A method of constructing three-dimensional process model for the punching cartridge cases is presented based on DEFORM simulation analysis. Using DEFORM software,the finite element simulation models for the punching a...A method of constructing three-dimensional process model for the punching cartridge cases is presented based on DEFORM simulation analysis. Using DEFORM software,the finite element simulation models for the punching and forming process of cartridge cases are established,and the corresponding simulation result model of each intermediate procedure is obtained by continuously performing the forming process simulation. The simulation model cannot annotate size and process information due to poor interface between DEFORM software and CAD software. Thus,a 3D annotation module is developed with secondary development technology of UG NX software. Consequently,the final process model with dimension and process information is obtained. Then,with the current 3D process management system,the 3D punching and forming process design of cartridge cases can be completed further. An example is also provided to illustrate that the relative error between the simulation process model and the physical model is less than 2%,which proves the validity and reliability of the proposed method in this study.展开更多
Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor ...Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor tissue has impeded the study of the effects of hypoxia on the progression and growth of tumor cells.This study reports a three-dimensional(3D)brain tumor model obtained by encapsulating U87MG(U87)cells in a hydrogel containing type I collagen.It also documents the effect of various oxygen concentrations(1%,7%,and 21%)in the culture environment on U87 cell morphology,proliferation,viability,cell cycle,apoptosis rate,and migration.Finally,it compares two-dimensional(2D)and 3D cultures.For comparison purposes,cells cultured in flat culture dishes were used as the control(2D model).Cells cultured in the 3D model proliferated more slowly but had a higher apoptosis rate and proportion of cells in the resting phase(G0 phase)/gap I phase(G1 phase)than those cultured in the 2D model.Besides,the two models yielded significantly different cell morphologies.Finally,hypoxia(e.g.,1%O2)affected cell morphology,slowed cell growth,reduced cell viability,and increased the apoptosis rate in the 3D model.These results indicate that the constructed 3D model is effective for investigating the effects of biological and chemical factors on cell morphology and function,and can be more representative of the tumor microenvironment than 2D culture systems.The developed 3D glioblastoma tumor model is equally applicable to other studies in pharmacology and pathology.展开更多
With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,...With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration.展开更多
Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different ...Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different computing tools have to be developed so as to solve particular fields at different scales and for different processes.Therefore,the integration of different types of software is inevitable.However,it is difficult to perform the transfer of the meshes and simulated results among software packages because of the lack of shared data formats or encrypted data formats.An image processing based method for three-dimensional model reconstruction for numerical simulation was proposed,which presents a solution to the integration problem by a series of slice or projection images obtained by the post-processing modules of the numerical simulation software.By means of mapping image pixels to meshes of either finite difference or finite element models,the geometry contour can be extracted to export the stereolithography model.The values of results,represented by color,can be deduced and assigned to the meshes.All the models with data can be directly or indirectly integrated into other software as a continued or new numerical simulation.The three-dimensional reconstruction method has been validated in numerical simulation of castings and case studies were provided in this study.展开更多
Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However...Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However,the catalyst deactivation is an inevitable feature in MTO processes,and regeneration,therefore,is one of the key steps in industrial MTO processes.Traditionally the MTO catalyst is regenerated by removing the deposited coke via air combustion,which unavoidably transforms coke into carbon dioxide and reduces the carbon utilization efficiency.Recent study shows that the coke species over MTO catalyst can be regenerated via steam,which can promote the light olefins yield as the deactivated coke species can be essentially transferred to industrially useful synthesis gas,is a promising pathway for further MTO processes development.In this work,we modelled and analyzed these two MTO regeneration methods in terms of carbon utilization efficiency and technology economics.As shown,the steam regeneration could achieve a carbon utilization efficiency of 84.31%,compared to 74.74%for air combustion regeneration.The MTO processes using steam regeneration can essentially achieve the near-zero carbon emission.In addition,light olefins production of the MTO processes using steam regeneration is 12.81%higher than that using air combustion regeneration.In this regard,steam regeneration could be considered as a potential yet promising regeneration method for further MTO processes,showing not only great environmental benefits but also competitive economic performance.展开更多
To equip data-driven dynamic chemical process models with strong interpretability,we develop a light attention–convolution–gate recurrent unit(LACG)architecture with three sub-modules—a basic module,a brand-new lig...To equip data-driven dynamic chemical process models with strong interpretability,we develop a light attention–convolution–gate recurrent unit(LACG)architecture with three sub-modules—a basic module,a brand-new light attention module,and a residue module—that are specially designed to learn the general dynamic behavior,transient disturbances,and other input factors of chemical processes,respectively.Combined with a hyperparameter optimization framework,Optuna,the effectiveness of the proposed LACG is tested by distributed control system data-driven modeling experiments on the discharge flowrate of an actual deethanization process.The LACG model provides significant advantages in prediction accuracy and model generalization compared with other models,including the feedforward neural network,convolution neural network,long short-term memory(LSTM),and attention-LSTM.Moreover,compared with the simulation results of a deethanization model built using Aspen Plus Dynamics V12.1,the LACG parameters are demonstrated to be interpretable,and more details on the variable interactions can be observed from the model parameters in comparison with the traditional interpretable model attention-LSTM.This contribution enriches interpretable machine learning knowledge and provides a reliable method with high accuracy for actual chemical process modeling,paving a route to intelligent manufacturing.展开更多
