期刊文献+
共找到1,740篇文章
< 1 2 87 >
每页显示 20 50 100
Quantitatively characterizing sandy soil structure altered by MICP using multi-level thresholding segmentation algorithm 被引量:1
1
作者 Jianjun Zi Tao Liu +3 位作者 Wei Zhang Xiaohua Pan Hu Ji Honghu Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4285-4299,共15页
The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmenta... The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmentation algorithm,genetic algorithm(GA)enhanced Kapur entropy(KE)(GAE-KE),to accomplish quantitative characterization of sandy soil structure altered by MICP cementation.A sandy soil sample was treated using MICP method and scanned by the synchrotron radiation(SR)micro-CT with a resolution of 6.5 mm.After validation,tri-level thresholding segmentation using GAE-KE successfully separated the precipitated calcium carbonate crystals from sand particles and pores.The spatial distributions of porosity,pore structure parameters,and flow characteristics were calculated for quantitative characterization.The results offer pore-scale insights into the MICP treatment effect,and the quantitative understanding confirms the feasibility of the GAE-KE multi-level thresholding segmentation algorithm. 展开更多
关键词 Soil structure MICRO-CT Multi-level thresholding MICP Genetic algorithm(GA)
下载PDF
Vehicle Abnormal Behavior Detection Based on Dense Block and Soft Thresholding
2
作者 Yuanyao Lu Wei Chen +2 位作者 Zhanhe Yu Jingxuan Wang Chaochao Yang 《Computers, Materials & Continua》 SCIE EI 2024年第6期5051-5066,共16页
With the rapid advancement of social economies,intelligent transportation systems are gaining increasing atten-tion.Central to these systems is the detection of abnormal vehicle behavior,which remains a critical chall... With the rapid advancement of social economies,intelligent transportation systems are gaining increasing atten-tion.Central to these systems is the detection of abnormal vehicle behavior,which remains a critical challenge due to the complexity of urban roadways and the variability of external conditions.Current research on detecting abnormal traffic behaviors is still nascent,with significant room for improvement in recognition accuracy.To address this,this research has developed a new model for recognizing abnormal traffic behaviors.This model employs the R3D network as its core architecture,incorporating a dense block to facilitate feature reuse.This approach not only enhances performance with fewer parameters and reduced computational demands but also allows for the acquisition of new features while simplifying the overall network structure.Additionally,this research integrates a self-attentive method that dynamically adjusts to the prevailing traffic conditions,optimizing the relevance of features for the task at hand.For temporal analysis,a Bi-LSTM layer is utilized to extract and learn from time-based data nuances.This research conducted a series of comparative experiments using the UCF-Crime dataset,achieving a notable accuracy of 89.30%on our test set.Our results demonstrate that our model not only operates with fewer parameters but also achieves superior recognition accuracy compared to previous models. 展开更多
关键词 Vehicle abnormal behavior deep learning ResNet dense block soft thresholding
下载PDF
Salp Swarm Algorithm with Multilevel Thresholding Based Brain Tumor Segmentation Model
3
作者 Hanan T.Halawani 《Computers, Materials & Continua》 SCIE EI 2023年第3期6775-6788,共14页
Biomedical image processing acts as an essential part of severalmedical applications in supporting computer aided disease diagnosis. MagneticResonance Image (MRI) is a commonly utilized imaging tool used tosave glioma... Biomedical image processing acts as an essential part of severalmedical applications in supporting computer aided disease diagnosis. MagneticResonance Image (MRI) is a commonly utilized imaging tool used tosave glioma for clinical examination. Biomedical image segmentation plays avital role in healthcare decision making process which also helps to identifythe affected regions in the MRI. Though numerous segmentation models areavailable in the literature, it is still needed to develop effective segmentationmodels for BT. This study develops a salp swarm algorithm with multi-levelthresholding based brain tumor segmentation (SSAMLT-BTS) model. Thepresented SSAMLT-BTS model initially employs bilateral filtering based onnoise removal and skull stripping as a pre-processing phase. In addition,Otsu thresholding approach is applied to segment the biomedical imagesand the optimum threshold values are chosen by the use of SSA. Finally,active contour (AC) technique is used to identify the suspicious regions in themedical image. A comprehensive experimental analysis of the SSAMLT-BTSmodel is performed using benchmark dataset and the outcomes are inspectedin many aspects. The simulation outcomes reported the improved outcomesof the SSAMLT-BTS model over recent approaches with maximum accuracyof 95.95%. 展开更多
