Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to ...Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to the traditional direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy.In this case,by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory,a random forest(RF)model is presented to enhance the computing efficiency of reliability degree;moreover,by embedding the RF model into multilevel optimization model,an efficient RF-assisted fatigue reliability-based design optimization framework is developed.Regarding the low-cycle fatigue reliability-based design optimization of aeroengine turbine disc as a case,the effectiveness of the presented framework is validated.The reliabilitybased design optimization results exhibit that the proposed framework holds high computing accuracy and computing efficiency.The current efforts shed a light on the theory/method development of reliability-based design optimization of complex engineering structures.展开更多
Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonun...Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design.展开更多
Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orienta...Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orientation,often neglecting the potential of microstructural design,constraints in the layup process,and performance reliability.This study,therefore,introduces a multiscale reliability-based design optimization method for carbon fiber-reinforced plastic(CFRP)drive shafts.Initially,parametric modeling of the microscale cell was performed,and its elastic performance parameters were predicted using two homogenization methods,examining the impact of fluctuations in microscale cell parameters on composite material performance.A finite element model of the CFRP drive shaft was then constructed,achieving parameter transfer between microscale and macroscale through Python programming.This enabled an investigation into the influence of both micro and macro design parameters on the CFRP drive shaft’s performance.The Multi-Objective Particle Swarm Optimization(MOPSO)algorithm was enhanced for particle generation and updating strategies,facilitating the resolution of multi-objective reliability optimization problems,including composite material layup process constraints.Case studies demonstrated that this approach leads to over 30%weight reduction in CFRP drive shafts compared to metallic counterparts while satisfying reliability requirements and offering insights for the lightweight design of other vehicle components.展开更多
The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the effi...The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.展开更多
In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of...In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of reliability evaluation.However,the random variables involved in SA should be easy to handle.Additionally,the corresponding saddlepoint equation should not be complicated.Both of them limit the application of SA for engineering problems.The moment method can construct an approximate cumulative distribution function of the performance function based on the first few statistical moments.However,the traditional moment matching method is not very accurate generally.In order to take advantage of the SA method and the moment matching method to enhance the efficiency of design and optimization,a fourth-moment saddlepoint approximation(FMSA)method is introduced into RBMDO.In FMSA,the approximate cumulative generating functions are constructed based on the first four moments of the limit state function.The probability density function and cumulative distribution function are estimated based on this approximate cumulative generating function.Furthermore,the FMSA method is introduced and combined into RBMDO within the framework of sequence optimization and reliability assessment,which is based on the performance measure approach strategy.Two engineering examples are introduced to verify the effectiveness of proposed method.展开更多
This paper proposes an effective reliability design optimizationmethod for fail-safe topology optimization(FSTO)considering uncertainty based on the moving morphable bars method to establish the ideal balance between ...This paper proposes an effective reliability design optimizationmethod for fail-safe topology optimization(FSTO)considering uncertainty based on the moving morphable bars method to establish the ideal balance between cost and robustness,reliability and structural safety.To this end,a performancemeasure approach(PMA)-based doubleloop optimization algorithmis developed tominimize the relative volume percentage while achieving the reliability criterion.To ensure the compliance value of the worst failure case can better approximate the quantified design requirement,a p-norm constraint approach with correction parameter is introduced.Finally,the significance of accounting for uncertainty in the fail-safe design is illustrated by contrasting the findings of the proposed reliabilitybased topology optimization(RBTO)method with those of the deterministic design method in three typical examples.Monte Carlo simulation shows that the relative error of the reliability index of the optimized structure does not exceed 3%.展开更多
Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the effici...Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the efficiency and convergence of the overall solution process,a decoupling algorithm for RBMDO is proposed herein.Firstly, to decouple the multidisciplinary analysis using the individual disciplinary feasible(IDF) approach, the RBMDO is converted into a conventional form of RBDO. Secondly,the incremental shifting vector(ISV) strategy is adopted to decouple the nested optimization of RBDO into a sequential iteration process composed of design optimization and reliability analysis, thereby improving the efficiency significantly. Finally, the proposed RBMDO method is applied to the design of two actual electronic products: an aerial camera and a car pad. For these two applications, two RBMDO models are created, each containing several finite element models(FEMs) and relatively strong coupling between the involved disciplines. The computational results demonstrate the effectiveness of the proposed method.展开更多
This paper proposed a reliability design model for composite materials under the mixture of random and interval variables. Together with the inverse reliability analysis technique, the sequential single-loop optimizat...This paper proposed a reliability design model for composite materials under the mixture of random and interval variables. Together with the inverse reliability analysis technique, the sequential single-loop optimization method is applied to the reliability-based design of composites. In the sequential single-loop optimization, the optimization and the reliability analysis are decoupled to improve the computational efficiency. As shown in examples, the minimum weight problems under the constraint of structural reliability are solved for laminated composites. The Particle Swarm Optimization (PSO) algorithm is utilized to search for the optimal solutions. The design results indicate that, under the mixture of random and interval variables, the method that combines the sequential single-loop optimization and the PSO algorithm can deal effectively with the reliability-based design of composites.展开更多
To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integr...To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integrating particle swarm optimization(PSO) algorithm and advanced extremum response surface method(AERSM). Firstly, the AERSM was developed and its mathematical model was established based on artificial neural network, and the PSO algorithm was investigated. And then the RBDO model of flexible mechanism was presented based on AERSM and PSO. Finally, regarding cross-sectional area as design variable, the reliability optimization of flexible mechanism was implemented subject to reliability degree and uncertainties based on the proposed approach. The optimization results show that the cross-section sizes obviously reduce by 22.96 mm^2 while keeping reliability degree. Through the comparison of methods, it is demonstrated that the AERSM holds high computational efficiency while keeping computational precision for the RBDO of flexible mechanism, and PSO algorithm minimizes the response of the objective function. The efforts of this work provide a useful sight for the reliability optimization of flexible mechanism, and enrich and develop the reliability theory as well.展开更多
Conventional reliability-based design optimization (RBDO) requires to use the most probable point (MPP) method for a probabilistic analysis of the reliability constraints. A new approach is presented, called as th...Conventional reliability-based design optimization (RBDO) requires to use the most probable point (MPP) method for a probabilistic analysis of the reliability constraints. A new approach is presented, called as the minimum error point (MEP) method or the MEP based method, for reliability-based design optimization, whose idea is to minimize the error produced by approximating performance functions. The MEP based method uses the first order Taylor's expansion at MEP instead of MPP. Examples demonstrate that the MEP based design optimization can ensure product reliability at the required level, which is very imperative for many important engineering systems. The MEP based reliability design optimization method is feasible and is considered as an alternative for solving reliability design optimization problems. The MEP based method is more robust than the commonly used MPP based method for some irregular performance functions.展开更多
The aim of the paper is to present a newly developed approach for reliability-based design optimization. It is based on double loop framework where the outer loop of algorithm covers the optimization part of process o...The aim of the paper is to present a newly developed approach for reliability-based design optimization. It is based on double loop framework where the outer loop of algorithm covers the optimization part of process of reliability-based optimization and reliability constrains are calculated in inner loop. Innovation of suggested approach is in application of newly developed optimization strategy based on multilevel simulation using an advanced Latin Hypercube Sampling technique. This method is called Aimed multilevel sampling and it is designated for optimization of problems where only limited number of simulations is possible to perform due to enormous com- putational demands.展开更多
Based on reliability theory,a general method for the optimization design of piles subjected to horizontal loads is presented.This method takes into consideration various uncertainties caused by pile installation,varia...Based on reliability theory,a general method for the optimization design of piles subjected to horizontal loads is presented.This method takes into consideration various uncertainties caused by pile installation,variability of geotechnical materials from one location to another,and so on.It also deals with behavior and side constraints specified by standard specifications for piles.To more accurately solve the optimization design model,the first order reliability method is employed.The results from the numerical example indicate that the target reliability index has significant influence on design parameters.In addition,the optimization weight increases with the target reliability index.Especially when the target reliability index is relatively large,the target reliability index has significant influence on design weight of piles.展开更多