Geomaterials with inferior hydraulic and strength characteristics often need improvement to enhance their engineering behaviors.Traditional ground improvement techniques require enormous mechanical effort or synthetic...Geomaterials with inferior hydraulic and strength characteristics often need improvement to enhance their engineering behaviors.Traditional ground improvement techniques require enormous mechanical effort or synthetic chemicals.Sustainable stabilization technique such as microbially induced calcite precipitation(MICP)utilizes bacterial metabolic processes to precipitate cementitious calcium carbonate.The reactive transport of biochemical species in the soil mass initiates the precipitation of biocement during the MICP process.The precipitated biocement alters the hydro-mechanical performance of the soil mass.Usually,the flow,deformation,and transport phenomena regulate the biocementation technique via coupled bio-chemo-hydro-mechanical(BCHM)processes.Among all,one crucial phenomenon controlling the precipitation mechanism is the encapsulation of biomass by calcium carbonate.Biomass encapsulation can potentially reduce the biochemical reaction rate and decelerate biocementation.Laboratory examination of the encapsulation process demands a thorough analysis of associated coupled effects.Despite this,a numerical model can assist in capturing the coupled processes influencing encapsulation during the MICP treatment.However,most numerical models did not consider biochemical reaction rate kinetics accounting for the influence of bacterial encapsulation.Given this,the current study developed a coupled BCHM model to evaluate the effect of encapsulation on the precipitated calcite content using a micro-scale semiempirical relationship.Firstly,the developed BCHM model was verified and validated using numerical and experimental observations of soil column tests.Later,the encapsulation phenomenon was investigated in the soil columns of variable maximum calcite crystal sizes.The results depict altered reaction rates due to the encapsulation phenomenon and an observable change in the precipitated calcite content for each maximum crystal size.Furthermore,the permeability and deformation of the soil mass were affected by the simultaneous precipitation of calcium carbonate.Overall,the present study comprehended the influence of the encapsulation of bacteria on cement morphology-induced permeability,biocement-induced stresses and displacements.展开更多
BACKGROUND Esophageal cancer is one of the most common malignant tumors.The three-dimensional quality structure model is a quality assessment theory that includes three dimensions:Structure,process,and results.AIM To ...BACKGROUND Esophageal cancer is one of the most common malignant tumors.The three-dimensional quality structure model is a quality assessment theory that includes three dimensions:Structure,process,and results.AIM To investigate the effects of nursing interventions with three-dimensional quality assessment on the efficacy and disease management ability of patients undergoing esophageal cancer surgery.METHODS In this prospective study,the control group received routine nursing,and the intervention group additionally received a three-dimensional quality assessment intervention based on the above routine care.Self-efficacy and patient disease management abilities were evaluated using the General Self-Efficacy Scale(GSES)and Exercise of Self-Care Agency scale,respectively.IBM SPSS Statistics for Windows,version 17.0,was used for the data processing.RESULTS This study recruited 112 patients who were assigned to the control and experi-mental groups(n=56 per group).Before the intervention,there was no significant difference in GSES scores between the two groups(P>0.05).After the inter-vention,the GSES scores of both groups increased,with the experimental group showing higher values(P<0.05).At the time of discharge and three months after discharge,the scores for positive attitudes,self-stress reduction,and total score of health promotion in the experimental group were higher than those in the control group(P<0.05).CONCLUSION The implementation of a three-dimensional quality structure model for postoperative patients with esophageal cancer can effectively improve their self-management ability and self-efficacy of postoperative patients.展开更多
Software Development Life Cycle (SDLC) is one of the major ingredients for the development of efficient software systems within a time frame and low-cost involvement. From the literature, it is evident that there are ...Software Development Life Cycle (SDLC) is one of the major ingredients for the development of efficient software systems within a time frame and low-cost involvement. From the literature, it is evident that there are various kinds of process models that are used by the software industries for the development of small, medium and long-term software projects, but many of them do not cover risk management. It is quite obvious that the improper selection of the software development process model leads to failure of the software products as it is time bound activity. In the present work, a new software development process model is proposed which covers the risks at any stage of the development of the software product. The model is named a Hemant-Vipin (HV) process model and may be helpful for the software industries for development of the efficient software products and timely delivery at the end of the client. The efficiency of the HV process model is observed by considering various kinds of factors like requirement clarity, user feedback, change agility, predictability, risk identification, practical implementation, customer satisfaction, incremental development, use of ready-made components, quick design, resource organization and many more and found through a case study that the presented approach covers many of parameters in comparison of the existing process models. .展开更多
Aiming at the problems that the simulation accuracy which is reduced due to the simplification of the model,a three-dimensional simulation method based on solid modeling is being proposed.By analyzing the motion relat...Aiming at the problems that the simulation accuracy which is reduced due to the simplification of the model,a three-dimensional simulation method based on solid modeling is being proposed.By analyzing the motion relationship and positional relationship between the caries knife and the workpiece,the coordinate system of the caries machining was established.With the MATLAB software,the cutting edge model and the blade sweeping surface model of the boring cutter are sequentially established.Boolean operation is performed on the blade swept surface formed by the tooth cutter teeth with time t and the workpiece tooth geometry as well as the undeformed three-dimensional chip geometry model and the instantaneous cogging geometry model are obtained at different times.Through the compare between gear end face simulation tooth profile and the theoretical inner arc tooth profile,we verified the accuracy and rationality of the proposed method.展开更多
