frequency close to the first-order natural frequency of composite foundation. With the pilling load increasing, the CFGLP-RCSSP pile composite foundation combined frequency decreased. Under the same blast energy, the acceleration peak on the CFG pile composite foundation is less than CFGLP-CFGSP the corresponding values, as the load increases, the peak acceleration gently. CFG pile composite foundation is favorable on seismic. The distribution of peak acceleration is consistent within 4 m from pile top in the CFGLP_RCSSP composite foundation. The maximum of the horizontal acceleration peak along the pile body occurs at a distance of pile top 4 m or the pile top, and that of vertical acceleration peak occurred at a pile top.
文摘Grouting pile is a new soft soil foundation treatment method with characteristics such as no vibration, no noise, no soil compaction, light construction machines and quick construction velocity and so on. At present, study on reinforcement mechanism and design calculation method of composite foundation of grouting pile is initially started without design specifications, so it is usually required to draw on design specifications of stump pile when designing composite foundation of grouting pile while grouting pile has its characteristics and difference although reinforcement mechanisms and construction processes of two types of piles are similar. Sedimentation formula of composite foundation of grouting pile with cover plate is educed and a suitable deformation mode is proposed by aiming to deformation characteristics of composite foundation of grouting pile with cover plate under embankment load on basis of relevant sedimentation theories of composite foundation by combination of characteristics of composite foundation of grouting pile. The sedimentation calculation formula of grouting pile with cover plate under embankment load is educed according to balance relation of force and displacement coordination conditions by elastic theory and sedimentation calculation model established is validated by sedimentation monitoring documents of one expressway in China.
基金Project (2006AA11Z104) supported by the Hi-tech Reasearch and Development Program of ChinaProject (08JJ3115) supported by the Natural Science Foundation of Hunan Province, China
文摘Based on deeply discussing the deformation mechanism of composite foundation with discrete material pile, firstly, the settlement of composite foundation in rigid foundation conditions was assumed to consist of two parts, an expanding part and an un-expanding part. Then, in view of the differences of deformation properties between the expanding part and the un-expanding part, the relationships between the pile modulus and the applied load in these two parts were respectively developed. Thirdly, by introducing the above relationships into settlement analysis, a new method to calculate displacement of composite foundation with discrete material pile was proposed by using the multi-stage loading theory and the layer-wise summation approach. This method is effective not only for accounting for the effect of variations of pores on deformation modulus of the pile body in different depths, but also for describing the characteristics of different deformation mechanisms of the pile body with varying depth. Finally, the proposed method was used to a practical composite foundation problem, whose theoretical results were presented and compared to those of other methods. The rationality and feasibility of this method are identified through comparative analysis.
基金The National Natural Science Foundation of China (No.50478090)
文摘A set of serf-developed apparatus for foundation physical model were utilized to conduct model tests of the multi-element composite foundation with a steel pipe pile and several gravel piles. Some load-bearing characteristics of the multi-element Composite foundation, including the curves of foundation settlement, stresses of piles, pile-soil stress ratio, and load-sharing ratio of piles and soil, were obtained to study its working performances in silty sand soil. The experimental results revealed that the multi-element composite foundation with steel pipe pile and gravel pile contributed more than the gravel pile composite foundation in improving the bearing capacity of the silty fine sand.
基金This research was financially supported by the National Science Fund for Distinguished Young Scholars(Grant No.51825904)the National Science and Technology Major Project from the Ministry of Science and Technology(MOST)of China(Grant No.2016ZX05058004-005).
