期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The initial stages of Li_(2)O_(2) formation during oxygen reduction reaction in Li-O_(2) batteries:The significance of Li_(2)O_(2) in charge-transfer reactions within devices 被引量:2
1
作者 Daniela M.Josepetti Bianca P.Sousa +2 位作者 Simone A.J.Rodrigues Renato G.Freitas Gustavo Doubek 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期223-231,I0006,共10页
Lithium-oxygen batteries are a promising technology because they can greatly surpass the energy density of lithium-ion batteries.However,this theoretical characteristic has not yet been converted into a real device wi... Lithium-oxygen batteries are a promising technology because they can greatly surpass the energy density of lithium-ion batteries.However,this theoretical characteristic has not yet been converted into a real device with high cyclability.Problems with air contamination,metallic lithium reactivity,and complex discharge and charge reactions are the main issues for this technology.A fast and reversible oxygen reduction reaction(ORR)is crucial for good performance of secondary batteries',but the partial knowledge of its mechanisms,especially when devices are concerned,hinders further development.From this perspective,the present work uses operando Raman experiments and electrochemical impedance spectroscopy(EIS)to assess the first stages of the discharge processes in porous carbon electrodes,following their changes cycle by cycle at initial operation.A growth kinetic formation of the discharge product signal(Li_(2)O_(2))was observed with operando Raman,indicating a first-order reaction and enabling an analysis by a microkinetic model.The solution mechanism in the evaluated system was ascribed for an equivalent circuit with three time constants.While the time constant for the anode interface reveals to remain relatively constant after the first discharge,its surface seemed to be more non-uniform.The model indicated that the reaction occurs at the Li_(2)O_(2) surface,decreasing the associated resistance during the initial discharge phase.Furthermore,the growth of Li_(2)O_(2) forms a hetero-phase between Li_(2)O_(2)/electrolyte,while creating a more compact and homogeneous on the Li_(2)O_(2)/cathode surface.The methodology here described thus offers a way of directly probing changes in surface chemistry evolution during cycling from a device through EIS analysis. 展开更多
关键词 Li-O_(2)battery Operando Raman analysis Equivalent circuit modeling time-constant distribution
下载PDF
Thermal time-constant spectrum extraction method in AlGaN/GaN HEMTs
2
作者 杨军伟 冯士维 +1 位作者 史冬 阳春辉 《Journal of Semiconductors》 EI CAS CSCD 2015年第8期88-93,共6页
The transient temperature rise in the active region in AlGaN/GaN high electron mobility transistors (HEMTs) is measured using an electrical method. The original data are smoothed and denoised by a nonparametric fitt... The transient temperature rise in the active region in AlGaN/GaN high electron mobility transistors (HEMTs) is measured using an electrical method. The original data are smoothed and denoised by a nonparametric fitting algorithm, called locally weighted scatterplot smoothing (LOWESS). The thermal time-constant spectrum is extracted to analyze the physical structure of the heat-conduction path in A1GaN/GaN HEMTs. The thermal time- constant spectra extracted using the LOWESS algorithm are richer and the RC network obtained is greater compared with those with the traditional denoising method (multi-exponential fitting). Thus, the analysis of the heat-flow path is more precise. The results show that the LOWESS nonparametric fitting algorithm can remove noise from measured data better than other methods and can retain the subtle variation tendency of the original discrete data. The thermal time-constant spectra extracted using this method can describe the subtle temperature variations in the A1GaN/GaN HEMT active region. This will help researchers to precisely analyze the layer composition of the heat-flow path. 展开更多
关键词 AlGaN/GaN HEMT LOWESS algorithm exponential fitting time-constant spectrum heat- conduction path
原文传递
Revisiting the Curie-Von Schweidler Law for Dielectric Relaxation and Derivation of Distribution Function for Relaxation Rates as Zipf’s Power Law and Manifestation of Fractional Differential Equation for Capacitor 被引量:1
3
作者 Shantanu Das 《Journal of Modern Physics》 2017年第12期1988-2012,共25页
The classical power law relaxation, i.e. relaxation of current with inverse of power of time for a step-voltage excitation to dielectric—as popularly known as Curie-von Schweidler law is empirically derived and is ob... The classical power law relaxation, i.e. relaxation of current with inverse of power of time for a step-voltage excitation to dielectric—as popularly known as Curie-von Schweidler law is empirically derived and is observed in several relaxation experiments on various dielectrics studies since late 19th Century. This relaxation law is also regarded as “universal-law” for dielectric relaxations;and is also termed as power law. This empirical Curie-von Schewidler relaxation law is then used to derive fractional differential equations describing constituent expression for capacitor. In this paper, we give simple mathematical treatment to derive the distribution of relaxation rates of this Curie-von Schweidler law, and show that the relaxation rate follows Zipf’s power law distribution. We also show the method developed here give Zipfian power law distribution for relaxing time constants. Then we will show however mathematically correct this may be, but physical interpretation from the obtained time constants distribution are contradictory to the Zipfian rate relaxation distribution. In this paper, we develop possible explanation that as to why Zipfian distribution of relaxation rates appears for Curie-von Schweidler Law, and relate this law to time variant rate of relaxation. In this paper, we derive appearance of fractional derivative while using Zipfian power law distribution that gives notion of scale dependent relaxation rate function for Curie-von Schweidler relaxation phenomena. This paper gives analytical approach to get insight of a non-Debye relaxation and gives a new treatment to especially much used empirical Curie-von Schweidler (universal) relaxation law. 展开更多
关键词 Power LAW RELAXATION RATE Distribution FRACTIONAL Derivative FRACTIONAL Integration Curie-Von Schweidler LAW time-constants Laplace INTEGRAL Zipf’s LAW INTEGRAL Representation Time Dependent RELAXATION RATE Scale Dependent RELAXATION RATE Non-Debye RELAXATION
下载PDF
An Adaptive Response Compensation Technique for the Constant-Current Hot-Wire Anemometer
4
作者 Soe Minn Khine Tomoya Houra Masato Tagawa 《Open Journal of Fluid Dynamics》 2013年第2期95-108,共14页
An adaptive response compensation technique has been proposed to compensate for the response lag of the constant-current hot-wire anemometer (CCA) by taking advantage of digital signal processing technology. First, we... An adaptive response compensation technique has been proposed to compensate for the response lag of the constant-current hot-wire anemometer (CCA) by taking advantage of digital signal processing technology. First, we have developed a simple response compensation scheme based on a precise theoretical expression for the frequency response of the CCA (Kaifuku et al. 2010, 2011), and verified its effectiveness experimentally for hot-wires of 5 μm, 10 μm and 20 μm in diameter. Then, another novel technique based on a two-sensor probe technique—originally developed for the response compensation of fine-wire thermocouples (Tagawa and Ohta 1997;Tagawa et al. 1998)—has been proposed for estimating thermal time-constants of hot-wires to realize the in-situ response compensation of the CCA. To demonstrate the usefulness of the CCA, we have applied the response compensation schemes to multipoint velocity measure- ment of a turbulent wake flow formed behind a circular cylinder by using a CCA probe consisting of 16 hot-wires, which were driven simultaneously by a very simple constant-current circuit. As a result, the proposed response compensation techniques for the CCA work quite successfully and are capable of improving the response speed of the CCA to obtain reliable measurements comparable to those by the commercially-available constant-temperature hot-wire anemometer (CTA). 展开更多
关键词 Flow Measurement HOT-WIRE ANEMOMETER Turbulent Flow Constant-Current HOT-WIRE ANEMOMETER Response COMPENSATION Frequency Response time-constant Multipoint Measurement Digital Signal Processing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部