Objective:To explore and analyze the work process-based practical training teaching model for basic nursing skills in vocational colleges and its implementation effects.Methods:A total of 82 nursing students from our ...Objective:To explore and analyze the work process-based practical training teaching model for basic nursing skills in vocational colleges and its implementation effects.Methods:A total of 82 nursing students from our school were selected for the study,which was conducted from April 2023 to April 2024.Using a random number table method,the students were divided into an observation group and a control group,each with 41 students.The control group received conventional practical training teaching,while the observation group followed the work process-based practical training model for basic nursing skills.The assessment scores and teaching satisfaction of the two groups were compared.Results:The comparison of assessment scores showed that the observation group performed significantly better than the control group(P<0.05).The comparison of teaching satisfaction also indicated that the observation group had significantly higher satisfaction than the control group(P<0.05).Conclusion:The work process-based practical training teaching model for basic nursing skills in vocational colleges can improve students’assessment scores and enhance teaching satisfaction,demonstrating its value for wider application.展开更多
We combined domestic ground-based and satellite magnetic measurements to create a regional three-dimensional surface Spline(3DSS)gradient model of the main geomagnetic field over the Chinese continent.To improve the p...We combined domestic ground-based and satellite magnetic measurements to create a regional three-dimensional surface Spline(3DSS)gradient model of the main geomagnetic field over the Chinese continent.To improve the precision of the model,we considered the data gap between the ground and satellite data.We compared and analyzed the results of the Taylor polynomial,surface Spline,and CHAOS-6(the CHAMP,?rsted and SAC-C model of Earth’s magnetic field)gradient models.Results showed that the gradients in the south-north and east-west directions of the four models were consistent.The 3DSS model was able to express not only gradients at different altitudes,but also average gradients inside the research area.The two Spline models were able to capture more information on gradient anomalies than were the fitted models.Strong local anomalies were observed in northern Xinjiang,Beijing,and the junction area between Jiangsu and Zhejiang,and the total intensity F decreased whereas the altitude increased.The gradient decreased by 21.69%in the south-north direction and increased by 11.78%in the east-west direction.In addition,the altitude gradient turned from negative to positive while the altitude increased.The Spline model and the two fitted models differed mainly in the field sources they expressed and the modeling theory.展开更多
Objective To evaluate the predictive validity of IRIS™(Intuitive Surgical®,Sunnyvale,CA,USA)as a planning tool for robot-assisted partial nephrectomy(RAPN)by assessing the degree of overlap with intraoperative ex...Objective To evaluate the predictive validity of IRIS™(Intuitive Surgical®,Sunnyvale,CA,USA)as a planning tool for robot-assisted partial nephrectomy(RAPN)by assessing the degree of overlap with intraoperative execution.Methods Thirty-one patients scheduled for RAPN by four experienced urologists were enrolled in a prospective study.Prior to surgery,urologists reviewed the IRIS™three-dimensional model on an iphone Operating System(iOS)app and completed a questionnaire outlining their surgical plan including surgical approach,and ischemia technique as well as confidence in executing this plan.Postoperatively,questionnaires assessing the procedural approach,clinical utility,efficiency,and effectiveness of IRIS™were completed.The degree of overlap between the preoperative and intraoperative questionnaires and between the planned approach and actual execution of the procedure was analyzed.Questionnaires were answered on a 5-point Likert scale and scores of 4 or greater were considered positive.Results Mean age was 65.1 years with a mean tumor size of 27.7 mm(interquartile range 17.5-44.0 mm).Hilar tumors consisted of 32.3%;48.4%of patients had R.E.N.A.L.nephrometry scores of 7-9.On preoperative questionnaires,the surgeons reported that in 67.7%cases they were confident that they can perform the procedure successfully,and on intraoperative questionnaires,the surgeons reported that in 96.8%cases IRIS™helped achieve good spatial sensation of the anatomy.There was a high degree of overlap between preoperative and intraoperative questionnaires for the surgical approach,interpreting anatomical details and clinical utility.When comparing plans for selective or off-clamp,the preoperative plan was executed in 90.0%of cases intraoperatively.Conclusion A high degree of overlap between the preoperative surgical approach and intraoperative RAPN execution was found using IRIS™.This is the first study to evaluate the predictive accuracy of IRIS™during RAPN by comparing preoperative plan and intraoperative execution.展开更多
In this paper, the axial-flux permanent magnet driver is modeledand analyzed in a simple and novel way under three-dimensional cylindricalcoordinates. The inherent three-dimensional characteristics of the deviceare co...In this paper, the axial-flux permanent magnet driver is modeledand analyzed in a simple and novel way under three-dimensional cylindricalcoordinates. The inherent three-dimensional characteristics of the deviceare comprehensively considered, and the governing equations are solved bysimplifying the boundary conditions. The axial magnetization of the sectorshapedpermanent magnets is accurately described in an algebraic form bythe parameters, which makes the physical meaning more explicit than thepurely mathematical expression in general series forms. The parameters of theBessel function are determined simply and the magnetic field distribution ofpermanent magnets and the air-gap is solved. Furthermore, the field solutionsare completely analytical, which provides convenience and satisfactoryaccuracy for modeling a series of electromagnetic performance parameters,such as the axial electromagnetic force density, axial electromagnetic force,and electromagnetic torque. The correctness and accuracy of the analyticalmodels are fully verified by three-dimensional finite element simulations and a15 kW prototype and the results of calculations, simulations, and experimentsunder three methods are highly consistent. The influence of several designparameters on magnetic field distribution and performance is studied and discussed.The results indicate that the modeling method proposed in this papercan calculate the magnetic field distribution and performance accurately andrapidly, which affords an important reference for the design and optimizationof axial-flux permanent magnet drivers.展开更多
The traditional fuzzy logic system (FLS) can only model and control the process in two-dimensional nature. Many of real-world systems are of multidimensional features, such as, thermal and fluid processes with spati...The traditional fuzzy logic system (FLS) can only model and control the process in two-dimensional nature. Many of real-world systems are of multidimensional features, such as, thermal and fluid processes with spatiotemporal dynamics, biological systems, or decision-making processes that contain stochastic and imprecise uncertainties. These types of systems are difficult for the traditional FLS to model and control because they require a third dimension for spatial or probabilistic information. The type-2 fuzzy set provides the possibility to develop a three-dimensional fuzzy logic system for modeling and controlling these processes in three-dimensional nature.展开更多