关键词 Brain tumor segmentation noise removal multilevel thresholding healthcare PRE-PROCESSING
下载PDF
Alphabet-Level Indian Sign Language Translation to Text Using Hybrid-AO Thresholding with CNN
4
作者 Seema Sabharwal Priti Singla 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2567-2582,共16页
Sign language is used as a communication medium in the field of trade,defence,and in deaf-mute communities worldwide.Over the last few decades,research in the domain of translation of sign language has grown and becom... Sign language is used as a communication medium in the field of trade,defence,and in deaf-mute communities worldwide.Over the last few decades,research in the domain of translation of sign language has grown and become more challenging.This necessitates the development of a Sign Language Translation System(SLTS)to provide effective communication in different research domains.In this paper,novel Hybrid Adaptive Gaussian Thresholding with Otsu Algorithm(Hybrid-AO)for image segmentation is proposed for the translation of alphabet-level Indian Sign Language(ISLTS)with a 5-layer Convolution Neural Network(CNN).The focus of this paper is to analyze various image segmentation(Canny Edge Detection,Simple Thresholding,and Hybrid-AO),pooling approaches(Max,Average,and Global Average Pooling),and activation functions(ReLU,Leaky ReLU,and ELU).5-layer CNN with Max pooling,Leaky ReLU activation function,and Hybrid-AO(5MXLR-HAO)have outperformed other frameworks.An open-access dataset of ISL alphabets with approx.31 K images of 26 classes have been used to train and test the model.The proposed framework has been developed for translating alphabet-level Indian Sign Language into text.The proposed framework attains 98.95%training accuracy,98.05%validation accuracy,and 0.0721 training loss and 0.1021 validation loss and the perfor-mance of the proposed system outperforms other existing systems. 展开更多
关键词 Sign language translation CNN thresholding Indian sign language
下载PDF
An iterative curvelet thresholding algorithm for seismic random noise attenuation 被引量:8
5
作者 王德利 仝中飞 +1 位作者 唐晨 朱恒 《Applied Geophysics》 SCIE CSCD 2010年第4期315-324,399,共11页
In this paper,we explore the use of iterative curvelet thresholding for seismic random noise attenuation.A new method for combining the curvelet transform with iterative thresholding to suppress random noise is demons... In this paper,we explore the use of iterative curvelet thresholding for seismic random noise attenuation.A new method for combining the curvelet transform with iterative thresholding to suppress random noise is demonstrated and the issue is described as a linear inverse optimal problem using the L1 norm.Random noise suppression in seismic data is transformed into an L1 norm optimization problem based on the curvelet sparsity transform. Compared to the conventional methods such as median filter algorithm,FX deconvolution, and wavelet thresholding,the results of synthetic and field data processing show that the iterative curvelet thresholding proposed in this paper can sufficiently improve signal to noise radio(SNR) and give higher signal fidelity at the same time.Furthermore,to make better use of the curvelet transform such as multiple scales and multiple directions,we control the curvelet direction of the result after iterative curvelet thresholding to further improve the SNR. 展开更多
关键词 curvelet transform iterative thresholding random noise attenuation
下载PDF
Defect image segmentation using multilevel thresholding based on firefly algorithm with opposition-learning 被引量:3
6
作者 陈恺 戴敏 +2 位作者 张志胜 陈平 史金飞 《Journal of Southeast University(English Edition)》 EI CAS 2014年第4期434-438,共5页
To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is ex... To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is expanded to a multilevel Otsu thresholding algorithm. Secondly a firefly algorithm with opposition-learning OFA is proposed.In the OFA opposite fireflies are generated to increase the diversity of the fireflies and improve the global search ability. Thirdly the OFA is applied to searching multilevel thresholds for image segmentation. Finally the proposed method is implemented to segment the QFN images with defects and the results are compared with three methods i.e. the exhaustive search method the multilevel Otsu thresholding method based on particle swarm optimization and the multilevel Otsu thresholding method based on the firefly algorithm. Experimental results show that the proposed method can segment QFN surface defects images more efficiently and at a greater speed than that of the other three methods. 展开更多