An efficient reliability-based design optimization method for the support structures of monopile offshore wind turbines is proposed herein.First,parametric finite element analysis(FEA)models of the support structure a...An efficient reliability-based design optimization method for the support structures of monopile offshore wind turbines is proposed herein.First,parametric finite element analysis(FEA)models of the support structure are established by considering stochastic variables.Subsequently,a surrogate model is constructed using a radial basis function(RBF)neural network to replace the time-consuming FEA.The uncertainties of loads,material properties,key sizes of structural components,and soil properties are considered.The uncertainty of soil properties is characterized by the variabilities of the unit weight,friction angle,and elastic modulus of soil.Structure reliability is determined via Monte Carlo simulation,and five limit states are considered,i.e.,structural stresses,tower top displacements,mudline rotation,buckling,and natural frequency.Based on the RBF surrogate model and particle swarm optimization algorithm,an optimal design is established to minimize the volume.Results show that the proposed method can yield an optimal design that satisfies the target reliability and that the constructed RBF surrogate model significantly improves the optimization efficiency.Furthermore,the uncertainty of soil parameters significantly affects the optimization results,and increasing the monopile diameter is a cost-effective approach to cope with the uncertainty of soil parameters.展开更多
The radial deformation design of turbine disk seriously influences the control of gas turbine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). To improve the design of BTRRC under continuous opera...The radial deformation design of turbine disk seriously influences the control of gas turbine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). To improve the design of BTRRC under continuous operation, the nonlinear dynamic reliability optimization of disk radial deformation was implemented based on extremum response surface method(ERSM), including ERSM-based quadratic function(QF-ERSM) and ERSM-based support vector machine of regression(SR-ERSM). The mathematical models of the two methods were established and the framework of reliability-based dynamic design optimization was developed. The numerical experiments demonstrate that the proposed optimization methods have the promising potential in reducing additional design samples and improving computational efficiency with acceptable precision, in which the SR-ERSM emerges more obviously. Through the case study, we find that disk radial deformation is reduced by about 6.5×10–5 m; δ=1.31×10–3 m is optimal for turbine disk radial deformation design and the proposed methods are verified again. The presented efforts provide an effective optimization method for the nonlinear transient design of motion structures for further research, and enrich mechanical reliability design theory.展开更多
We review recent research activities on structural reliability analysis,reliability-based design optimization(RBDO) and applications in complex engineering structural design.Several novel uncertainty propagation metho...We review recent research activities on structural reliability analysis,reliability-based design optimization(RBDO) and applications in complex engineering structural design.Several novel uncertainty propagation methods and reliability models,which are the basis of the reliability assessment,are given.In addition,recent developments on reliability evaluation and sensitivity analysis are highlighted as well as implementation strategies for RBDO.展开更多
The reliability-based optimization, the relia- bility-based sensitivity analysis and robust design method are employed to propose an effective approach for reliability-based robust design optimization of vehicle compo...The reliability-based optimization, the relia- bility-based sensitivity analysis and robust design method are employed to propose an effective approach for reliability-based robust design optimization of vehicle components in Part I. Applications of the method are further discussed for reliability-based robust optimization of vehicle components in this paper. Examples of axles, torsion bar, coil and composite springs are illustrated for numerical investigations. Results have shown the proposed method is an efficient method for reliability-based robust design optimization of vehicle components.展开更多