A series of Al-Ti-B master alloys were prepared by different preparation routes,and the TiB2 particles in the master alloys were extracted and analyzed.It is found that the forming process has significant influence on...A series of Al-Ti-B master alloys were prepared by different preparation routes,and the TiB2 particles in the master alloys were extracted and analyzed.It is found that the forming process has significant influence on the three-dimensional morphology of TiB2 particles.Different preparation routes result in different reaction forms,which accounts for the morphology variation of TiB2 particles.When the Al-Ti-B master alloy is prepared using "halide salt" route,TiB2 particles exhibit hexagonal platelet morphology and are independent with each other.In addition,the reaction temperature almost does not have influence on the morphology of TiB2 particles.However,TiB2 particles exhibit different morphologies at different reaction temperatures when the master alloys are prepared with Al-3B and Ti sponge.When the master alloy is prepared at 850 ℃,a kind of TiB2 particle agglomeration forms with a size larger than 5 μm.The TiB2 particles change to layered stacking morphology even dendritic morphology with the reaction temperature reaching up to 1200 ℃.展开更多
With the development of automation and informatization in the steelmaking industry,the human brain gradually fails to cope with an increasing amount of data generated during the steelmaking process.Machine learning te...With the development of automation and informatization in the steelmaking industry,the human brain gradually fails to cope with an increasing amount of data generated during the steelmaking process.Machine learning technology provides a new method other than production experience and metallurgical principles in dealing with large amounts of data.The application of machine learning in the steelmaking process has become a research hotspot in recent years.This paper provides an overview of the applications of machine learning in the steelmaking process modeling involving hot metal pretreatment,primary steelmaking,secondary refining,and some other aspects.The three most frequently used machine learning algorithms in steelmaking process modeling are the artificial neural network,support vector machine,and case-based reasoning,demonstrating proportions of 56%,14%,and 10%,respectively.Collected data in the steelmaking plants are frequently faulty.Thus,data processing,especially data cleaning,is crucially important to the performance of machine learning models.The detection of variable importance can be used to optimize the process parameters and guide production.Machine learning is used in hot metal pretreatment modeling mainly for endpoint S content prediction.The predictions of the endpoints of element compositions and the process parameters are widely investigated in primary steelmaking.Machine learning is used in secondary refining modeling mainly for ladle furnaces,Ruhrstahl–Heraeus,vacuum degassing,argon oxygen decarburization,and vacuum oxygen decarburization processes.Further development of machine learning in the steelmaking process modeling can be realized through additional efforts in the construction of the data platform,the industrial transformation of the research achievements to the practical steelmaking process,and the improvement of the universality of the machine learning models.展开更多
安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事...安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事故分析的方法,并以青岛石油爆炸事故为例进行事故原因分析。结果显示:STAMP-24Model可以分组织,分层次且有效、全面、详细地分析涉及多个组织的事故原因,探究多组织之间的交互关系;对事故进行动态演化分析,可得到各组织不安全动作耦合关系与形成的事故失效链及管控失效路径,进而为预防多组织事故提供思路和参考。展开更多
Steam cracking is the dominant technology for producing light olefins,which are believed to be the foundation of the chemical industry.Predictive models of the cracking process can boost production efficiency and prof...Steam cracking is the dominant technology for producing light olefins,which are believed to be the foundation of the chemical industry.Predictive models of the cracking process can boost production efficiency and profit margin.Rapid advancements in machine learning research have recently enabled data-driven solutions to usher in a new era of process modeling.Meanwhile,its practical application to steam cracking is still hindered by the trade-off between prediction accuracy and computational speed.This research presents a framework for data-driven intelligent modeling of the steam cracking process.Industrial data preparation and feature engineering techniques provide computational-ready datasets for the framework,and feedstock similarities are exploited using k-means clustering.We propose LArge-Residuals-Deletion Multivariate Adaptive Regression Spline(LARD-MARS),a modeling approach that explicitly generates output formulas and eliminates potentially outlying instances.The framework is validated further by the presentation of clustering results,the explanation of variable importance,and the testing and comparison of model performance.展开更多
The comprehensive tire building and shaping processes are investigated through the finite element method(FEM)in this article.The mechanical properties of the uncured rubber from different tire components are investiga...The comprehensive tire building and shaping processes are investigated through the finite element method(FEM)in this article.The mechanical properties of the uncured rubber from different tire components are investigated through cyclic loading-unloading experiments under different strain rates.Based on the experiments,an elastoviscoplastic constitutive model is adopted to describe themechanical behaviors of the uncured rubber.The distinct mechanical properties,including the stress level,hysteresis and residual strain,of the uncured rubber can all be well characterized.The whole tire building process(including component winding,rubber bladder inflation,component stitching and carcass band folding-back)and the shaping process are simulated using this constitutive model.The simulated green tire profile is in good agreement with the actual profile obtained through 3D scanning.The deformation and stress of the rubber components and the cord reinforcements during production can be obtained fromthe FE simulation,which is helpful for judging the rationality of the tire construction design.Finally,the influence of the parameter“drum width”is investigated,and the simulated result is found to be consistent with the experimental observations,which verifies the effectiveness of the simulation.The established simulation strategy provides some guiding significance for the improvement of tire design parameters and the elimination of tire production defects.展开更多
基金Supported by the National Defense Basic Scientific Research Project(A1020131011)
文摘A method of constructing three-dimensional process model for the punching cartridge cases is presented based on DEFORM simulation analysis. Using DEFORM software,the finite element simulation models for the punching and forming process of cartridge cases are established,and the corresponding simulation result model of each intermediate procedure is obtained by continuously performing the forming process simulation. The simulation model cannot annotate size and process information due to poor interface between DEFORM software and CAD software. Thus,a 3D annotation module is developed with secondary development technology of UG NX software. Consequently,the final process model with dimension and process information is obtained. Then,with the current 3D process management system,the 3D punching and forming process design of cartridge cases can be completed further. An example is also provided to illustrate that the relative error between the simulation process model and the physical model is less than 2%,which proves the validity and reliability of the proposed method in this study.
