期刊文献+
共找到282篇文章
< 1 2 15 >
每页显示 20 50 100
Transmutation of 129I in a single-fluid double-zone thorium molten salt reactor 被引量:1
1
作者 Kun-Feng Ma Cheng-Gang Yu +2 位作者 Xiang-Zhou Cai Chun-Yan Zou Jin-Gen Chen 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第1期94-101,共8页
Herein, we assess the129I transmutation capability of a 2250-MWt single-fluid double-zone thorium molten salt reactor(SD-TMSR) by considering two methods. One is realized by loading an appropriate amount of129I before... Herein, we assess the129I transmutation capability of a 2250-MWt single-fluid double-zone thorium molten salt reactor(SD-TMSR) by considering two methods. One is realized by loading an appropriate amount of129I before the startup of the reactor, and the amount of129I during operation is kept constant by online feeding129I.The other adopts only an initial loading of129I before startup, and no other129I is fed online during operation.The investigation first focuses on the effect of the loading of I on the Th-233U isobreeding performance. The results indicate that a233U isobreeding mode can be achieved for both scenarios for a 60-year operation when the initial molar proportion of LiI is maintained within 0.40% and 0.87%, respectively. Then, the transmutation performances for the two scenarios are compared by changing the amount of injected iodine into the core. It is found that the scenario that adopts an initial loading of129I shows a slightly better transmutation performance in comparison with the scenario that adopts online feeding of129I when the net233U productions for the two scenarios are kept equal. The initial loading of129I scenario with LiI = 0.87% molar proportion is recommended for129I transmutation in the SD-TMSR,and can transmute 1.88 t of129I in the233U isobreeding mode over 60 years. 展开更多
关键词 129I transmutation thorium molten salt reactor Th-U isobreeding
下载PDF
Characterization of molten 2LiF–BeF_2 salt impregnated into graphite matrix of fuel elements for thorium molten salt reactor 被引量:4
2
作者 Hong-Xia Xu Jun Lin +4 位作者 Ya-Juan Zhong Zhi-Yong Zhu Yu Chen Jian-Dang Liu Bang-Jiao Ye 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第5期32-39,共8页
The impregnation behavior of molten 2LiF–BeF_2(FLiBe) salt into a graphite matrix of fuel elements for a solid fuel thorium molten salt reactor(TMSR-SF) at pressures varying from 0.4 to 1.0 MPa was studied by mercury... The impregnation behavior of molten 2LiF–BeF_2(FLiBe) salt into a graphite matrix of fuel elements for a solid fuel thorium molten salt reactor(TMSR-SF) at pressures varying from 0.4 to 1.0 MPa was studied by mercury intrusion, molten salt impregnation, X-ray diffraction, and scanning electron microscopy techniques.It was found that the entrance pore diameter of the graphite matrix is less than 1.0 μm and the contact angle is about 135°. The threshold impregnation pressure was found to be around 0.6 MPa experimentally, consistent with the predicted value of 0.57 MPa by the Washburn equation. With the increase of pressure from 0.6 to 1.0 MPa, the average weight gain of the matrix increased from 3.05 to 10.48%,corresponding to an impregnation volume increase from 2.74 to 9.40%. The diffraction patterns of FLiBe are found in matrices with high impregnation pressures(0.8 MPa and1.0 MPa). The FLiBe with sizes varying from tens of nanometers to a micrometer mainly occupies the open pores in the graphite matrix. The graphite matrix could inhibit the impregnation of the molten salt in the TMSR-SF with a maximum operation pressure of less than 0.5 MPa. 展开更多
关键词 Keywords molten salt reactor FLIBE Impregnation GRAPHITE MATRIX
下载PDF
Radiation dose distribution of liquid fueled thorium molten salt reactor 被引量:4
3
作者 Chang-Yuan Li Xiao-Bin Xia +4 位作者 Jun Cai Zhi-Hong Zhang Guo-Qing Zhang Jian-Hua Wang Zhi-Cheng Qian 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第2期112-122,共11页