关键词 quad flat non-lead QFN surface defects opposition-learning firefly algorithm multilevel Otsu thresholding algorithm
下载PDF
AUTOMATIC MULTILEVEL THRESHOLDING METHOD BASED ON MAXIMUM ENTROPY 被引量:2
7
作者 曹力 史忠科 郑家伟 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第4期335-338,共4页
In the multilevel thresholding segmentation of the image, the classification number is always given by the supervisor. To solve this problem, a fast multilevel thresholding algorithm considering both the threshold val... In the multilevel thresholding segmentation of the image, the classification number is always given by the supervisor. To solve this problem, a fast multilevel thresholding algorithm considering both the threshold value and the classification number is proposed based on the maximum entropy, and the self-adaptive criterion of the classification number is given. The algorithm can obtain thresholds and automatically decide the classification number. Experimental results show that the algorithm is effective. 展开更多
关键词 multilevel thresholding maximum entropy classification number nonparametric method
下载PDF
Optimal multilevel thresholding based on molecular kinetic theory optimization algorithm and line intercept histogram 被引量:3
8
作者 范朝冬 任柯 +1 位作者 张英杰 易灵芝 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第4期880-890,共11页
Among all segmentation techniques, Otsu thresholding method is widely used. Line intercept histogram based Otsu thresholding method(LIH Otsu method) can be more resistant to Gaussian noise, highly efficient in computi... Among all segmentation techniques, Otsu thresholding method is widely used. Line intercept histogram based Otsu thresholding method(LIH Otsu method) can be more resistant to Gaussian noise, highly efficient in computing time, and can be easily extended to multilevel thresholding. But when images contain salt-and-pepper noise, LIH Otsu method performs poorly. An improved LIH Otsu method(ILIH Otsu method) is presented, which can be more resistant to Gaussian noise and salt-and-pepper noise. Moreover, it can be easily extended to multilevel thresholding. In order to improve the efficiency, the optimization algorithm based on the kinetic-molecular theory(KMTOA) is used to determine the optimal thresholds. The experimental results show that ILIH Otsu method has stronger anti-noise ability than two-dimensional Otsu thresholding method(2-D Otsu method), LIH Otsu method, K-means clustering algorithm and fuzzy clustering algorithm. 展开更多
关键词 image segmentation multilevel thresholding Otsu thresholding method kinetic-molecular theory (KMTOA) line intercept histogram
下载PDF
PROJECTED GRADIENT DESCENT BASED ON SOFT THRESHOLDING IN MATRIX COMPLETION 被引量:1
9
作者 Zhao Yujuan Zheng Baoyu Chen Shouning 《Journal of Electronics(China)》 2013年第6期517-524,共8页
Matrix completion is the extension of compressed sensing.In compressed sensing,we solve the underdetermined equations using sparsity prior of the unknown signals.However,in matrix completion,we solve the underdetermin... Matrix completion is the extension of compressed sensing.In compressed sensing,we solve the underdetermined equations using sparsity prior of the unknown signals.However,in matrix completion,we solve the underdetermined equations based on sparsity prior in singular values set of the unknown matrix,which also calls low-rank prior of the unknown matrix.This paper firstly introduces basic concept of matrix completion,analyses the matrix suitably used in matrix completion,and shows that such matrix should satisfy two conditions:low rank and incoherence property.Then the paper provides three reconstruction algorithms commonly used in matrix completion:singular value thresholding algorithm,singular value projection,and atomic decomposition for minimum rank approximation,puts forward their shortcoming to know the rank of original matrix.The Projected Gradient Descent based on Soft Thresholding(STPGD),proposed in this paper predicts the rank of unknown matrix using soft thresholding,and iteratives based on projected gradient descent,thus it could estimate the rank of unknown matrix exactly with low computational complexity,this is verified by numerical experiments.We also analyze the convergence and computational complexity of the STPGD algorithm,point out this algorithm is guaranteed to converge,and analyse the number of iterations needed to reach reconstruction error.Compared the computational complexity of the STPGD algorithm to other algorithms,we draw the conclusion that the STPGD algorithm not only reduces the computational complexity,but also improves the precision of the reconstruction solution. 展开更多