In a reliability-based design optimization (RBDO), computation of the failure probability (Pf) at all design points through the process may suitably be avoided at the early stages. Thus, to reduce extensive computatio...In a reliability-based design optimization (RBDO), computation of the failure probability (Pf) at all design points through the process may suitably be avoided at the early stages. Thus, to reduce extensive computations of RBDO, one could decouple the optimization and reliability analysis. The present work proposes a new methodology for such a decoupled approach that separates optimization and reliability analysis into two procedures which significantly improve the computational efficiency of the RBDO. This technique is based on the probabilistic sensitivity approach (PSA) on the shifted probability density function. Stochastic variables are separated into two groups of desired and non-desired variables. The three-phase procedure may be summarized as: Phase 1, apply deterministic design optimization based on mean values of random variables;Phase 2, move designs toward a reliable space using PSA and finding a primary reliable optimum point;Phase 3, applying an intelligent self-adaptive procedure based on cubic B-spline interpolation functions until the targeted failure probability is reached. An improved response surface method is used for computation of failure probability. The proposed RBDO approach could significantly reduce the number of analyses required to less than 10% of conventional methods. The computational efficacy of this approach is demonstrated by solving four benchmark truss design problems published in the structural optimization literature.展开更多
The reliability-based design optimization, the reliability sensitivity analysis and robust design method are employed to present a practical and effective approach for reliability-based robust design optimization of v...The reliability-based design optimization, the reliability sensitivity analysis and robust design method are employed to present a practical and effective approach for reliability-based robust design optimization of vehicle components. A procedure for reliability-based robust design optimization of vehicle components is proposed. Application of the method is illustrated by reliability-based robust design optimization of axle and spring. Numerical results have shown that the proposed method can be trusted to perform reliability-based robust design optimization of vehicle components.展开更多
The escalating need for reliability analysis(RA)and reliability-based design optimization(RBDO)within engineering challenges has prompted the advancement of saddlepoint approximationmethods(SAM)tailored for such probl...The escalating need for reliability analysis(RA)and reliability-based design optimization(RBDO)within engineering challenges has prompted the advancement of saddlepoint approximationmethods(SAM)tailored for such problems.This article offers a detailed overview of the general SAM and summarizes the method characteristics first.Subsequently,recent enhancements in the SAM theoretical framework are assessed.Notably,the mean value first-order saddlepoint approximation(MVFOSA)bears resemblance to the conceptual framework of the mean value second-order saddlepoint approximation(MVSOSA);the latter serves as an auxiliary approach to the former.Their distinction is rooted in the varying expansion orders of the performance function as implemented through the Taylor method.Both the saddlepoint approximation and third-moment(SATM)and saddlepoint approximation and fourth-moment(SAFM)strategies model the cumulant generating function(CGF)by leveraging the initial random moments of the function.Although their optimal application domains diverge,each method consistently ensures superior relative precision,enhanced efficiency,and sustained stability.Every method elucidated is exemplified through pertinent RA or RBDO scenarios.By juxtaposing them against alternative strategies,the efficacy of these methods becomes evident.The outcomes proffered are subsequently employed as a foundation for contemplating prospective theoretical and practical research endeavors concerning SAMs.The main purpose and value of this article is to review the SAM and reliability-related issues,which can provide some reference and inspiration for future research scholars in this field.展开更多
Reliability and optimization are two key elements for structural design. The reliability~ based topology optimization (RBTO) is a powerful and promising methodology for finding the optimum topologies with the uncert...Reliability and optimization are two key elements for structural design. The reliability~ based topology optimization (RBTO) is a powerful and promising methodology for finding the optimum topologies with the uncertainties being explicitly considered, typically manifested by the use of reliability constraints. Generally, a direct integration of reliability concept and topol- ogy optimization may lead to computational difficulties. In view of this fact, three methodologies have been presented in this study, including the double-loop approach (the performance measure approach, PMA) and the decoupled approaches (the so-called Hybrid method and the sequential optimization and reliability assessment, SORA). For reliability analysis, the stochastic response surface method (SRSM) was applied, combining with the design of experiments generated by the sparse grid method, which has been proven as an effective and special discretization technique. The methodologies were investigated with three numerical examples considering the uncertainties including material properties and external loads. The optimal topologies obtained using the de- terministic, RBTOs were compared with one another; and useful conclusions regarding validity, accuracy and efficiency were drawn.展开更多
基金supported by the National Natural Science Foundation of China under Grant(Number:52105136)the Hong Kong Scholar program under Grant(Number:XJ2022013)China Postdoctoral Science Foundation under Grant(Number:2021M690290)Academic Excellence Foundation of BUAA under Grant(Number:BY2004103).