A liquid fueled thorium molten salt reactor(TMSR-LF),one of the Generation IV reactors,was designed by the Shanghai Institute of Applied Physics,Chinese Academy of Sciences.This study uses the‘rt code to calculate th... A liquid fueled thorium molten salt reactor(TMSR-LF),one of the Generation IV reactors,was designed by the Shanghai Institute of Applied Physics,Chinese Academy of Sciences.This study uses the‘rt code to calculate the neutron and gamma dose rate distributions around the reactor.Multiple types of tallies and variance reduction techniques were employed to reduce calculation time and obtain convergent calculation results.Based on the calculation and analysis results,the TMSR-LF1 radiation shield with a 60-cm serpentine concrete layer and a 120-cm ordinary concrete layer is able to meet radiation requirements.The gamma dose rate outside the reactor biological shield was 16.1 mSv h-1;this is higher than the neutron dose rate of 3.71×10^(–2)mSv h^(-1).The maximum thermal neutron flux density outside the reactor biological shield was 1.899103 cm^(-2)s^(-1),which was below the 19105 cm^(-2)s^(-1)limit. 展开更多
关键词 Liquid fueled molten salt reactor Neutron and gamma Dose rate
下载PDF
Preliminary analysis of fuel cycle performance for a small modular heavy water-moderated thorium molten salt reactor 被引量:3
4
作者 Ya-Peng Zhang Yu-Wen Ma +2 位作者 Jian-Hui Wu Jin-Gen Chen Xiang-Zhou Cai 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第11期23-35,共13页
Heavy water-moderated molten salt reactors(HWMSRs)are novel molten salt reactors that adopt heavy water rather than graphite as the moderator while employing liquid fuel.Owing to the high moderating ratio of the heavy... Heavy water-moderated molten salt reactors(HWMSRs)are novel molten salt reactors that adopt heavy water rather than graphite as the moderator while employing liquid fuel.Owing to the high moderating ratio of the heavy water moderator and the utilization of liquid fuel,HWMSRs can achieve a high neutron economy.In this study,a large-scale small modular HWMSR with a thermal power of 500 MWth was proposed and studied.The criticality of the core was evaluated using an in-house critical search calculation code(CSCC),which was developed based on Standardized Computer Analyses for Licensing Evaluation,version 6.1.The preliminary fuel cycle performances(initial conversion ratio(CR),initialfissile fuel loading mass,and temperature coefficient)were investigated by varying the lattice pitch(P)and the molten salt volume fraction(VF).The results demonstrate that the temperature coefficient can be negative over the range of investigated Ps and VFs for both 233U-Th and LEU-Th fuels.A core with a P of 20 cm and a VF of 20%is recommended for 233U-Th and LEU-Th fuels to achieve a high performance of initial CR and fuel loading.Regarding TRU-Th fuel,a core with a smaller P(~5 cm)and larger VF(~24%)is recommended to obtain a negative temperature coefficient. 展开更多
关键词 molten salt reactor Heavy water-moderated molten salt reactor(HWMSR) Th-U fuel cycle
下载PDF
Large eddy simulation of unsteady flow in gas-liquid separator applied in thorium molten salt reactor
5
作者 Jing-Jing Li Ya-Lan Qian +3 位作者 Jun-Lian Yin Hua Li Wei Liu De-Zhong Wang 《Nuclear Science and Techniques》 SCIE CAS CSCD 2018年第5期10-18,共9页
Axial gas-liquid separators have been adopted in fission gas removal systems for the development of thorium molten salt reactors. In our previous study, we observed an unsteady flow phenomenon in which the flow patter... Axial gas-liquid separators have been adopted in fission gas removal systems for the development of thorium molten salt reactors. In our previous study, we observed an unsteady flow phenomenon in which the flow pattern is directly dependent on the backpressure in a gas-liquid separator; however, the underlying flow mechanism is still unknown. In order to move a step further in clarifying how the flow pattern evolves with a variation in backpressure, a large eddy simulation(LES) was adopted to study the flow field evolution. In the simulation, an artificial boundary was applied at the separator outlet under the assumption that the backpressure increases linearly. The numerical results indicate that the unsteady flow feature is captured by the LES approach, and the flow transition is mainly due to the axial velocity profile redistribution induced by the backpressure variation. With the increase in backpressure,the axial velocity near the downstream orifice transits from negative to positive. This change in the axial velocity sign forces the unstable spiral vortex to become a stable rectilinear vortex. 展开更多
关键词 SWIRL flow thorium molten salt reactor Computational fluid dynamics Large EDDY simulation
下载PDF
Effect of reprocessing on neutrons of a molten chloride salt fast reactor