基金supported by the National Natural Science Foundation of China (No. 52275291)the Fundamental Research Funds for the Central Universitiesthe Program for Innovation Team of Shaanxi Province,China (No. 2023-CX-TD-17)
文摘Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor tissue has impeded the study of the effects of hypoxia on the progression and growth of tumor cells.This study reports a three-dimensional(3D)brain tumor model obtained by encapsulating U87MG(U87)cells in a hydrogel containing type I collagen.It also documents the effect of various oxygen concentrations(1%,7%,and 21%)in the culture environment on U87 cell morphology,proliferation,viability,cell cycle,apoptosis rate,and migration.Finally,it compares two-dimensional(2D)and 3D cultures.For comparison purposes,cells cultured in flat culture dishes were used as the control(2D model).Cells cultured in the 3D model proliferated more slowly but had a higher apoptosis rate and proportion of cells in the resting phase(G0 phase)/gap I phase(G1 phase)than those cultured in the 2D model.Besides,the two models yielded significantly different cell morphologies.Finally,hypoxia(e.g.,1%O2)affected cell morphology,slowed cell growth,reduced cell viability,and increased the apoptosis rate in the 3D model.These results indicate that the constructed 3D model is effective for investigating the effects of biological and chemical factors on cell morphology and function,and can be more representative of the tumor microenvironment than 2D culture systems.The developed 3D glioblastoma tumor model is equally applicable to other studies in pharmacology and pathology.
基金Supported by the Key Project of National Natural Science Foundation of China(42330810).
文摘With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration.
基金funded by National Key R&D Program of China(No.2021YFB3401200)the National Natural Science Foundation of China(No.51875308)the Beijing Nature Sciences Fund-Haidian Originality Cooperation Project(L212002).
文摘Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different computing tools have to be developed so as to solve particular fields at different scales and for different processes.Therefore,the integration of different types of software is inevitable.However,it is difficult to perform the transfer of the meshes and simulated results among software packages because of the lack of shared data formats or encrypted data formats.An image processing based method for three-dimensional model reconstruction for numerical simulation was proposed,which presents a solution to the integration problem by a series of slice or projection images obtained by the post-processing modules of the numerical simulation software.By means of mapping image pixels to meshes of either finite difference or finite element models,the geometry contour can be extracted to export the stereolithography model.The values of results,represented by color,can be deduced and assigned to the meshes.All the models with data can be directly or indirectly integrated into other software as a continued or new numerical simulation.The three-dimensional reconstruction method has been validated in numerical simulation of castings and case studies were provided in this study.
基金the financial support from the Strategic Priority Research Program of Chinese Academy of Sciences(XDA21010100)。
文摘Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However,the catalyst deactivation is an inevitable feature in MTO processes,and regeneration,therefore,is one of the key steps in industrial MTO processes.Traditionally the MTO catalyst is regenerated by removing the deposited coke via air combustion,which unavoidably transforms coke into carbon dioxide and reduces the carbon utilization efficiency.Recent study shows that the coke species over MTO catalyst can be regenerated via steam,which can promote the light olefins yield as the deactivated coke species can be essentially transferred to industrially useful synthesis gas,is a promising pathway for further MTO processes development.In this work,we modelled and analyzed these two MTO regeneration methods in terms of carbon utilization efficiency and technology economics.As shown,the steam regeneration could achieve a carbon utilization efficiency of 84.31%,compared to 74.74%for air combustion regeneration.The MTO processes using steam regeneration can essentially achieve the near-zero carbon emission.In addition,light olefins production of the MTO processes using steam regeneration is 12.81%higher than that using air combustion regeneration.In this regard,steam regeneration could be considered as a potential yet promising regeneration method for further MTO processes,showing not only great environmental benefits but also competitive economic performance.
基金support provided by the National Natural Science Foundation of China(22122802,22278044,and 21878028)the Chongqing Science Fund for Distinguished Young Scholars(CSTB2022NSCQ-JQX0021)the Fundamental Research Funds for the Central Universities(2022CDJXY-003).
文摘To equip data-driven dynamic chemical process models with strong interpretability,we develop a light attention–convolution–gate recurrent unit(LACG)architecture with three sub-modules—a basic module,a brand-new light attention module,and a residue module—that are specially designed to learn the general dynamic behavior,transient disturbances,and other input factors of chemical processes,respectively.Combined with a hyperparameter optimization framework,Optuna,the effectiveness of the proposed LACG is tested by distributed control system data-driven modeling experiments on the discharge flowrate of an actual deethanization process.The LACG model provides significant advantages in prediction accuracy and model generalization compared with other models,including the feedforward neural network,convolution neural network,long short-term memory(LSTM),and attention-LSTM.Moreover,compared with the simulation results of a deethanization model built using Aspen Plus Dynamics V12.1,the LACG parameters are demonstrated to be interpretable,and more details on the variable interactions can be observed from the model parameters in comparison with the traditional interpretable model attention-LSTM.This contribution enriches interpretable machine learning knowledge and provides a reliable method with high accuracy for actual chemical process modeling,paving a route to intelligent manufacturing.
