Using the data of drilling, logging, core, experiments and production, the heterogeneity and differential hydrocarbon accumulation model of deep reservoirs in Cretaceous Qingshuihe Formation(K1q) in the western sectio...Using the data of drilling, logging, core, experiments and production, the heterogeneity and differential hydrocarbon accumulation model of deep reservoirs in Cretaceous Qingshuihe Formation(K1q) in the western section of the foreland thrust belt in southern Junggar Basin are investigated. The target reservoirs are characterized by superimposition of conglomerates, sandy conglomerates and sandstones, with high content of plastic clasts. The reservoir space is mainly composed of intergranular pores. The reservoirs are overall tight, and the sandy conglomerate has the best physical properties. The coupling of short deep burial period with low paleotemperature gradient and formation overpressure led to the relatively weak diagenetic strength of the reservoirs. Specifically, the sandy conglomerates show relatively low carbonate cementation, low compaction rate and high dissolution porosity. The special stress-strain mechanism of the anticline makes the reservoirs at the top of the anticline turning point more reformed by fractures than those at the limbs, and the formation overpressure makes the fractures in open state. Moreover, the sandy conglomerates have the highest oil saturation. Typical anticline reservoirs are developed in deep part of the thrust belt, but characterized by "big trap with small reservoir". Significantly, the sandy conglomerates at the top of anticline turning point have better quality, lower in-situ stress and higher structural position than those at the limbs,with the internal hydrocarbons most enriched, making them high-yield oil/gas layers. The exponential decline of fractures makes hydrocarbon accumulation difficult in the reservoirs at the limbs. Nonetheless, plane hydrocarbon distribution is more extensive at the gentle limb than the steep limb.展开更多
Based on fission track dating of apatite, and measurement of vitrinite reflectance of rock samples from the Longmenshan (Longmen Mountain)area and the West Sichuan foreland basin and computer modelling it is concluded...Based on fission track dating of apatite, and measurement of vitrinite reflectance of rock samples from the Longmenshan (Longmen Mountain)area and the West Sichuan foreland basin and computer modelling it is concluded that (l)the Songpan-Garze fold belt has uplifted at least by 3-4 km with an uplift rate of no less than 0.3-0.4 mm/a since 10 Ma B.P.; (2) the Longmenshan thrust nappe belt has uplifted at least by 5-6 km with an uplift rate of more than 0.5- 0.6 mm /a since 10 Ma B.P.; (3) the Longmenshan detachment belt has uplifted by 1 - 2 km at a rate of 0.016-0.032 mm/a since 60 Ma B.P.; (4) the West Sichuan foreland basin has uplifted by 1.7-3 km at a rate of 0.028-0.05 mm/a since 60 Ma B.P.; (5) the uplift rate of the area on the west side of the Beichuan-Yingxiu-Xiaoguanzi fault for the last 10 Ma is 40 times as much as that on its east side; (6) the uplifting of the the Songpan - Garze fold belt and the subsidence of the West Sichuan foreland basin 60 Ma ago exhibit a mirro-image correlation, i.e. the rapid uplifting of the the Songpan-Garze fold belt was corresponding to the rapid subsidence of the basin;the Songpan-Garze fold belt has uplifted at a much greater rate than the West Sichuan foeland basin in the last 60 Ma;and (7) the palaeogeothermal gradient was 25℃ /km in the West Sichuan foreland basin.展开更多
Lithic (or gravel) composition analyses of the Jurassic Sanjianpu Formation and Fenghuangtai Formation in the Hefei basin show that the sediment provenance consists mainly of four kinds of rock units: the basement met...Lithic (or gravel) composition analyses of the Jurassic Sanjianpu Formation and Fenghuangtai Formation in the Hefei basin show that the sediment provenance consists mainly of four kinds of rock units: the basement metamorphic complex, granitic rocks, medium- and low-grade metamorphic rocks, and sandy and muddy sedimentary rocks, which are distributed along the bounding thrust belt. The whole stratigraphic section can be divided into 2 lithic sequences and 7 subsequences. The regular distribution and changes of lithic fragments and gravels in lithic (or gravel) sequences reflect that the bounding thrust belt of basin has undergone 2 thrusting cycles and 7 thrusting events. Lithic (or gravel) composition analyses of the basin fully reveal that the northern Dabie basement metamorphic complex was exhumed on the earth's surface in the Middle and Late Jurassic, and extensive intermediate and acid intrusive rocks were developed in the southern North Huaiyang or northern Dabie Mountains during the basin's syndepositional stage.展开更多