6
作者 Liao-Yuan He Yong Cui +4 位作者 Liang Chen Shao-Peng Xia Lin-Yi Hu Yang Zou Rui Yan 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第3期154-170,共17页
Due to their unique features,such as the inherent safety,simplified fuel cycle,and continuous on-line reprocessing,molten salt reactors(MSRs)are regarded as one of the six reference reactors in the Generation IV Inter... Due to their unique features,such as the inherent safety,simplified fuel cycle,and continuous on-line reprocessing,molten salt reactors(MSRs)are regarded as one of the six reference reactors in the Generation IV International Forum(GEN-IV).Molten chloride salt fast reactors(MCFRs)are a type of MSR.Compared to molten fluoride salt reactors(MFSRs),MCFRs have a higher solubility of heavy metal atoms,a harder neutron spectrum,lower accumulation of fission products(FPs),and better breeding and transmutation performance.Thus,MCFRs have been recognized as a type of MSR with great prospects for future development.However,as the most important feature for MSRs,the effect of different reprocessing modes on MCFRs must be researched in depth.As such,this study investigated the effect of different isotopes,especially FPs,on the neutronic performance of an MCFR,such as its breeding performance.Furthermore,the characteristics of the different reprocessing modes and MCFR rates were analyzed in terms of safety,radioactivity level,neutron economy,and breeding capacity.In the end,a reprocessing method suitable for MCFRs was determined through calculation and analysis,which provides a reference for the further research of MCFRs. 展开更多
关键词 molten chloride salt fast reactor(MCFR) On-line reprocessing Batch-reprocessing Breeding ratio(BR) Doubling time(DT)
下载PDF
Transition toward thorium fuel cycle in a molten salt reactor by using plutonium 被引量:3
7
作者 De-Yang Cui Shao-Peng Xia +2 位作者 Xiao-Xiao Li Xiang-Zhou Cai Jin-Gen Chen 《Nuclear Science and Techniques》 SCIE CAS CSCD 2017年第10期103-112,共10页
The molten salt reactor(MSR), as one of the Generation Ⅳ advanced nuclear systems, has attracted a worldwide interest due to its excellent performances in safety, economics, sustainability, and proliferation resistan... The molten salt reactor(MSR), as one of the Generation Ⅳ advanced nuclear systems, has attracted a worldwide interest due to its excellent performances in safety, economics, sustainability, and proliferation resistance. The aim of this work is to provide and evaluate possible solutions to fissile 233 U production and further the fuel transition to thorium fuel cycle in a thermal MSR by using plutonium partitioned from light water reactors spent fuel. By using an in-house developed tool, a breeding and burning(B&B) scenario is first introduced and analyzed from the aspects of the evolution of main nuclides, net 233 U production, spectrum shift, and temperature feedback coefficient. It can be concluded that such a Th/Pu to Th/^(233)U transition can be accomplished by employing a relatively fast fuel reprocessing with a cycle time less than 60 days. At the equilibrium state, the reactor can achieve a conversion ratio of about 0.996 for the 60-day reprocessing period(RP) case and about 1.047 for the 10-day RP case.The results also show that it is difficult to accomplish such a fuel transition with limited reprocessing(RP is 180 days),and the reactor operates as a converter and burns the plutonium with the help of thorium. Meanwhile, a prebreeding and burning(PB&B) scenario is also analyzed briefly with respect to the net 233 U production and evolution of main nuclides. One can find that it is more efficient to produce 233 U under this scenario, resulting in a double time varying from about 1.96 years for the 10-day RP case to about 6.15 years for the 180-day RP case. 展开更多
关键词 钍燃料循环 反应器 熔盐堆 先进核能系统 循环时间 轻水反应堆 燃料后处理
下载PDF
Numerical and experimental investigation of a new conceptual fluoride salt freeze valve for thorium-based molten salt reactor 被引量:2
8
作者 Xin-Yue Jiang Hui-Ju Lu +2 位作者 Yu-Shuang Chen Yuan Fu Na-Xiu Wang 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第2期28-41,共14页