关键词 Matrix Completion (MC) Compressed Sensing (CS) Iterative thresholding algorithm Projected Gradient Descent based on Soft thresholding (STPGD)
下载PDF
A Context Sensitive Multilevel Thresholding Using Swarm Based Algorithms 被引量:6
10
作者 Shreya Pare Anil Kumar +1 位作者 Varun Bajaj Girish Kumar Singh 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第6期1471-1486,共16页
In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding.... In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding. These new energy based objective criterions are further combined with the proficient search capability of swarm based algorithms to improve the efficiency and robustness. The proposed multilevel thresholding approach accurately determines the optimal threshold values by using generated energy curve, and acutely distinguishes different objects within the multi-channel complex images. The performance evaluation indices and experiments on different test images illustrate that Kapur's entropy aided with differential evolution and bacterial foraging optimization algorithm generates the most accurate and visually pleasing segmented images. 展开更多
关键词 COLOR image segmentation Kapur's ENTROPY MULTILEVEL thresholding OTSU method SWARM based optimization algorithms Tsalli's ENTROPY
下载PDF
Enhancement of spatial resolution of ghost imaging via localizing and thresholding 被引量:4
11
作者 Yunlong Wang Yingnan Zhou +5 位作者 Shaoxiong Wang Feiran Wang Ruifeng Liu Hong Gao Pei Zhang Fuli Li 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第4期190-195,共6页
In ghost imaging, an illumination light is split into test and reference beams which pass through two different optical systems respectively and an image is constructed with the second-order correlation between the tw... In ghost imaging, an illumination light is split into test and reference beams which pass through two different optical systems respectively and an image is constructed with the second-order correlation between the two light beams. Since both light beams are diffracted when passing through the optical systems, the spatial resolution of ghost imaging is in general lower than that of a corresponding conventional imaging system. When Gaussian-shaped light spots are used to illuminate an object, randomly scanning across the object plane, in the ghost imaging scheme, we show th√at by localizing central positions of the spots of the reference light beam, the resolution can be increased by a factor of 2^(1/2) same as that of the corresponding conventional imaging system. We also find that the resolution can be further enhanced by setting an appropriate threshold to the bucket measurement of ghost imaging. 展开更多
关键词 GHOST imaging localization thresholding post-selection RESOLUTION ENHANCEMENT
原文传递
Automatic Delineation of Lung Parenchyma Based on Multilevel Thresholding and Gaussian Mixture Modelling 被引量:2
12
作者 S.Gopalakrishnan A.Kandaswamy 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第2期141-152,共12页
Delineation of the lung parenchyma in the thoracic Computed Tomography(CT)is an important processing step for most of the pulmonary image analysis such as lung volume extraction,lung nodule detection and pulmonary ves... Delineation of the lung parenchyma in the thoracic Computed Tomography(CT)is an important processing step for most of the pulmonary image analysis such as lung volume extraction,lung nodule detection and pulmonary vessel segmentation.An automatic method for accurate delineation of lung parenchyma in thoracic Computed Tomography images is presented in this paper.The proposed method involves a segmentation phase followed by a lung boundary correction technique.The tissues in the thoracic Computed Tomography can be represented by a number of Gaussians.We propose a histogram utilized Adaptive Multilevel Thresholding(AMT)for estimating the total number of Gaussians and their initial parameters.The parameters of Gaussian components are updated by Expectation Maximization(EM)algorithm.The segmented lung parenchyma from the Gaussian Mixture model(GMM)undergoes an Adaptive Morphological Filtering(AMF)to reduce the boundary errors.The proposed method has been tested on 70 diseased and 119 normal lung images from 28 cases obtained from Lung Image Database Consortium(LIDC).The performance of the proposed system has been validated. 展开更多
关键词 Lung PARENCHYMA DELINEATION THORACIC COMPUTED tomography MULTILEVEL thresholding Gaussian mixture model Adaptive Morphological Filtering
下载PDF
An Improved Image Denoising Method Based on Wavelet Thresholding 被引量:18
13
作者 Hari Om Mantosh Biswas 《Journal of Signal and Information Processing》 2012年第1期109-116,共8页