文摘Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to the traditional direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy.In this case,by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory,a random forest(RF)model is presented to enhance the computing efficiency of reliability degree;moreover,by embedding the RF model into multilevel optimization model,an efficient RF-assisted fatigue reliability-based design optimization framework is developed.Regarding the low-cycle fatigue reliability-based design optimization of aeroengine turbine disc as a case,the effectiveness of the presented framework is validated.The reliabilitybased design optimization results exhibit that the proposed framework holds high computing accuracy and computing efficiency.The current efforts shed a light on the theory/method development of reliability-based design optimization of complex engineering structures.
基金National Natural Science Foundation of China under Grant Nos.51921006 and 51725801Fundamental Research Funds for the Central Universities under Grant No.FRFCU5710093320Heilongjiang Touyan Innovation Team Program。
文摘Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design.
基金supported by the S&T Special Program of Huzhou(Grant No.2023GZ09)the Open Fund Project of the ShanghaiKey Laboratory of Lightweight Structural Composites(Grant No.2232021A4-06).
文摘Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orientation,often neglecting the potential of microstructural design,constraints in the layup process,and performance reliability.This study,therefore,introduces a multiscale reliability-based design optimization method for carbon fiber-reinforced plastic(CFRP)drive shafts.Initially,parametric modeling of the microscale cell was performed,and its elastic performance parameters were predicted using two homogenization methods,examining the impact of fluctuations in microscale cell parameters on composite material performance.A finite element model of the CFRP drive shaft was then constructed,achieving parameter transfer between microscale and macroscale through Python programming.This enabled an investigation into the influence of both micro and macro design parameters on the CFRP drive shaft’s performance.The Multi-Objective Particle Swarm Optimization(MOPSO)algorithm was enhanced for particle generation and updating strategies,facilitating the resolution of multi-objective reliability optimization problems,including composite material layup process constraints.Case studies demonstrated that this approach leads to over 30%weight reduction in CFRP drive shafts compared to metallic counterparts while satisfying reliability requirements and offering insights for the lightweight design of other vehicle components.
基金supported by the Innovation Fund Project of the Gansu Education Department(Grant No.2021B-099).
文摘The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.
基金support from the Key R&D Program of Shandong Province(Grant No.2019JZZY010431)the National Natural Science Foundation of China(Grant No.52175130)+1 种基金the Sichuan Science and Technology Program(Grant No.2022YFQ0087)the Sichuan Science and Technology Innovation Seedling Project Funding Projeet(Grant No.2021112)are gratefully acknowledged.
文摘In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of reliability evaluation.However,the random variables involved in SA should be easy to handle.Additionally,the corresponding saddlepoint equation should not be complicated.Both of them limit the application of SA for engineering problems.The moment method can construct an approximate cumulative distribution function of the performance function based on the first few statistical moments.However,the traditional moment matching method is not very accurate generally.In order to take advantage of the SA method and the moment matching method to enhance the efficiency of design and optimization,a fourth-moment saddlepoint approximation(FMSA)method is introduced into RBMDO.In FMSA,the approximate cumulative generating functions are constructed based on the first four moments of the limit state function.The probability density function and cumulative distribution function are estimated based on this approximate cumulative generating function.Furthermore,the FMSA method is introduced and combined into RBMDO within the framework of sequence optimization and reliability assessment,which is based on the performance measure approach strategy.Two engineering examples are introduced to verify the effectiveness of proposed method.
基金supported by the National Natural Science Foundation of China(Grant No.12172114)Natural Science Foundation of Anhui Province(Grant No.2008085QA21)+1 种基金Fundamental Research Funds for the Central Universities(Grant No.JZ2022HGTB0291)China Postdoctoral Science Foundation(Grant No.2022M712358).