To improve the reliability and reduce energy consumption,a conceptual design of a freeze valve is proposed for the thorium-based molten salt reactor(TMSR)concept.Fins were utilized in this new design to enhance heat t... To improve the reliability and reduce energy consumption,a conceptual design of a freeze valve is proposed for the thorium-based molten salt reactor(TMSR)concept.Fins were utilized in this new design to enhance heat transfer and realize passive shut-off function,which could not be realized by the previous design.An experimental apparatus using the fluoride salt FLiNaK was constructed to conduct a series of preliminary solidification and melting experiments.In addition,the enthalpy-porosity method of ANSYS■Fluent solver was applied to simulate the solidification process of the salt at a specified operating temperature.Temperature distributions of the fluoride salt,solidification/melting time,and frozen plug effect were analyzed under natural convection heat transfer in an open space.The calculated salt temperatures exhibited good agreement with the experimental values.The results indicated that the range of effective operating temperature is 530-600℃ for the finned freeze valve.In this study,the ideal set operating temperature of the finned freeze valve was chosen as 560℃ to achieve competent performance.Moreover,560℃ is additionally the highest set operating temperature for maintaining excellent cooling performance and sustaining deep-frozen condition of the salt plug.At this set operating temperature,the simulation data indicated that the molten salt in the flat part of the finned freeze valve will completely solidify at 10.5 min.The percentage of solid salt in the flat and lower transitional parts of the valve reaches 29.60% in 30.0 min.Furthermore,the surface temperature of the proposed freeze valve is 11.10% lower compared with that of the TMSR freeze valve at a cooling gas supply of 173 m^3/h.Therefore,the new freeze valve was proven to be capable of reducing the energy consumption and realizing the passive shut-off function. 展开更多
关键词 FIN Natural convection Freeze valve Fluoride salt SOLIDIFICATION molten salt reactor
下载PDF
Burnup optimization of once-through molten salt reactors using enriched uranium and thorium
9
作者 Meng-Lu Tan Gui-Feng Zhu +5 位作者 Zheng-De Zhang Yang Zou Xiao-Han Yu Cheng-Gang Yu Ye Dai Rui Yan 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第1期44-59,共16页
The advantages of once-through molten salt reactors include readily available fuel,low nuclear proliferation risk,and low technical difficulty.It is potentially the most easily commercialized fuel cycle mode for molte... The advantages of once-through molten salt reactors include readily available fuel,low nuclear proliferation risk,and low technical difficulty.It is potentially the most easily commercialized fuel cycle mode for molten salt reactors.However,there are some problems in the parameter selection of once-through molten salt reactors,and the relevant burnup optimization work requires further analysis.This study examined once-through graphitemoderated molten salt reactor using enriched uranium and thorium.The fuel volume fraction(VF),initial heavy nuclei concentration(HN_(0)),feeding uranium enrichment(E_(FU)),volume of the reactor core,and fuel type were changed to obtain the optimal conditions for burnup.We found an optimal region for VF and HN_(0) in each scheme,and the location and size of the optimal region changed with the degree of E_(FU),core volume,and fuel type.The recommended core schemes provide a reference for the core design of a once-through molten salt reactor. 展开更多
关键词 Once-through fuel cycle molten salt reactor Enriched uranium thorium
下载PDF
Real-time wide-range neutron flux monitor for thorium-based molten salt reactor
10
作者 Xiang Zhou Zi-Hao Liu +2 位作者 Chao Chen Guo-Qing Huang Ze-Jie Yin 《Nuclear Science and Techniques》 SCIE CAS CSCD 2018年第8期107-113,共7页
A novel full-digital real-time neutron flux monitor(NFM) has been developed for thorium-based molten salt reactor(TMSR).The system is based on the highspeed,parallel,and pipeline processing of the field programmable g... A novel full-digital real-time neutron flux monitor(NFM) has been developed for thorium-based molten salt reactor(TMSR).The system is based on the highspeed,parallel,and pipeline processing of the field programmable gate array as well as the high-stability controller area network platform.A measurement range of 10~8 counts per second is achieved with a single fission chamber by utilizing the normalization of the count and Campbell algorithms.With the advantages of using the measurement range,system integrity,and real-time performance,digital NFM has been tested in the Xi'an pulsed reactor fission experiments and was found to exhibit superior experimental performance. 展开更多