VisuShrink, ModineighShrink and NeighShrink are efficient image denoising algorithms based on the discrete wavelet transform (DWT). These methods have disadvantage of using a suboptimal universal threshold and identic... VisuShrink, ModineighShrink and NeighShrink are efficient image denoising algorithms based on the discrete wavelet transform (DWT). These methods have disadvantage of using a suboptimal universal threshold and identical neighbouring window size in all wavelet subbands. In this paper, an improved method is proposed, that determines a threshold as well as neighbouring window size for every subband using its lengths. Our experimental results illustrate that the proposed approach is better than the existing ones, i.e., NeighShrink, ModineighShrink and VisuShrink in terms of peak signal-to-noise ratio (PSNR) i.e. visual quality of the image. 展开更多
关键词 WAVELET Transforms Neighboring COEFFICIENTS WAVELET thresholding Image Denosing Neighbouring COEFFICIENTS PEAK SIGNAL-TO-NOISE RATIO
下载PDF
Fast recursive algorithm for two-dimensional Tsallis entropy thresholding method 被引量:2
14
作者 Tang Yinggan Di Qiuyan Guan Xinping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第3期619-624,共6页
Recently, a two-dimensional (2-D) Tsallis entropy thresholding method has been proposed as a new method for image segmentation. But the computation complexity of 2-D Tsallis entropy is very large and becomes an obst... Recently, a two-dimensional (2-D) Tsallis entropy thresholding method has been proposed as a new method for image segmentation. But the computation complexity of 2-D Tsallis entropy is very large and becomes an obstacle to real time image processing systems. A fast recursive algorithm for 2-D Tsallis entropy thresholding is proposed. The key variables involved in calculating 2-D Tsallis entropy are written in recursive form. Thus, many repeating calculations are avoided and the computation complexity reduces to O(L2) from O(L4). The effectiveness of the proposed algorithm is illustrated by experimental results. 展开更多
关键词 image segmentation thresholding Tsallis entropy fast recursive algorithm
下载PDF
On Accelerated Singular Value Thresholding Algorithm for Matrix Completion 被引量:3
15
作者 Li Wang Jianfeng Hu Chuanzhong Chen 《Applied Mathematics》 2014年第21期3445-3451,共7页
An accelerated singular value thresholding (SVT) algorithm was introduced for matrix completion in a recent paper [1], which applies an adaptive line search scheme and improves the convergence rate from O(1/N) for SVT... An accelerated singular value thresholding (SVT) algorithm was introduced for matrix completion in a recent paper [1], which applies an adaptive line search scheme and improves the convergence rate from O(1/N) for SVT to O(1/N2), where N is the number of iterations. In this paper, we show that it is the same as the Nemirovski’s approach, and then modify it to obtain an accelerate Nemirovski’s technique and prove the convergence. Our preliminary computational results are very favorable. 展开更多
关键词 Matrix COMPLETION SINGULAR Value thresholding Nemirovski’s LINE SEARCH Scheme Adaptive LINE SEARCH
下载PDF
Denoising of an Image Using Discrete Stationary Wavelet Transform and Various Thresholding Techniques 被引量:8
16
作者 Abdullah Al Jumah 《Journal of Signal and Information Processing》 2013年第1期33-41,共9页
Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in... Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in image denoising due to its properties such as multi-resolution. The problem of estimating an image that is corrupted by Additive White Gaussian Noise has been of interest for practical and theoretical reasons. Non-linear methods especially those based on wavelets have become popular due to its advantages over linear methods. Here I applied non-linear thresholding techniques in wavelet domain such as hard and soft thresholding, wavelet shrinkages such as Visu-shrink (non-adaptive) and SURE, Bayes and Normal Shrink (adaptive), using Discrete Stationary Wavelet Transform (DSWT) for different wavelets, at different levels, to denoise an image and determine the best one out of them. Performance of denoising algorithm is measured using quantitative performance measures such as Signal-to-Noise Ratio (SNR) and Mean Square Error (MSE) for various thresholding techniques. 展开更多
关键词 WAVELET Discrete WAVELET TRANSFORM WAVELET Packet TRANSFORM STATIONARY WAVELET TRANSFORM thresholding Visu Shrink SURE Shrink Normal Shrink Mean Square Error Peak SIGNAL-TO-NOISE Ratio
下载PDF
Automatic Extraction of Urban Road Centerlines from High-Resolution Satellite Imagery Using Automatic Thresholding and Morphological Operation Method 被引量:7
17
作者 Abdur Raziq Aigong Xu Yu Li 《Journal of Geographic Information System》 2016年第4期517-525,共9页