文摘This paper proposes an effective reliability design optimizationmethod for fail-safe topology optimization(FSTO)considering uncertainty based on the moving morphable bars method to establish the ideal balance between cost and robustness,reliability and structural safety.To this end,a performancemeasure approach(PMA)-based doubleloop optimization algorithmis developed tominimize the relative volume percentage while achieving the reliability criterion.To ensure the compliance value of the worst failure case can better approximate the quantified design requirement,a p-norm constraint approach with correction parameter is introduced.Finally,the significance of accounting for uncertainty in the fail-safe design is illustrated by contrasting the findings of the proposed reliabilitybased topology optimization(RBTO)method with those of the deterministic design method in three typical examples.Monte Carlo simulation shows that the relative error of the reliability index of the optimized structure does not exceed 3%.
基金supported by the Major Program of the National Natural Science Foundation of China (Grant 51490662)the Funds for Distinguished Young Scientists of Hunan Province (Grant 14JJ1016)+1 种基金the State Key Program of the National Science Foundation of China (11232004)the Heavy-duty Tractor Intelligent Manufacturing Technology Research and System Development (Grant 2016YFD0701105)
文摘Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the efficiency and convergence of the overall solution process,a decoupling algorithm for RBMDO is proposed herein.Firstly, to decouple the multidisciplinary analysis using the individual disciplinary feasible(IDF) approach, the RBMDO is converted into a conventional form of RBDO. Secondly,the incremental shifting vector(ISV) strategy is adopted to decouple the nested optimization of RBDO into a sequential iteration process composed of design optimization and reliability analysis, thereby improving the efficiency significantly. Finally, the proposed RBMDO method is applied to the design of two actual electronic products: an aerial camera and a car pad. For these two applications, two RBMDO models are created, each containing several finite element models(FEMs) and relatively strong coupling between the involved disciplines. The computational results demonstrate the effectiveness of the proposed method.
基金the National Natural Science Foundation of China(No.10772070)Ph.D Programs Foundation of Ministry of Education of China(No.20070487064).
文摘This paper proposed a reliability design model for composite materials under the mixture of random and interval variables. Together with the inverse reliability analysis technique, the sequential single-loop optimization method is applied to the reliability-based design of composites. In the sequential single-loop optimization, the optimization and the reliability analysis are decoupled to improve the computational efficiency. As shown in examples, the minimum weight problems under the constraint of structural reliability are solved for laminated composites. The Particle Swarm Optimization (PSO) algorithm is utilized to search for the optimal solutions. The design results indicate that, under the mixture of random and interval variables, the method that combines the sequential single-loop optimization and the PSO algorithm can deal effectively with the reliability-based design of composites.
基金Projects(51275138,51475025)supported by the National Natural Science Foundation of ChinaProject(12531109)supported by the Science Foundation of Heilongjiang Provincial Department of Education,China+1 种基金Projects(XJ2015002,G-YZ90)supported by Hong Kong Scholars Program,ChinaProject(2015M580037)supported by Postdoctoral Science Foundation of China
文摘To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integrating particle swarm optimization(PSO) algorithm and advanced extremum response surface method(AERSM). Firstly, the AERSM was developed and its mathematical model was established based on artificial neural network, and the PSO algorithm was investigated. And then the RBDO model of flexible mechanism was presented based on AERSM and PSO. Finally, regarding cross-sectional area as design variable, the reliability optimization of flexible mechanism was implemented subject to reliability degree and uncertainties based on the proposed approach. The optimization results show that the cross-section sizes obviously reduce by 22.96 mm^2 while keeping reliability degree. Through the comparison of methods, it is demonstrated that the AERSM holds high computational efficiency while keeping computational precision for the RBDO of flexible mechanism, and PSO algorithm minimizes the response of the objective function. The efforts of this work provide a useful sight for the reliability optimization of flexible mechanism, and enrich and develop the reliability theory as well.