关键词 监视器 反应堆 流动 中子 熔融 宽范围 控制器区域网络 实时
下载PDF
Use of Thorium in the Generation IV Molten Salt Reactors and Perspectives for Brazil
11
作者 Jose Antonio Seneda Paulo Ernesto Oliveira Lainetti 《Journal of Energy and Power Engineering》 2014年第10期1655-1662,共8页
关键词 第四代反应堆 氧化钍 熔盐堆 巴西 国际原子能机构 展望 燃料循环 耐腐蚀性
下载PDF
Synchrotron radiation-based materials characterization techniques shed light on molten salt reactor alloys 被引量:6
12
作者 Li Jiang Xiang-Xi Ye +1 位作者 De-Jun Wang Zhi-Jun Li 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第1期57-71,共15页
From a safety point of view, it is important to study the damages and reliability of molten salt reactor structural alloy materials, which are subjected to extreme environments due to neutron irradiation, molten salt ... From a safety point of view, it is important to study the damages and reliability of molten salt reactor structural alloy materials, which are subjected to extreme environments due to neutron irradiation, molten salt corrosion, fission product attacks, thermal stress, and even combinations of these. In the past few years, synchrotron radiation-based materials characterization techniques have proven to be effective in revealing the microstructural evolution and failure mechanisms of the alloys under surrogating operation conditions. Here, we review the recent progress in the investigations of molten salt corrosion,tellurium(Te) corrosion, and alloy design. The valence states and distribution of chromium(Cr) atoms, and the diffusion and local atomic structure of Te atoms near the surface of corroded alloys have been investigated using synchrotron radiation techniques, which considerably deepen the understandings on the molten salt and Te corrosion behaviors. Furthermore, the structure and size distribution of the second phases in the alloys have been obtained, which are helpful for the future development of new alloy materials. 展开更多
关键词 molten salt reactor Alloy materials Synchrotron radiation Shanghai Synchrotron Radiation Facility molten salt corrosion Tellurium corrosion
下载PDF
Application of Monte Carlo method to calculate the effective delayed neutron fraction in molten salt reactor 被引量:3
13
作者 Gui-Feng Zhu Rui Yan +5 位作者 Hong-Hua Peng Rui-Min Ji Shi-He Yu Ya-Fen Liu Jian Tian Bo Xu 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第2期143-152,共10页
Delayed neutron loss is an important parameter in the safety analysis of molten salt reactors. In this study,to obtain the effective delayed neutron fraction under flow condition, a delayed neutron precursor transport... Delayed neutron loss is an important parameter in the safety analysis of molten salt reactors. In this study,to obtain the effective delayed neutron fraction under flow condition, a delayed neutron precursor transport was implemented in the Monte Carlo code MCNP. The moltensalt reactor experiment(MSRE) model was used to analyze the reliability of this method. The obtained flow losses of reactivity for 235 U and 233 U fuels in the MSRE are223 pcm and 100.8 pcm, respectively, which are in good agreement with the experimental values(212 pcm and100.5 pcm, respectively). Then, six groups of effective delayed neutron fractions in a small molten salt reactor were calculated under different mass flow rates. The flow loss of reactivity at full power operation is approximately105.6 pcm, which is significantly lower than that of the MSRE due to the longer residence time inside the active core. The sensitivity of the reactivity loss to other factors,such as the residence time inside or outside the core and flow distribution, was evaluated as well. As a conclusion,the sensitivity of the reactivity loss to the residence time inside the core is greater than to other parameters. 展开更多
关键词 Monte Carlo EFFECTIVE DELAYED NEUTRON FRACTION molten salt reactor
下载PDF
Study on dynamic characteristics of fission products in 2 MW molten salt reactor 被引量:3
14
作者 Bo Zhou Xiao-Han Yu +6 位作者 Yang Zou Pu Yang Shi-He Yu Ya-Fen Liu Xu-Zhong Kang Gui-Feng Zhu Rui Yan 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第2期42-54,共13页