The commercial high-resolution imaging satellite with 1 m spatial resolution IKONOS is an important data source of information for urban planning and geographical information system (GIS) applications. In this paper, ... The commercial high-resolution imaging satellite with 1 m spatial resolution IKONOS is an important data source of information for urban planning and geographical information system (GIS) applications. In this paper, a morphological method is proposed. The proposed method combines the automatic thresholding and morphological operation techniques to extract the road centerline of the urban environment. This method intends to solve urban road centerline problems, vehicle, vegetation, building etc. Based on this morphological method, an object extractor is designed to extract road networks from highly remote sensing images. Some filters are applied in this experiment such as line reconstruction and region filling techniques to connect the disconnected road segments and remove the small redundant. Finally, the thinning algorithm is used to extract the road centerline. Experiments have been conducted on a high-resolution IKONOS and QuickBird images showing the efficiency of the proposed method. 展开更多
关键词 Automatic thresholding High-Resolution Imagery Morphological Operation Posts Processing Thinning Algorithm Urban Road Centerlines Extraction
下载PDF
Segmentation of Vessels by Morphological Filters and Dynamic Thresholding 被引量:1
18
作者 袁慧晶 肖杰 +1 位作者 王涌天 刘越 《Journal of Beijing Institute of Technology》 EI CAS 2006年第3期327-330,共4页
A method of segmenting vessels by morphological filters and dynamic thresholding for digital subtraction angiography (DSA) images is presented. The first step is to reduce the noise and enhance the details of image ... A method of segmenting vessels by morphological filters and dynamic thresholding for digital subtraction angiography (DSA) images is presented. The first step is to reduce the noise and enhance the details of image by using morpholngical operators. The second is to segment vessels by dynamic thresholding combined with global thresholding based on the properties of DSA images. Artificial images and actual images have been tested. Experiment results show that the proposed method is efficient and is of great potential for the segmentation of vessels in medical images. 展开更多
关键词 mathematical morphology SEGMENTATION thresholding VESSELS
下载PDF
2-D mini mumfuzzy entropy method of image thresholding based on genetic algorithm 被引量:1
19
作者 张兴会 刘玲 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第3期557-560,共4页
A new image thresholding method is introduced, which is based on 2-D histgram and minimizing the measures of fuzziness of an input image. A new definition of fuzzy membership function is proposed, it denotes the chara... A new image thresholding method is introduced, which is based on 2-D histgram and minimizing the measures of fuzziness of an input image. A new definition of fuzzy membership function is proposed, it denotes the characteristic relationship between the gray level of each pixel and the average value of its neighborhood. When the threshold is not located at the obvious and deep valley of the histgram, genetic algorithm is devoted to the problem of selecting the appropriate threshold value. The experimental results indicate that the proposed method has good performance. 展开更多
关键词 image thresholding 2-D fuzzy entropy genetic algorithm.
下载PDF
APPLICATION OF NOISE REDUCTION METHOD BASED ON CURVELET THRESHOLDING NEURAL NETWORK FOR POLAR ICE RADAR DATA PROCESSING 被引量:1
20
作者 Wang Wenpeng Zhao Bo Liu Xiaojun 《Journal of Electronics(China)》 2013年第4期377-383,共7页
Due to the demand of data processing for polar ice radar in our laboratory, a Curvelet Thresholding Neural Network (TNN) noise reduction method is proposed, and a new threshold function with infinite-order continuous ... Due to the demand of data processing for polar ice radar in our laboratory, a Curvelet Thresholding Neural Network (TNN) noise reduction method is proposed, and a new threshold function with infinite-order continuous derivative is constructed. The method is based on TNN model. In the learning process of TNN, the gradient descent method is adopted to solve the adaptive optimal thresholds of different scales and directions in Curvelet domain, and to achieve an optimal mean square error performance. In this paper, the specific implementation steps are presented, and the superiority of this method is verified by simulation. Finally, the proposed method is used to process the ice radar data obtained during the 28th Chinese National Antarctic Research Expedition in the region of Zhongshan Station, Antarctica. Experimental results show that the proposed method can reduce the noise effectively, while preserving the edge of the ice layers. 展开更多
关键词 Radar data processing thresholding Neural Network (TNN) CURVELET Ice radar
下载PDF
上一页 1 2 87 下一页 到第
使用帮助 返回顶部