基金This project is supported by National Natural Science Foundation of China(No.50575072)Outstanding Youth Fund of Hunan Education Department, China (No.04B007).
文摘Conventional reliability-based design optimization (RBDO) requires to use the most probable point (MPP) method for a probabilistic analysis of the reliability constraints. A new approach is presented, called as the minimum error point (MEP) method or the MEP based method, for reliability-based design optimization, whose idea is to minimize the error produced by approximating performance functions. The MEP based method uses the first order Taylor's expansion at MEP instead of MPP. Examples demonstrate that the MEP based design optimization can ensure product reliability at the required level, which is very imperative for many important engineering systems. The MEP based reliability design optimization method is feasible and is considered as an alternative for solving reliability design optimization problems. The MEP based method is more robust than the commonly used MPP based method for some irregular performance functions.
基金support of projects of Ministry of Education of Czech Republic KONTAKT No.LH12062previous achievements worked out under the project of Technological Agency of Czech Republic No.TA01011019.
文摘The aim of the paper is to present a newly developed approach for reliability-based design optimization. It is based on double loop framework where the outer loop of algorithm covers the optimization part of process of reliability-based optimization and reliability constrains are calculated in inner loop. Innovation of suggested approach is in application of newly developed optimization strategy based on multilevel simulation using an advanced Latin Hypercube Sampling technique. This method is called Aimed multilevel sampling and it is designated for optimization of problems where only limited number of simulations is possible to perform due to enormous com- putational demands.
基金Project(51278216) supported by the National Natural Science Foundation of China
文摘Based on reliability theory,a general method for the optimization design of piles subjected to horizontal loads is presented.This method takes into consideration various uncertainties caused by pile installation,variability of geotechnical materials from one location to another,and so on.It also deals with behavior and side constraints specified by standard specifications for piles.To more accurately solve the optimization design model,the first order reliability method is employed.The results from the numerical example indicate that the target reliability index has significant influence on design parameters.In addition,the optimization weight increases with the target reliability index.Especially when the target reliability index is relatively large,the target reliability index has significant influence on design weight of piles.
基金supported by the National Natural Science Foundation of China(Grant No.12072104)the National Key R&D Program of China(No.2018YFC0406703)。
文摘An efficient reliability-based design optimization method for the support structures of monopile offshore wind turbines is proposed herein.First,parametric finite element analysis(FEA)models of the support structure are established by considering stochastic variables.Subsequently,a surrogate model is constructed using a radial basis function(RBF)neural network to replace the time-consuming FEA.The uncertainties of loads,material properties,key sizes of structural components,and soil properties are considered.The uncertainty of soil properties is characterized by the variabilities of the unit weight,friction angle,and elastic modulus of soil.Structure reliability is determined via Monte Carlo simulation,and five limit states are considered,i.e.,structural stresses,tower top displacements,mudline rotation,buckling,and natural frequency.Based on the RBF surrogate model and particle swarm optimization algorithm,an optimal design is established to minimize the volume.Results show that the proposed method can yield an optimal design that satisfies the target reliability and that the constructed RBF surrogate model significantly improves the optimization efficiency.Furthermore,the uncertainty of soil parameters significantly affects the optimization results,and increasing the monopile diameter is a cost-effective approach to cope with the uncertainty of soil parameters.
基金Project(51275024)supported by the National Natural Science Foundations of ChinaProject(2015M580037)supported by China’s Postdoctoral Science FundingProjects(XJ2015002,G-YZ90)supported by Hong Kong Scholars Program Foundations,China
文摘The radial deformation design of turbine disk seriously influences the control of gas turbine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). To improve the design of BTRRC under continuous operation, the nonlinear dynamic reliability optimization of disk radial deformation was implemented based on extremum response surface method(ERSM), including ERSM-based quadratic function(QF-ERSM) and ERSM-based support vector machine of regression(SR-ERSM). The mathematical models of the two methods were established and the framework of reliability-based dynamic design optimization was developed. The numerical experiments demonstrate that the proposed optimization methods have the promising potential in reducing additional design samples and improving computational efficiency with acceptable precision, in which the SR-ERSM emerges more obviously. Through the case study, we find that disk radial deformation is reduced by about 6.5×10–5 m; δ=1.31×10–3 m is optimal for turbine disk radial deformation design and the proposed methods are verified again. The presented efforts provide an effective optimization method for the nonlinear transient design of motion structures for further research, and enrich mechanical reliability design theory.