In this study,a numerical flow model of the fission products(FPs)in the primary loop system of a molten salt reactor(MSR)was established and solved using Mathematica 7.0.The simulation results were compared with those... In this study,a numerical flow model of the fission products(FPs)in the primary loop system of a molten salt reactor(MSR)was established and solved using Mathematica 7.0.The simulation results were compared with those of the ORIGEN-S program in the static burnup mode,and the deviation was found to be less than 10%,which indicates that the results are in good agreement.Furthermore,the FPs distribution in the primary loop system under normal operating conditions of the 2 MW MSR was quantitatively analyzed.In addition,the distribution phenomenon of the FPs under different flow rate conditions was studied.At the end of life,the FPs activity in the core region(including active region,and upper and lower plenum regions)accounted for 77.3%,and that in the hot leg #1,main pump,hot leg #2,heat exchanger,and cold leg region accounted for 1.2%,16.15%,0.99%,2.5%,and 1.9%,respectively,of the total FPs in the primary loop under normal operating conditions.The proportion of FPs in the core decreased with the increase in flow rate in the range of 2.24-22,400 cm^3 s^-1.The established analytical method and conclusions of this study can provide an important basis for radiation safety design of the primary loop,radioactive source management design,thermal-hydraulic safety analysis,and radiochemical analysis of FPs of 2 MW MSRs. 展开更多
关键词 molten salt reactor Fission products Radioactive source term Primary loop system Flow model
下载PDF
Effect of 37Cl enrichment on neutrons in a molten chloride salt fast reactor 被引量:2
15
作者 Liao-Yuan He Guang-Chao Li +3 位作者 Shao-Peng Xia Jin-Gen Chen Yang Zou Gui-Min Liu 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第3期45-56,共12页
A molten chloride salt fast reactor(MCFR)is well suited to fuel breeding and the transmutation of transuranium(TRU)elements owing to its advantageous features of fast neutron spectrum and high TRU solubility.However,t... A molten chloride salt fast reactor(MCFR)is well suited to fuel breeding and the transmutation of transuranium(TRU)elements owing to its advantageous features of fast neutron spectrum and high TRU solubility.However,the neutron absorption cross section of 35Cl is approximately 1000 times greater than for 37Cl,which has a significant impact on the neutron physical characteristics of a MCFR.Based on an automatic online refueling and reprocessing procedure,the influences of 37Cl enrichment on neutron economy,breeding performance,and the production of harmful nuclides were analyzed.Results show that 37Cl enrichment strongly influences the neutron properties of a MCFR.With natural chlorine,233U breeding cannot be achieved and the yields of S and 36Cl are very high.Increasing the 37Cl enrichment to 97%brings a clear improvement in its neutronics property,making it almost equal to that corresponding to 100%enrichment.Moreover,when 37Cl is enriched to 99%,its neutronics parameters are almost the same as for 100%enrichment.Considering the enrichment cost and the neutron properties,a 37Cl enrichment of 97%is recommended.Achieving an optimal neutronics performance requires 99%37Cl enrichment. 展开更多
关键词 molten salt reactor molten chlorine salt fast reactor 37Cl enrichment Th-U fuel breeding
下载PDF
Assembly-level analysis on temperature coefficient of reactivity in a graphite-moderated fuel salt reactor fueled with low-enriched uranium
16
作者 Xiao-Xiao Li De-Yang Cui +3 位作者 Chun-Yan Zou Jian-Hui Wu Xiang-Zhou Cai Jin-Gen Chen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第5期67-84,共18页
To provide a reliable and comprehensive data reference for core geometry design of graphite-moderated and low-enriched uranium fueled molten salt reactors,the influences of geometric parameters on the temperature coef... To provide a reliable and comprehensive data reference for core geometry design of graphite-moderated and low-enriched uranium fueled molten salt reactors,the influences of geometric parameters on the temperature coefficient of reactivity(TCR)at an assembly level were characterized.A four-factor formula was introduced to explain how different reactivity coefficients behave in terms of the fuel salt volume fraction and assembly size.The