The south to the north project (WDP) on the saltwater intrusion in the Changjiang Estuary is studied by the improved three-dimensionai (3D) numerical model.The net unit width flux in the Changjiang Estuary as well as ...The south to the north project (WDP) on the saltwater intrusion in the Changjiang Estuary is studied by the improved three-dimensionai (3D) numerical model.The net unit width flux in the Changjiang Estuary as well as the sectional salt flux is calculated in the North Branch (NB),the South Branch (SB),the North Channel (NC),the South Channel (SC),the North Passage (NP) and the South Passage (SP),respectively.The net seaward water flux in the SB is reduced,and the net water flux spilling over from the NB to the SB is enhanced after the eastern WDP.Under the mean river discharge condition in the dry season,the net salt flux spilling over from the NB to the SB is increased by 2.09 t/s and 0.52 t/s during the spring and neap tides,respectively,due to the eastern WDP.The saltwater intrusion in the Changjiang Estuary is enhanced by the eastern WDP.Compared with that during the spring tide,the net water diversion ratio during the neap tide in the NC is smaller,and thus the enhancement of the saltwater intrusion by the eastern WDP is smaller in the NC,and larger in the NP and the SP.The tidally averaged surface salinity at the water intakes of the Dongfengxisha Reservoir,the Chenhang Reservoir and the Qingcaosha Reservoir rises both during the spring and neap tides.展开更多
Dissolved inorganic nutrient elements were analyzed from the samples collected in the South Passage of the Changjiang (Yangtze River) Estuary in March 2003, including NH4+, NO3-, NO2- and PO43-. The water samples were...Dissolved inorganic nutrient elements were analyzed from the samples collected in the South Passage of the Changjiang (Yangtze River) Estuary in March 2003, including NH4+, NO3-, NO2- and PO43-. The water samples were collected with a Niskin sampler hourly at the near-surface, middle and near-bottom depths at the three stations -A1, A2 and A3-during two complete tidal cycles of neap tide and spring tide. Results showed that 1) the concentrations of NH4+, NO3- and NO2- were a little higher respectively during the neap tide than those during the spring tide, while PO43- showed an opposite trend, and each was higher in the ebb tide than in the flood tide, either for the neap tidal cycle or the spring tidal cycle; 2) higher stratification of the nutrients existed obviously in this area, with the concentrations of which increased from the bottom to the surface, especially for NH4+ and NO3-; 3) the coefficient of variation (C.V.) values of all dissolved inorganic nutrients varied from 4.06% to 36.8% beyond different influences of the tidal current and Changjiang runoff; 4) with increasing suspended matter in the water column, the concentrations of PO43- became lower in the filtered water; and 5) the total transport of each tidal cycle was much more in the spring tide than in the neap tide, and the positive values indicated that the nutrients had been exported to the East China Sea. Studies on the variations and net transport of dissolved inorganic nutrients in the South Passage of the Changjiang Estuary will provide the scientific basis for the study of the mechanism of red tide in the East China Sea.展开更多
The stability of estuarine channel-shoal systems is important for port utilization,navigation maintenance,habitat protection and ecosystem service functions.This paper uses the South Channel of the Changjiang(Yangtze ...The stability of estuarine channel-shoal systems is important for port utilization,navigation maintenance,habitat protection and ecosystem service functions.This paper uses the South Channel of the Changjiang(Yangtze River)Estuary as a typical example to investigate the channel-shoal adjustment mechanism and its future trend.The combined approaches of bathymetric data analysis and process-based modeling(Delft3D)are applied.Quantitative analysis of morphological changes indicates that the South Channel experienced remarkable channel-shoal adjustment during 1958–2018.Periodic evolution was identified,including shoal migration,incision and emergence under natural conditions before the mid-1980s.Since then,fluvial sediment decline and local human intervention have interrupted the periodic processes.After 1986,as river sediment discharge started to decline,the South Channel converted to net erosion,and both the mid-channel shoal at the bifurcation node and the tail of the Ruifeng Shoal showed significant scour.Process-based hydrodynamic simulations revealed that the northern rotation of the mainstream downstream of Wusong triggered the erosion of the Ruifeng Shoal,while unordered sand mining at the shoal tail in approximately 2002 enhanced shoal shrinkage.In addition,the self-adjustment of the transverse section shape resulted in abnormal accretion in 2002–2007.Afterward,the South Channel underwent overall erosion as sediment discharge decreased to a low level(<150 Mt/a).Five stages of channel-shoal pattern adjustment and accretion/erosion status during the past 60years were defined,i.e.,the accretion stage(1958–1965),remarkable channel-shoal adjustment stage(1978–1986),slow erosion stage(1986–1997),shoal scour and shrinkage stage(1997–2007)and overall channel-shoal erosion stage(2007–2018).Model prediction of the evolutionary trend indicates that overall erosion within the South Channel is most likely to continue in 2015–2050.Further adjustment of the South Channel under extremely low sediment discharge may threaten the riverbed stability and the sustainable development of this large-scale estuary.Future work on adaptive strategies for varying conditions is recommended.展开更多
基金The National Basic Science Research Program of Global Change Research of China under contract No.2010CB951201the Funds for Creative Research Groups of China under contract No. 41021064the National Natural Science Foundation of China under contract No. 40976056
文摘The south to the north project (WDP) on the saltwater intrusion in the Changjiang Estuary is studied by the improved three-dimensionai (3D) numerical model.The net unit width flux in the Changjiang Estuary as well as the sectional salt flux is calculated in the North Branch (NB),the South Branch (SB),the North Channel (NC),the South Channel (SC),the North Passage (NP) and the South Passage (SP),respectively.The net seaward water flux in the SB is reduced,and the net water flux spilling over from the NB to the SB is enhanced after the eastern WDP.Under the mean river discharge condition in the dry season,the net salt flux spilling over from the NB to the SB is increased by 2.09 t/s and 0.52 t/s during the spring and neap tides,respectively,due to the eastern WDP.The saltwater intrusion in the Changjiang Estuary is enhanced by the eastern WDP.Compared with that during the spring tide,the net water diversion ratio during the neap tide in the NC is smaller,and thus the enhancement of the saltwater intrusion by the eastern WDP is smaller in the NC,and larger in the NP and the SP.The tidally averaged surface salinity at the water intakes of the Dongfengxisha Reservoir,the Chenhang Reservoir and the Qingcaosha Reservoir rises both during the spring and neap tides.