By analyzing the balanced cross sections and subsidence history of the Longmen Mountain thrust belt, China, we concluded that it had experienced five tectonic stages: (1) the formation stage (T3x) of the miniatur...By analyzing the balanced cross sections and subsidence history of the Longmen Mountain thrust belt, China, we concluded that it had experienced five tectonic stages: (1) the formation stage (T3x) of the miniature of Longmen Mountain, early Indosinian movement, and Anxian tectonic movement created the Longmen Mountain; (2) the stable tectonic stage (J1) where weaker tectonic movement resulted in the Longmen Mountain thrust belt being slightly uplifted and slightly subsiding the foreland basin; (3) the intense tectonic stage (J2-3), namely the early Yanshan movement; (4) continuous tectonic movement (K-E), namely the late Yanshan movement and early Himalayan movement; and (5) the formation of Longmen Mountain (N-Q), namely the late Himalayan movement. During those tectonic deformation stages, the Anxian movement and Himalayan movement played important roles in the Longmen Mountain's formation. The Himalayan movement affected Longmen Mountain the most; the strata thrust intensively and were eroded severely. There are some klippes in the middle part of the Longmen Mountain thrust belt because a few nappes were pushed southeastward in later tectonic deformation.展开更多
The tectono-stratigraphic sequences of the Kuqa foreland fold-thrust belt in the northern Tarim basin, northwest China, can be divided into the Mesozoic sub-salt sequence, the Paleocene-Eocene salt sequence and the Ol...The tectono-stratigraphic sequences of the Kuqa foreland fold-thrust belt in the northern Tarim basin, northwest China, can be divided into the Mesozoic sub-salt sequence, the Paleocene-Eocene salt sequence and the Oligocene-Quaternary supra-salt sequence. The salt sequence is composed mainly of light grey halite, gypsum, marl and brown elastics. A variety of salt-related structures have developed in the Kuqa foreland fold belt, in which the most fascinating structures are salt nappe complex. Based on field observation, seismic interpretation and drilling data, a large-scale salt nappe complex has been identified. It trends approximately east-west for over 200 km and occurs along the west Qiulitag Mountains. Its thrusting displacement is over 30 km. The salt nappe complex appears as an arcuate zone projecting southwestwards along the leading edge of the Kuqa foreland fold belt. The major thrust fault is developed along the Paleocene-Eocene salt beds. The allochthonous nappes comprise large north-dipping faulting monoclines which are made up of Paleocene-Pliocene sediments. Geological analysis and cross-section restoration revealed that the salt nappes were mainly formed at the late Himalayan stage (c.a. 1.64 Ma BP) and have been active until the present day. Because of inhomogeneous thrusting, a great difference may exist in thrust displacement, thrust occurrence, superimposition of allochthonous and autochthonous sequences and the development of the salt-related structures, which indicates the segmentation along the salt nappes. Regional compression, gravitational gliding and spreading controlled the formation and evolution of the salt nappe complex in the Kuqa foreland fold belt.展开更多
The contractional structures in the southern Ordos Basin recorded critical evidence for the interaction between Ordos Basin and Qinling Orogenic Collage. In this study, we performed apatite fission track (AFT) therm...The contractional structures in the southern Ordos Basin recorded critical evidence for the interaction between Ordos Basin and Qinling Orogenic Collage. In this study, we performed apatite fission track (AFT) thermochronology to unravel the timing of thrusting and exhumation for the Laolongshan-Shengrenqiao Fault (LSF) in the southern Ordos Basin. The AFT ages from opposite sides of the LSF reveal a significant latest Triassic to Early Jurassic time-temperature discontinuity across this structure. Thermal modeling reveals at the latest Triassic to Early Jurassic, a ~50~C difference in temperature between opposite sides of the LSF currently exposed at the surface. This discontinuity is best interpreted by an episode of thrusting and exhumation of the LSF with -1.7 km of net vertical displacement during the latest Triassic to Early Jurassic. These results, when combined with earlier thermochronological studies, stratigraphic contact relationship and tectono-sedimentary evolution, suggest that the southern Ordos Basin experienced coeval intense tectonic contraction and developed a north-vergent fold-and-thrust belt. Moreover, the southern Ordos Basin experienced a multi-stage differential exhumation during Mesozoic, including the latest Triassic to Early Jurassic and Late Jurassic to earliest Cretaceous thrust-driven exhumation as well as the Late Cretaceous overall exhumation. Specifically, the two thrust-driven exhumation events were related to tectonic stress propagation derived from the latest Triassic to Early Jurassic continued compression from Qinling Orogenic Collage and the Late Jurassic to earliest Cretaceous intracontinental orogeny of QinUng Orogenic Collage, respectively. By contrast, the Late Cretaceous overall exhumation event was related to the collision of an exotic terrain with the eastern margin of continental China at -100 Ma.展开更多