results show that the fuel salt temperature coefficient(FSTC)is always negative owing to a more negative fuel salt density coefficient in the over-moderated region or a more negative Doppler coefficient in the under-moderated region.Depending on the fuel salt channel spacing,the graphite moderator temperature coefficient(MTC)can be negative or positive.Furthermore,an assembly with a smaller fuel salt channel spacing is more likely to exhibit a negative MTC.As the fuel salt volume fraction increases,the negative FSTC first weakens and then increases,owing to the fuel salt density effect gradually weakening from negative to positive feedback and then decreasing.Meanwhile,the MTC weakens as the thermal utilization coefficient caused by the graphite temperature effect deteriorates.Thus,the negative TCR first weakens and then strengthens,mainly because of the change in the fuel salt density coefficient.As the assembly size increases,the magnitude of the FSTC decreases monotonously owing to a monotonously weakened fuel salt Doppler coefficient,whereas the MTC changes from gradually weakened negative feedback to gradually enhanced positive feedback.Then,the negative TCR weakens.Therefore,to achieve a proper negative TCR,particularly a negative MTC,an assembly with a smaller fuel salt channel spacing in the under-moderated region is strongly recommended. 展开更多
关键词 molten salt reactor Temperature coefficient of reactivity Four-factor formula
下载PDF
Core and blanket thermal-hydraulic analysis of a molten salt fast reactor based on coupling of OpenMC and OpenFOAM 被引量:4
17
作者 Bin Deng Yong Cui +5 位作者 Jin-Gen Chen Long He Shao-Peng Xia Cheng-Gang Yu Fan Zhu Xiang-Zhou Cai 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第9期1-15,共15页
In the core of a molten salt fast reactor(MSFR),heavy metal fuel and fission products can be dissolved in a molten fluoride salt to form a eutectic mixture that acts as both fuel and coolant.Fission energy is released... In the core of a molten salt fast reactor(MSFR),heavy metal fuel and fission products can be dissolved in a molten fluoride salt to form a eutectic mixture that acts as both fuel and coolant.Fission energy is released from the fuel salt and transferred to the second loop by fuel salt circulation.Therefore,the MSFR is characterized by strong interaction between the neutronics and the thermal hydraulics.Moreover,recirculation flow occurs,and nuclear heat is accumulated near the fertile blanket,which significantly affects both the flow and the temperature fields in the core.In this work,to further optimize the conceptual geometric design of the MSFR,three geometries of the core and fertile blanket are proposed,and the thermal-hydraulic characteristics,including the three-dimensional flow and temperature fields of the fuel and fertile salts,are simulated and analyzed using a coupling scheme between the open source codes OpenMC and OpenFOAM.The numerical results indicate that a flatter core temperature distribution can be obtained and the hot spot and flow stagnation zones that appear in the upper and lower parts of the core center near the reflector can be eliminated by curving both the top and bottom walls of the core.Moreover,eight cooling loops with a total flow rate of0.0555 m3 s-1 ensur an acceptable temperature distribusure an acceptable temperature distribution in the fertile blanket. 展开更多
关键词 molten salt fast reactor Core and blanket thermal-hydraulic analysis Neutronics and thermal hydraulics coupling
下载PDF
Development of a dynamics model for graphite-moderated channel-type molten salt reactor 被引量:1
18
作者 Long He Cheng-Gang Yu +3 位作者 Rui-Min Ji Wei Guo Ye Dai Xiang-Zhou Cai 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第1期145-155,共11页