文摘Reducing the cost of offshore platform construction is an urgent issue for marginal oilfield development.The offshore oil well structure includes a riser and a surface casing.The riser,surface casing and oil well cement can be considered special variable cross-section piles.Replacing or partially replacing the steel pipe pile foundation with a variable cross-section pile to provide the required bearing capacity for an offshore oil platform can reduce the cost of foundation construction and improve the economic efficiency of production.In this paper,the finite element analysis method is used to investigate the variable cross-section bearing mode of composite piles composed of a riser and a surface casing in saturated clay under a vertical load.The calculation formula of the bearing capacity at the variable section is derived based on the theory of spherical cavity expansion,the influencing factors of the bearing capacity coefficient N_(c) are revealed,and the calculation method of N_(c) is proposed.By comparing the calculation results with the results of the centrifuge test,the accuracy and applicability of the calculation method are verified.The results show that the riser composite pile has a rigid core in the soil under the variable cross-section,which increases the bearing capacity at the variable cross-section.
基金Project(08JJ3111) supported by the Natural Science Foundation of Hunan ProvinceProject(08B025) supported by Scientific Research Fund of Hunan Provincial Education DepartmentProject(2006AA11Z104) supported by the National High-Tech Research and Development Program of China
文摘CFG pile (i.e., pile constructed by granular materials of cement, fly-ash and gravel) composite foundation is applied in subsoil treatment widely and successfully. In order to have a further study of this kind of subsoil treatment technology, the influencing factors and calculation methods of the vertical bearing capacity of single CFG pile and the CFG pile composite foundation were discussed respectively. And based on the obtained solutions, effects by the cushion and measurements to reduce negative friction area were analyzed. Moreover, the developing law of settlement and bearing capacity eigenvalue controlled by the material strength with the increase of load were given for the CFG composite foundation. The in-situ static load test was tested for CFG pile. The results of test show that the maximum test load or half of the ultimate load is used from all the points of test, the average bearing capacity eigenvalue of single pile is 390 kN, and slightly greater than the design value of bearing capacity. The bearing capacity eigenvalues of composite foundation for 3 piles are greater than 300 kPa, and the mechanical properties of CFG pile composite foundation are almost identical in the case of the same load and cushion thickness. The pile-soil stress ratio and the load-sharing ratio can be adjusted through setting up cushion thickness.
文摘A new construction method of pile foundation in composite ground, in which, prior to installing piles, the ground is improved around the heads of the piles in soft ground or ground subject to liquefaction, which is introduced in this paper. This construction method uses a combination of pile foundation construction together with common ground improvement methods, including deep mixing, preloading and sand compaction piling, and it is referred to as the composite ground pile method. Since an artificial ground with relatively high rigidity comparing with that of the original ground was formed around the pile in this method, and the seismic performance has not been made clear, thus the seismic performance of piles in composite ground was systematically analyzed through a series of centrifuge model tests and numerical analyses by using dynamic nonlinear finite element method, and a verification method for the seismic performance of piles in composite ground was proposed on the basis of the experimental and numerical results.
文摘In the current theory of bridge foundation design,all of the loads above the cap are loaded by the pile,and the bearing capacity of the soil among piles is not taken into account.In order to analyze the bearing capacity of the soil among piles in bridge pile foundation,a model of pile foundation is established based on a bridge foundation which is under construction,and by the finite element analysis software ANSYS.According to the results of finite element analysis(FEA)and current bridge foundation design theory,a feasible composite pile foundation which can be applied in the design of bridge foundation,is recommended.Additionally,a number of modifications are made to the original design.It was confirmed that these modifications derived from numerical simulations can improve the performance of the foundation.
文摘Field tests on settlement characteristics were carried out on the cement fly-ash gravel (CFG) pile-plate composite foundation on Beijing-Xuzhou section of Beijing-Shanghai high-speed railway. The settlements of the piles and the soil between pries were measured and analyzed. The results show that the settlement-time dependency experienced three phases: rapid development phase, stable development phase and stable phase. Therefore, surcharge preloading was necessary to reduce the settlement after construction. The finite element software Plaxis was used to calculate the deformations of the pile top and the soil between piles at the embankment center, as well as the settlements of CFG pile reinforcement area and the underlying stratum under surcharge preloading. The calculation results and the field test results were compared and analyzed. Both the results show that the settlement of the composite foundation mainly occured in underlying stratum. The settlement characteristics of pile-plate composite foundation under high embankment are also concluded.