The Longmenshan thrust system consists of two major groups of structural styles according to the depth of their involvement: basement thrusts-compressional fault blocks; fold-thrust system in the cover. In cross-secti...The Longmenshan thrust system consists of two major groups of structural styles according to the depth of their involvement: basement thrusts-compressional fault blocks; fold-thrust system in the cover. In cross-section, the Longmenshan structural belt is divided into 5 zones. The propagation of the Longmenshan thrust system is piggy-back due to pushing at the early stage and overstep due to gravity sliding at the late stage. Balanced cross-sections and palinspastic reconstruction reveal that the total sliding displacement of the thrust system amounts to 120 km. The tectonic evolution of the Tethys domain in western Sichuan has experienced 5 stages: continental break-up; ocean-continent subduction ; continent-arc collision; orogenic thrusting; uplift of western Sichuan.展开更多
The eastern Qiulitagh fold and thrust belt (EQFTB) is part of the active Kuqa fold and thrust belts of the northern Tarim Basin. Seismic reflection profiles have been integrated with surface geologic and drill data ...The eastern Qiulitagh fold and thrust belt (EQFTB) is part of the active Kuqa fold and thrust belts of the northern Tarim Basin. Seismic reflection profiles have been integrated with surface geologic and drill data to examine the deformation and structure style of the EQFTB, particularly the deformational history of the Dina 2 gas field. Seismic interpretations suggest that Dongqiu 8 is overall a duplex structure developed beneath a passive roof thrust, which generated from a tipline in the Miocene Jidike Formation, and the sole thrust was initiated from the same Jidike Formation evaporite zone that extends westward beneath the Kuqatawu anticline. Dongqiu 5 is a pop-up structure at the western part of the EQFTB, also developed beneath the Jidike Formation evaporite. Very gentle basement dip and steep dipping topographic slope in the EQFTB suggest that the Jidike Formation salt provides effective decoupling. The strong deformation in the EQFTB appears to have developed further south, in an area where evaporite may be lacking. Since the Pliocene, the EQFTB has moved farther south over the evaporite and reached the Yaken area. Restoring a balanced cross-section suggests that the minimum shortening across the EQFTB is more than 7800 m. Assuming that this shortening occurred during the 5.3 Ma timespan, the shortening rate is approximately 1.47 mm/year.展开更多
Aiming at the differential distribution of overpressure in vertical and lateral directions in the foreland thrust belt in the southern margin of Junggar Basin,the study on overpressure origin identification and overpr...Aiming at the differential distribution of overpressure in vertical and lateral directions in the foreland thrust belt in the southern margin of Junggar Basin,the study on overpressure origin identification and overpressure evolution simulation is carried out.Based on the measured formation pressure,drilling fluid density and well logging data,overpressure origin identification and overpressure evolution simulation techniques are used to analyze the vertical and lateral distribution patterns of overpressure,genetic mechanisms of overpressure in different structural belts and causes of the differential distribution of overpressure,and the controlling effects of overpressure development and evolution on the formation and distribution of oil and gas reservoirs.The research shows that overpressure occurs in multiple formations vertically in the southern Junggar foreland thrust belt,the deeper the formation,the bigger the scale of the overpressure is.Laterally,overpressure is least developed in the mountain front belt,most developed in the fold anticline belt,and relatively developed in the slope belt.The differential distribution of overpressure is mainly controlled by the differences in disequilibrium compaction and tectonic compression strengths of different belts.The vertical overpressure transmission caused by faults connecting the deep overpressured system has an important contribution to the further increase of the overpressure strength in this area.The controlling effect of overpressure development and evolution on hydrocarbon accumulation and distribution shows in the following aspects:When the strong overpressure was formed before reservoir becoming tight overpressure maintains the physical properties of deep reservoirs to some extent,expanding the exploration depth of deep reservoirs;reservoirs below the overpressured mudstone cap rocks of the Paleogene Anjihaihe Formation and Lower Cretaceous Tugulu Group are main sites for oil and gas accumulation;under the background of overall overpressure,both overpressure strength too high or too low are not conducive to hydrocarbon enrichment and preservation,and the pressure coefficient between 1.6 and 2.1 is the best.展开更多