基金the funding support from the Ministry of Education,Government of India,under the Prime Minister Research Fellowship programme(Grant Nos.SB21221901CEPMRF008347 and SB22230217CEPMRF008347).
文摘Geomaterials with inferior hydraulic and strength characteristics often need improvement to enhance their engineering behaviors.Traditional ground improvement techniques require enormous mechanical effort or synthetic chemicals.Sustainable stabilization technique such as microbially induced calcite precipitation(MICP)utilizes bacterial metabolic processes to precipitate cementitious calcium carbonate.The reactive transport of biochemical species in the soil mass initiates the precipitation of biocement during the MICP process.The precipitated biocement alters the hydro-mechanical performance of the soil mass.Usually,the flow,deformation,and transport phenomena regulate the biocementation technique via coupled bio-chemo-hydro-mechanical(BCHM)processes.Among all,one crucial phenomenon controlling the precipitation mechanism is the encapsulation of biomass by calcium carbonate.Biomass encapsulation can potentially reduce the biochemical reaction rate and decelerate biocementation.Laboratory examination of the encapsulation process demands a thorough analysis of associated coupled effects.Despite this,a numerical model can assist in capturing the coupled processes influencing encapsulation during the MICP treatment.However,most numerical models did not consider biochemical reaction rate kinetics accounting for the influence of bacterial encapsulation.Given this,the current study developed a coupled BCHM model to evaluate the effect of encapsulation on the precipitated calcite content using a micro-scale semiempirical relationship.Firstly,the developed BCHM model was verified and validated using numerical and experimental observations of soil column tests.Later,the encapsulation phenomenon was investigated in the soil columns of variable maximum calcite crystal sizes.The results depict altered reaction rates due to the encapsulation phenomenon and an observable change in the precipitated calcite content for each maximum crystal size.Furthermore,the permeability and deformation of the soil mass were affected by the simultaneous precipitation of calcium carbonate.Overall,the present study comprehended the influence of the encapsulation of bacteria on cement morphology-induced permeability,biocement-induced stresses and displacements.
文摘BACKGROUND Esophageal cancer is one of the most common malignant tumors.The three-dimensional quality structure model is a quality assessment theory that includes three dimensions:Structure,process,and results.AIM To investigate the effects of nursing interventions with three-dimensional quality assessment on the efficacy and disease management ability of patients undergoing esophageal cancer surgery.METHODS In this prospective study,the control group received routine nursing,and the intervention group additionally received a three-dimensional quality assessment intervention based on the above routine care.Self-efficacy and patient disease management abilities were evaluated using the General Self-Efficacy Scale(GSES)and Exercise of Self-Care Agency scale,respectively.IBM SPSS Statistics for Windows,version 17.0,was used for the data processing.RESULTS This study recruited 112 patients who were assigned to the control and experi-mental groups(n=56 per group).Before the intervention,there was no significant difference in GSES scores between the two groups(P>0.05).After the inter-vention,the GSES scores of both groups increased,with the experimental group showing higher values(P<0.05).At the time of discharge and three months after discharge,the scores for positive attitudes,self-stress reduction,and total score of health promotion in the experimental group were higher than those in the control group(P<0.05).CONCLUSION The implementation of a three-dimensional quality structure model for postoperative patients with esophageal cancer can effectively improve their self-management ability and self-efficacy of postoperative patients.
文摘Software Development Life Cycle (SDLC) is one of the major ingredients for the development of efficient software systems within a time frame and low-cost involvement. From the literature, it is evident that there are various kinds of process models that are used by the software industries for the development of small, medium and long-term software projects, but many of them do not cover risk management. It is quite obvious that the improper selection of the software development process model leads to failure of the software products as it is time bound activity. In the present work, a new software development process model is proposed which covers the risks at any stage of the development of the software product. The model is named a Hemant-Vipin (HV) process model and may be helpful for the software industries for development of the efficient software products and timely delivery at the end of the client. The efficiency of the HV process model is observed by considering various kinds of factors like requirement clarity, user feedback, change agility, predictability, risk identification, practical implementation, customer satisfaction, incremental development, use of ready-made components, quick design, resource organization and many more and found through a case study that the presented approach covers many of parameters in comparison of the existing process models. .
基金The National Natural Science Foundation of China (No.52165060,12272189)Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region: (NJYT23022)+2 种基金Science and Technology Projects of Inner Mongolia Autonomous Region: (2021GG0432)Central Guiding Local Science and Technology Development Plan (2022ZY0013)Basic research business fee project for universities directly under Inner Mongolia Autonomous Region (GXKY22046).
文摘Aiming at the problems that the simulation accuracy which is reduced due to the simplification of the model,a three-dimensional simulation method based on solid modeling is being proposed.By analyzing the motion relationship and positional relationship between the caries knife and the workpiece,the coordinate system of the caries machining was established.With the MATLAB software,the cutting edge model and the blade sweeping surface model of the boring cutter are sequentially established.Boolean operation is performed on the blade swept surface formed by the tooth cutter teeth with time t and the workpiece tooth geometry as well as the undeformed three-dimensional chip geometry model and the instantaneous cogging geometry model are obtained at different times.Through the compare between gear end face simulation tooth profile and the theoretical inner arc tooth profile,we verified the accuracy and rationality of the proposed method.