基金This research was granted by the National Natural Science Foundation of China (50579021);the National Key Basic Research Program of China (No. 2002CB412405).
文摘Dissolved inorganic nutrient elements were analyzed from the samples collected in the South Passage of the Changjiang (Yangtze River) Estuary in March 2003, including NH4+, NO3-, NO2- and PO43-. The water samples were collected with a Niskin sampler hourly at the near-surface, middle and near-bottom depths at the three stations -A1, A2 and A3-during two complete tidal cycles of neap tide and spring tide. Results showed that 1) the concentrations of NH4+, NO3- and NO2- were a little higher respectively during the neap tide than those during the spring tide, while PO43- showed an opposite trend, and each was higher in the ebb tide than in the flood tide, either for the neap tidal cycle or the spring tidal cycle; 2) higher stratification of the nutrients existed obviously in this area, with the concentrations of which increased from the bottom to the surface, especially for NH4+ and NO3-; 3) the coefficient of variation (C.V.) values of all dissolved inorganic nutrients varied from 4.06% to 36.8% beyond different influences of the tidal current and Changjiang runoff; 4) with increasing suspended matter in the water column, the concentrations of PO43- became lower in the filtered water; and 5) the total transport of each tidal cycle was much more in the spring tide than in the neap tide, and the positive values indicated that the nutrients had been exported to the East China Sea. Studies on the variations and net transport of dissolved inorganic nutrients in the South Passage of the Changjiang Estuary will provide the scientific basis for the study of the mechanism of red tide in the East China Sea.
基金Natural Science Foundation of China-Ministry of Water Resources-China Three Gorges Corporation Joint Fund for Changjiang Water Science Research,No.U2040202National Natural Science Foundation of China,No.42006156,No.52009008+1 种基金Fundamental Research Funds for Central Public Welfare Research Institutes,No.CKSF2021530/HLResearch Project on Major Scientific and Technological Issues in Watershed Water Management,No.CKSC2020791/HL。
文摘The stability of estuarine channel-shoal systems is important for port utilization,navigation maintenance,habitat protection and ecosystem service functions.This paper uses the South Channel of the Changjiang(Yangtze River)Estuary as a typical example to investigate the channel-shoal adjustment mechanism and its future trend.The combined approaches of bathymetric data analysis and process-based modeling(Delft3D)are applied.Quantitative analysis of morphological changes indicates that the South Channel experienced remarkable channel-shoal adjustment during 1958–2018.Periodic evolution was identified,including shoal migration,incision and emergence under natural conditions before the mid-1980s.Since then,fluvial sediment decline and local human intervention have interrupted the periodic processes.After 1986,as river sediment discharge started to decline,the South Channel converted to net erosion,and both the mid-channel shoal at the bifurcation node and the tail of the Ruifeng Shoal showed significant scour.Process-based hydrodynamic simulations revealed that the northern rotation of the mainstream downstream of Wusong triggered the erosion of the Ruifeng Shoal,while unordered sand mining at the shoal tail in approximately 2002 enhanced shoal shrinkage.In addition,the self-adjustment of the transverse section shape resulted in abnormal accretion in 2002–2007.Afterward,the South Channel underwent overall erosion as sediment discharge decreased to a low level(<150 Mt/a).Five stages of channel-shoal pattern adjustment and accretion/erosion status during the past 60years were defined,i.e.,the accretion stage(1958–1965),remarkable channel-shoal adjustment stage(1978–1986),slow erosion stage(1986–1997),shoal scour and shrinkage stage(1997–2007)and overall channel-shoal erosion stage(2007–2018).Model prediction of the evolutionary trend indicates that overall erosion within the South Channel is most likely to continue in 2015–2050.Further adjustment of the South Channel under extremely low sediment discharge may threaten the riverbed stability and the sustainable development of this large-scale estuary.Future work on adaptive strategies for varying conditions is recommended.