基金Supported by the National Natural Science Foundation of China (41902118)Natural Science Foundation of Xinjiang Uygur Autonomous Region (2022D01B141)+1 种基金Natural Science Foundation of Heilongjiang Province (LH2021D003)Heilongjiang Postdoctoral Fund (No.LBH-Z20045)。
文摘Using the data of drilling, logging, core, experiments and production, the heterogeneity and differential hydrocarbon accumulation model of deep reservoirs in Cretaceous Qingshuihe Formation(K1q) in the western section of the foreland thrust belt in southern Junggar Basin are investigated. The target reservoirs are characterized by superimposition of conglomerates, sandy conglomerates and sandstones, with high content of plastic clasts. The reservoir space is mainly composed of intergranular pores. The reservoirs are overall tight, and the sandy conglomerate has the best physical properties. The coupling of short deep burial period with low paleotemperature gradient and formation overpressure led to the relatively weak diagenetic strength of the reservoirs. Specifically, the sandy conglomerates show relatively low carbonate cementation, low compaction rate and high dissolution porosity. The special stress-strain mechanism of the anticline makes the reservoirs at the top of the anticline turning point more reformed by fractures than those at the limbs, and the formation overpressure makes the fractures in open state. Moreover, the sandy conglomerates have the highest oil saturation. Typical anticline reservoirs are developed in deep part of the thrust belt, but characterized by "big trap with small reservoir". Significantly, the sandy conglomerates at the top of anticline turning point have better quality, lower in-situ stress and higher structural position than those at the limbs,with the internal hydrocarbons most enriched, making them high-yield oil/gas layers. The exponential decline of fractures makes hydrocarbon accumulation difficult in the reservoirs at the limbs. Nonetheless, plane hydrocarbon distribution is more extensive at the gentle limb than the steep limb.
基金the National Natural Science Foundation of china (poject No. 49070140)
文摘Based on fission track dating of apatite, and measurement of vitrinite reflectance of rock samples from the Longmenshan (Longmen Mountain)area and the West Sichuan foreland basin and computer modelling it is concluded that (l)the Songpan-Garze fold belt has uplifted at least by 3-4 km with an uplift rate of no less than 0.3-0.4 mm/a since 10 Ma B.P.; (2) the Longmenshan thrust nappe belt has uplifted at least by 5-6 km with an uplift rate of more than 0.5- 0.6 mm /a since 10 Ma B.P.; (3) the Longmenshan detachment belt has uplifted by 1 - 2 km at a rate of 0.016-0.032 mm/a since 60 Ma B.P.; (4) the West Sichuan foreland basin has uplifted by 1.7-3 km at a rate of 0.028-0.05 mm/a since 60 Ma B.P.; (5) the uplift rate of the area on the west side of the Beichuan-Yingxiu-Xiaoguanzi fault for the last 10 Ma is 40 times as much as that on its east side; (6) the uplifting of the the Songpan - Garze fold belt and the subsidence of the West Sichuan foreland basin 60 Ma ago exhibit a mirro-image correlation, i.e. the rapid uplifting of the the Songpan-Garze fold belt was corresponding to the rapid subsidence of the basin;the Songpan-Garze fold belt has uplifted at a much greater rate than the West Sichuan foeland basin in the last 60 Ma;and (7) the palaeogeothermal gradient was 25℃ /km in the West Sichuan foreland basin.
基金This study was supported by the National Natural Science Foundation of China grants 49772119 and 49732080.
文摘Lithic (or gravel) composition analyses of the Jurassic Sanjianpu Formation and Fenghuangtai Formation in the Hefei basin show that the sediment provenance consists mainly of four kinds of rock units: the basement metamorphic complex, granitic rocks, medium- and low-grade metamorphic rocks, and sandy and muddy sedimentary rocks, which are distributed along the bounding thrust belt. The whole stratigraphic section can be divided into 2 lithic sequences and 7 subsequences. The regular distribution and changes of lithic fragments and gravels in lithic (or gravel) sequences reflect that the bounding thrust belt of basin has undergone 2 thrusting cycles and 7 thrusting events. Lithic (or gravel) composition analyses of the basin fully reveal that the northern Dabie basement metamorphic complex was exhumed on the earth's surface in the Middle and Late Jurassic, and extensive intermediate and acid intrusive rocks were developed in the southern North Huaiyang or northern Dabie Mountains during the basin's syndepositional stage.