文摘Objective:To explore and analyze the work process-based practical training teaching model for basic nursing skills in vocational colleges and its implementation effects.Methods:A total of 82 nursing students from our school were selected for the study,which was conducted from April 2023 to April 2024.Using a random number table method,the students were divided into an observation group and a control group,each with 41 students.The control group received conventional practical training teaching,while the observation group followed the work process-based practical training model for basic nursing skills.The assessment scores and teaching satisfaction of the two groups were compared.Results:The comparison of assessment scores showed that the observation group performed significantly better than the control group(P<0.05).The comparison of teaching satisfaction also indicated that the observation group had significantly higher satisfaction than the control group(P<0.05).Conclusion:The work process-based practical training teaching model for basic nursing skills in vocational colleges can improve students’assessment scores and enhance teaching satisfaction,demonstrating its value for wider application.
基金the support of the National Natural Science Foundation of China(Nos.41974073,41404053)the Macao Foundation and the pre-research project of Civil Aerospace Technologies(Nos.D020308 and D020303)+2 种基金funded by the National Space Administration of Chinathe opening fund of the State Key Laboratory of Lunar and Planetary Sciences(Macao University of Science and Technology,Macao Science and Technology Development Fund No.119/2017/A3)the Specialized Research Fund for State Key Laboratories,and the NUIST-UoR International Research Institute。
文摘We combined domestic ground-based and satellite magnetic measurements to create a regional three-dimensional surface Spline(3DSS)gradient model of the main geomagnetic field over the Chinese continent.To improve the precision of the model,we considered the data gap between the ground and satellite data.We compared and analyzed the results of the Taylor polynomial,surface Spline,and CHAOS-6(the CHAMP,?rsted and SAC-C model of Earth’s magnetic field)gradient models.Results showed that the gradients in the south-north and east-west directions of the four models were consistent.The 3DSS model was able to express not only gradients at different altitudes,but also average gradients inside the research area.The two Spline models were able to capture more information on gradient anomalies than were the fitted models.Strong local anomalies were observed in northern Xinjiang,Beijing,and the junction area between Jiangsu and Zhejiang,and the total intensity F decreased whereas the altitude increased.The gradient decreased by 21.69%in the south-north direction and increased by 11.78%in the east-west direction.In addition,the altitude gradient turned from negative to positive while the altitude increased.The Spline model and the two fitted models differed mainly in the field sources they expressed and the modeling theory.
文摘Objective To evaluate the predictive validity of IRIS™(Intuitive Surgical®,Sunnyvale,CA,USA)as a planning tool for robot-assisted partial nephrectomy(RAPN)by assessing the degree of overlap with intraoperative execution.Methods Thirty-one patients scheduled for RAPN by four experienced urologists were enrolled in a prospective study.Prior to surgery,urologists reviewed the IRIS™three-dimensional model on an iphone Operating System(iOS)app and completed a questionnaire outlining their surgical plan including surgical approach,and ischemia technique as well as confidence in executing this plan.Postoperatively,questionnaires assessing the procedural approach,clinical utility,efficiency,and effectiveness of IRIS™were completed.The degree of overlap between the preoperative and intraoperative questionnaires and between the planned approach and actual execution of the procedure was analyzed.Questionnaires were answered on a 5-point Likert scale and scores of 4 or greater were considered positive.Results Mean age was 65.1 years with a mean tumor size of 27.7 mm(interquartile range 17.5-44.0 mm).Hilar tumors consisted of 32.3%;48.4%of patients had R.E.N.A.L.nephrometry scores of 7-9.On preoperative questionnaires,the surgeons reported that in 67.7%cases they were confident that they can perform the procedure successfully,and on intraoperative questionnaires,the surgeons reported that in 96.8%cases IRIS™helped achieve good spatial sensation of the anatomy.There was a high degree of overlap between preoperative and intraoperative questionnaires for the surgical approach,interpreting anatomical details and clinical utility.When comparing plans for selective or off-clamp,the preoperative plan was executed in 90.0%of cases intraoperatively.Conclusion A high degree of overlap between the preoperative surgical approach and intraoperative RAPN execution was found using IRIS™.This is the first study to evaluate the predictive accuracy of IRIS™during RAPN by comparing preoperative plan and intraoperative execution.
基金supported by the National Natural Science Foundation of China under Grant[52077027]Liaoning Province Science and Technology Major Project[No.2020JH1/10100020].
文摘In this paper, the axial-flux permanent magnet driver is modeledand analyzed in a simple and novel way under three-dimensional cylindricalcoordinates. The inherent three-dimensional characteristics of the deviceare comprehensively considered, and the governing equations are solved bysimplifying the boundary conditions. The axial magnetization of the sectorshapedpermanent magnets is accurately described in an algebraic form bythe parameters, which makes the physical meaning more explicit than thepurely mathematical expression in general series forms. The parameters of theBessel function are determined simply and the magnetic field distribution ofpermanent magnets and the air-gap is solved. Furthermore, the field solutionsare completely analytical, which provides convenience and satisfactoryaccuracy for modeling a series of electromagnetic performance parameters,such as the axial electromagnetic force density, axial electromagnetic force,and electromagnetic torque. The correctness and accuracy of the analyticalmodels are fully verified by three-dimensional finite element simulations and a15 kW prototype and the results of calculations, simulations, and experimentsunder three methods are highly consistent. The influence of several designparameters on magnetic field distribution and performance is studied and discussed.The results indicate that the modeling method proposed in this papercan calculate the magnetic field distribution and performance accurately andrapidly, which affords an important reference for the design and optimizationof axial-flux permanent magnet drivers.