A molten salt reactor(MSR) is one of the six advanced reactor concepts selected by the generation Ⅳ international forum because of its advantages of inherent safety, and the promising capabilities of Th-U breeding an... A molten salt reactor(MSR) is one of the six advanced reactor concepts selected by the generation Ⅳ international forum because of its advantages of inherent safety, and the promising capabilities of Th-U breeding and transuranics transmutation. A dynamics model for the channel-type MSR is developed in this work based on a three-dimensional thermal–hydraulic model(3DTH) and a point reactor model. The 3DTH couples a three-dimensional heat conduction model and a one-dimensional single-phase flow model that can accurately consider the heat conduction between different assemblies. The 3DTH is validated by the RELAP5 code in terms of the temperature and mass flow distribution calculation. A point reactor model considering the drift of delayed neutron precursors is adopted in the dynamics model. To verify the dynamics model, three experiments from the molten salt reactor experiment are simulated. The agreement of the experimental data and simulation results was excellent.With the aid of this model, the unprotected step reactivity addition and unprotected loss of flow of the 2 MWt experimental MSR are modeled, and the reactor power and temperature evolution are analyzed. 展开更多
关键词 molten salt reactor THERMAL-HYDRAULICS Point reactor model Thermal coupling
下载PDF
Flow field effect of delayed neutron precursors in liquid-fueled molten salt reactors 被引量:2
19
作者 Xian-Di Zuo Mao-Song Cheng +2 位作者 Yu-Qing Dai Kai-Cheng Yu Zhi-Min Dai 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第8期16-32,共17页
In molten salt reactors(MSRs),the liquid fuel salt circulates through the primary loop and a part of the delayed neutron precursors(DNPs)decays outside the reactor core.To model and analyze the flow field effect of DN... In molten salt reactors(MSRs),the liquid fuel salt circulates through the primary loop and a part of the delayed neutron precursors(DNPs)decays outside the reactor core.To model and analyze the flow field effect of DNPs in channel-type liquid-fueled MSRs,a three-dimensional space-time dynamics code,named ThorCORE3D,that couples neutronics,core thermalhydraulics,and a molten salt loop system was developed and validated with the Molten Salt Reactor Experiment(MSRE)benchmarks.The effects of external loop recirculation time,fuel flow rate,and core flow field distribution on the delayed neutron fraction loss of MSRE at steadystate were modeled and simulated using the ThorCORE3D code.Then,the flow field effect of the DNPs on the system responses of the MSRE in the reactivity insertion transient under different initial conditions was analyzed systematically for the channel-type liquid-fueled MSRs.The results indicate that the flow field condition has a significant effect on the steady-state delayed neutron fractions and will further affect the transient power and temperature responses of the reactor system.The analysis results for the effect of the DNP flow field can provide important references for the design optimization and safety analysis of liquid-fueled MSRs. 展开更多
关键词 molten salt reactor Delayed neutron precursor Nodal expansion method Coupled neutronics and thermal-hydraulics
下载PDF
Development of a MCNP5 and ORIGEN2 based burnup code for molten salt reactor 被引量:3
20
作者 Guo-Min Sun Mao-Song Cheng 《Nuclear Science and Techniques》 SCIE CAS CSCD 2016年第3期108-114,共7页
The Molten Salt Reactor(MSR) is one of the six advanced reactor nuclear energy systems for further research and development selected by Generation IV International Forum(GIF),which is distinguished by its core in whic... The Molten Salt Reactor(MSR) is one of the six advanced reactor nuclear energy systems for further research and development selected by Generation IV International Forum(GIF),which is distinguished by its core in which the fuel is dissolved in molten fluoride salt.Because fuel flow in the primary loop,the depletion of MSR is different from that of solid-fuel reactors.In this paper,an MCNP5 and ORIGEN2 Coupled Burnup(MOCBurn) code for MSR is developed under the MATLAB platform.Some new methods and novel arrangements are used to make it suitable for fuel flow in the MSR.To consider the fuel convection and diffusion in the primary loop of MSR,fuel mixing calculation is carried out after each burnup time step.Modeling function for geometry with repeat structures is implicated for reactor analysis with complex structures.Calculation for a high-burnup reactor pin cell benchmark is performed using the MOCBurn code.Results of depletion study show that the MOCBurn code is suitable for the traditional solid-fuel reactors.A preliminary study of the fuel mixture effect in MSR is also carried out. 展开更多
关键词 程序开发 高燃耗 熔盐堆 MATLAB平台 先进反应堆 固体燃料 重复结构 MSR
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部