基金support from the National Natural Science Foundation of China (grant No.40672143,40472107,and 40172076)the National Major Fundamental Research and Development Project (grant No.2005CB422107 and G1999043305)+1 种基金the Development Foundation of Key Laboratory for Hydrocarbon Accumulation of Education Ministry (grant No.2003-03)the Project of Southwestern Exploration and Development Division Company,SINOPEC (GJ-51-0602).
文摘By analyzing the balanced cross sections and subsidence history of the Longmen Mountain thrust belt, China, we concluded that it had experienced five tectonic stages: (1) the formation stage (T3x) of the miniature of Longmen Mountain, early Indosinian movement, and Anxian tectonic movement created the Longmen Mountain; (2) the stable tectonic stage (J1) where weaker tectonic movement resulted in the Longmen Mountain thrust belt being slightly uplifted and slightly subsiding the foreland basin; (3) the intense tectonic stage (J2-3), namely the early Yanshan movement; (4) continuous tectonic movement (K-E), namely the late Yanshan movement and early Himalayan movement; and (5) the formation of Longmen Mountain (N-Q), namely the late Himalayan movement. During those tectonic deformation stages, the Anxian movement and Himalayan movement played important roles in the Longmen Mountain's formation. The Himalayan movement affected Longmen Mountain the most; the strata thrust intensively and were eroded severely. There are some klippes in the middle part of the Longmen Mountain thrust belt because a few nappes were pushed southeastward in later tectonic deformation.
基金This research received financial supports from the National Natural Science Foundation of China(grant 40172076)the National Major Fundamental Research and Development Project(grant G1999043305)the National Key Project of the Ninth Five—Year Plan(grant 99—1111)
文摘The tectono-stratigraphic sequences of the Kuqa foreland fold-thrust belt in the northern Tarim basin, northwest China, can be divided into the Mesozoic sub-salt sequence, the Paleocene-Eocene salt sequence and the Oligocene-Quaternary supra-salt sequence. The salt sequence is composed mainly of light grey halite, gypsum, marl and brown elastics. A variety of salt-related structures have developed in the Kuqa foreland fold belt, in which the most fascinating structures are salt nappe complex. Based on field observation, seismic interpretation and drilling data, a large-scale salt nappe complex has been identified. It trends approximately east-west for over 200 km and occurs along the west Qiulitag Mountains. Its thrusting displacement is over 30 km. The salt nappe complex appears as an arcuate zone projecting southwestwards along the leading edge of the Kuqa foreland fold belt. The major thrust fault is developed along the Paleocene-Eocene salt beds. The allochthonous nappes comprise large north-dipping faulting monoclines which are made up of Paleocene-Pliocene sediments. Geological analysis and cross-section restoration revealed that the salt nappes were mainly formed at the late Himalayan stage (c.a. 1.64 Ma BP) and have been active until the present day. Because of inhomogeneous thrusting, a great difference may exist in thrust displacement, thrust occurrence, superimposition of allochthonous and autochthonous sequences and the development of the salt-related structures, which indicates the segmentation along the salt nappes. Regional compression, gravitational gliding and spreading controlled the formation and evolution of the salt nappe complex in the Kuqa foreland fold belt.
基金supported by the National Natural Science Foundation of China (Grants No. 41572102, 41330315, 41102067, and 41172127)China Geological Survey project (Grant No. 121201011000161111-02)
文摘The contractional structures in the southern Ordos Basin recorded critical evidence for the interaction between Ordos Basin and Qinling Orogenic Collage. In this study, we performed apatite fission track (AFT) thermochronology to unravel the timing of thrusting and exhumation for the Laolongshan-Shengrenqiao Fault (LSF) in the southern Ordos Basin. The AFT ages from opposite sides of the LSF reveal a significant latest Triassic to Early Jurassic time-temperature discontinuity across this structure. Thermal modeling reveals at the latest Triassic to Early Jurassic, a ~50~C difference in temperature between opposite sides of the LSF currently exposed at the surface. This discontinuity is best interpreted by an episode of thrusting and exhumation of the LSF with -1.7 km of net vertical displacement during the latest Triassic to Early Jurassic. These results, when combined with earlier thermochronological studies, stratigraphic contact relationship and tectono-sedimentary evolution, suggest that the southern Ordos Basin experienced coeval intense tectonic contraction and developed a north-vergent fold-and-thrust belt. Moreover, the southern Ordos Basin experienced a multi-stage differential exhumation during Mesozoic, including the latest Triassic to Early Jurassic and Late Jurassic to earliest Cretaceous thrust-driven exhumation as well as the Late Cretaceous overall exhumation. Specifically, the two thrust-driven exhumation events were related to tectonic stress propagation derived from the latest Triassic to Early Jurassic continued compression from Qinling Orogenic Collage and the Late Jurassic to earliest Cretaceous intracontinental orogeny of QinUng Orogenic Collage, respectively. By contrast, the Late Cretaceous overall exhumation event was related to the collision of an exotic terrain with the eastern margin of continental China at -100 Ma.