基金supported by the National 973 Fundamental Research Program of China (No.2005CB724102,2006CB705404)
文摘The traditional fuzzy logic system (FLS) can only model and control the process in two-dimensional nature. Many of real-world systems are of multidimensional features, such as, thermal and fluid processes with spatiotemporal dynamics, biological systems, or decision-making processes that contain stochastic and imprecise uncertainties. These types of systems are difficult for the traditional FLS to model and control because they require a third dimension for spatial or probabilistic information. The type-2 fuzzy set provides the possibility to develop a three-dimensional fuzzy logic system for modeling and controlling these processes in three-dimensional nature.
基金Project(50625101) supported by the National Science Fund for Distinguished Young Scholars of ChinaProject supported by Graduate Independent Innovation Foundation of Shandong University(GIIFSDU),ChinaProject(51071097) supported by the National Natural Science Foundation of China
文摘A series of Al-Ti-B master alloys were prepared by different preparation routes,and the TiB2 particles in the master alloys were extracted and analyzed.It is found that the forming process has significant influence on the three-dimensional morphology of TiB2 particles.Different preparation routes result in different reaction forms,which accounts for the morphology variation of TiB2 particles.When the Al-Ti-B master alloy is prepared using "halide salt" route,TiB2 particles exhibit hexagonal platelet morphology and are independent with each other.In addition,the reaction temperature almost does not have influence on the morphology of TiB2 particles.However,TiB2 particles exhibit different morphologies at different reaction temperatures when the master alloys are prepared with Al-3B and Ti sponge.When the master alloy is prepared at 850 ℃,a kind of TiB2 particle agglomeration forms with a size larger than 5 μm.The TiB2 particles change to layered stacking morphology even dendritic morphology with the reaction temperature reaching up to 1200 ℃.
基金supported by the National Natural Science Foundation of China(No.U1960202)。
文摘With the development of automation and informatization in the steelmaking industry,the human brain gradually fails to cope with an increasing amount of data generated during the steelmaking process.Machine learning technology provides a new method other than production experience and metallurgical principles in dealing with large amounts of data.The application of machine learning in the steelmaking process has become a research hotspot in recent years.This paper provides an overview of the applications of machine learning in the steelmaking process modeling involving hot metal pretreatment,primary steelmaking,secondary refining,and some other aspects.The three most frequently used machine learning algorithms in steelmaking process modeling are the artificial neural network,support vector machine,and case-based reasoning,demonstrating proportions of 56%,14%,and 10%,respectively.Collected data in the steelmaking plants are frequently faulty.Thus,data processing,especially data cleaning,is crucially important to the performance of machine learning models.The detection of variable importance can be used to optimize the process parameters and guide production.Machine learning is used in hot metal pretreatment modeling mainly for endpoint S content prediction.The predictions of the endpoints of element compositions and the process parameters are widely investigated in primary steelmaking.Machine learning is used in secondary refining modeling mainly for ladle furnaces,Ruhrstahl–Heraeus,vacuum degassing,argon oxygen decarburization,and vacuum oxygen decarburization processes.Further development of machine learning in the steelmaking process modeling can be realized through additional efforts in the construction of the data platform,the industrial transformation of the research achievements to the practical steelmaking process,and the improvement of the universality of the machine learning models.
文摘安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事故分析的方法,并以青岛石油爆炸事故为例进行事故原因分析。结果显示:STAMP-24Model可以分组织,分层次且有效、全面、详细地分析涉及多个组织的事故原因,探究多组织之间的交互关系;对事故进行动态演化分析,可得到各组织不安全动作耦合关系与形成的事故失效链及管控失效路径,进而为预防多组织事故提供思路和参考。
基金supported by the National Key Research and Development Program of China(2021 YFB 4000500,2021 YFB 4000501,and 2021 YFB 4000502)。
文摘Steam cracking is the dominant technology for producing light olefins,which are believed to be the foundation of the chemical industry.Predictive models of the cracking process can boost production efficiency and profit margin.Rapid advancements in machine learning research have recently enabled data-driven solutions to usher in a new era of process modeling.Meanwhile,its practical application to steam cracking is still hindered by the trade-off between prediction accuracy and computational speed.This research presents a framework for data-driven intelligent modeling of the steam cracking process.Industrial data preparation and feature engineering techniques provide computational-ready datasets for the framework,and feedstock similarities are exploited using k-means clustering.We propose LArge-Residuals-Deletion Multivariate Adaptive Regression Spline(LARD-MARS),a modeling approach that explicitly generates output formulas and eliminates potentially outlying instances.The framework is validated further by the presentation of clustering results,the explanation of variable importance,and the testing and comparison of model performance.
基金funded by the NationalNatural Science Foundation of China (Nos.11902229,11502181)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos.XDB22040502,XDC06030200).
文摘The comprehensive tire building and shaping processes are investigated through the finite element method(FEM)in this article.The mechanical properties of the uncured rubber from different tire components are investigated through cyclic loading-unloading experiments under different strain rates.Based on the experiments,an elastoviscoplastic constitutive model is adopted to describe themechanical behaviors of the uncured rubber.The distinct mechanical properties,including the stress level,hysteresis and residual strain,of the uncured rubber can all be well characterized.The whole tire building process(including component winding,rubber bladder inflation,component stitching and carcass band folding-back)and the shaping process are simulated using this constitutive model.The simulated green tire profile is in good agreement with the actual profile obtained through 3D scanning.The deformation and stress of the rubber components and the cord reinforcements during production can be obtained fromthe FE simulation,which is helpful for judging the rationality of the tire construction design.Finally,the influence of the parameter“drum width”is investigated,and the simulated result is found to be consistent with the experimental observations,which verifies the effectiveness of the simulation.The established simulation strategy provides some guiding significance for the improvement of tire design parameters and the elimination of tire production defects.