文摘The Longmenshan thrust system consists of two major groups of structural styles according to the depth of their involvement: basement thrusts-compressional fault blocks; fold-thrust system in the cover. In cross-section, the Longmenshan structural belt is divided into 5 zones. The propagation of the Longmenshan thrust system is piggy-back due to pushing at the early stage and overstep due to gravity sliding at the late stage. Balanced cross-sections and palinspastic reconstruction reveal that the total sliding displacement of the thrust system amounts to 120 km. The tectonic evolution of the Tethys domain in western Sichuan has experienced 5 stages: continental break-up; ocean-continent subduction ; continent-arc collision; orogenic thrusting; uplift of western Sichuan.
基金supported by the National Major Fundamental Research and Development Project of China(no.:19990433).
文摘The eastern Qiulitagh fold and thrust belt (EQFTB) is part of the active Kuqa fold and thrust belts of the northern Tarim Basin. Seismic reflection profiles have been integrated with surface geologic and drill data to examine the deformation and structure style of the EQFTB, particularly the deformational history of the Dina 2 gas field. Seismic interpretations suggest that Dongqiu 8 is overall a duplex structure developed beneath a passive roof thrust, which generated from a tipline in the Miocene Jidike Formation, and the sole thrust was initiated from the same Jidike Formation evaporite zone that extends westward beneath the Kuqatawu anticline. Dongqiu 5 is a pop-up structure at the western part of the EQFTB, also developed beneath the Jidike Formation evaporite. Very gentle basement dip and steep dipping topographic slope in the EQFTB suggest that the Jidike Formation salt provides effective decoupling. The strong deformation in the EQFTB appears to have developed further south, in an area where evaporite may be lacking. Since the Pliocene, the EQFTB has moved farther south over the evaporite and reached the Yaken area. Restoring a balanced cross-section suggests that the minimum shortening across the EQFTB is more than 7800 m. Assuming that this shortening occurred during the 5.3 Ma timespan, the shortening rate is approximately 1.47 mm/year.
基金PetroChina Science and Technology Development Project(2021DJ0105,2021DJ0203,2021DJ0303)National Natural Science Foundation of China(42172164,42002177)。
文摘Aiming at the differential distribution of overpressure in vertical and lateral directions in the foreland thrust belt in the southern margin of Junggar Basin,the study on overpressure origin identification and overpressure evolution simulation is carried out.Based on the measured formation pressure,drilling fluid density and well logging data,overpressure origin identification and overpressure evolution simulation techniques are used to analyze the vertical and lateral distribution patterns of overpressure,genetic mechanisms of overpressure in different structural belts and causes of the differential distribution of overpressure,and the controlling effects of overpressure development and evolution on the formation and distribution of oil and gas reservoirs.The research shows that overpressure occurs in multiple formations vertically in the southern Junggar foreland thrust belt,the deeper the formation,the bigger the scale of the overpressure is.Laterally,overpressure is least developed in the mountain front belt,most developed in the fold anticline belt,and relatively developed in the slope belt.The differential distribution of overpressure is mainly controlled by the differences in disequilibrium compaction and tectonic compression strengths of different belts.The vertical overpressure transmission caused by faults connecting the deep overpressured system has an important contribution to the further increase of the overpressure strength in this area.The controlling effect of overpressure development and evolution on hydrocarbon accumulation and distribution shows in the following aspects:When the strong overpressure was formed before reservoir becoming tight overpressure maintains the physical properties of deep reservoirs to some extent,expanding the exploration depth of deep reservoirs;reservoirs below the overpressured mudstone cap rocks of the Paleogene Anjihaihe Formation and Lower Cretaceous Tugulu Group are main sites for oil and gas accumulation;under the background of overall overpressure,both overpressure strength too high or too low are not conducive to hydrocarbon enrichment and preservation,and the pressure coefficient between 1.6 and 2.1 is the best.