基金supported by the Defense Industrial Technology Development Program (Grant Nos.A2120110001 and B2120110011)111 Project (Grant No.B07009)the National Natural Science Foundation of China (Grant Nos.11002013,90816024 and 10876100)
文摘We review recent research activities on structural reliability analysis,reliability-based design optimization(RBDO) and applications in complex engineering structural design.Several novel uncertainty propagation methods and reliability models,which are the basis of the reliability assessment,are given.In addition,recent developments on reliability evaluation and sensitivity analysis are highlighted as well as implementation strategies for RBDO.
文摘The reliability-based optimization, the relia- bility-based sensitivity analysis and robust design method are employed to propose an effective approach for reliability-based robust design optimization of vehicle components in Part I. Applications of the method are further discussed for reliability-based robust optimization of vehicle components in this paper. Examples of axles, torsion bar, coil and composite springs are illustrated for numerical investigations. Results have shown the proposed method is an efficient method for reliability-based robust design optimization of vehicle components.
文摘In a reliability-based design optimization (RBDO), computation of the failure probability (Pf) at all design points through the process may suitably be avoided at the early stages. Thus, to reduce extensive computations of RBDO, one could decouple the optimization and reliability analysis. The present work proposes a new methodology for such a decoupled approach that separates optimization and reliability analysis into two procedures which significantly improve the computational efficiency of the RBDO. This technique is based on the probabilistic sensitivity approach (PSA) on the shifted probability density function. Stochastic variables are separated into two groups of desired and non-desired variables. The three-phase procedure may be summarized as: Phase 1, apply deterministic design optimization based on mean values of random variables;Phase 2, move designs toward a reliable space using PSA and finding a primary reliable optimum point;Phase 3, applying an intelligent self-adaptive procedure based on cubic B-spline interpolation functions until the targeted failure probability is reached. An improved response surface method is used for computation of failure probability. The proposed RBDO approach could significantly reduce the number of analyses required to less than 10% of conventional methods. The computational efficacy of this approach is demonstrated by solving four benchmark truss design problems published in the structural optimization literature.
文摘The reliability-based design optimization, the reliability sensitivity analysis and robust design method are employed to present a practical and effective approach for reliability-based robust design optimization of vehicle components. A procedure for reliability-based robust design optimization of vehicle components is proposed. Application of the method is illustrated by reliability-based robust design optimization of axle and spring. Numerical results have shown that the proposed method can be trusted to perform reliability-based robust design optimization of vehicle components.
基金funded by the National Natural Science Foundation of China under Grant No.52175130the Sichuan Science and Technology Program under Grants Nos.2022YFQ0087 and 2022JDJQ0024+1 种基金the Guangdong Basic and Applied Basic Research Foundation under Grant No.2022A1515240010the Students Go Abroad for Scientific Research and Internship Funding Program of University of Electronic Science and Technology of China.
文摘The escalating need for reliability analysis(RA)and reliability-based design optimization(RBDO)within engineering challenges has prompted the advancement of saddlepoint approximationmethods(SAM)tailored for such problems.This article offers a detailed overview of the general SAM and summarizes the method characteristics first.Subsequently,recent enhancements in the SAM theoretical framework are assessed.Notably,the mean value first-order saddlepoint approximation(MVFOSA)bears resemblance to the conceptual framework of the mean value second-order saddlepoint approximation(MVSOSA);the latter serves as an auxiliary approach to the former.Their distinction is rooted in the varying expansion orders of the performance function as implemented through the Taylor method.Both the saddlepoint approximation and third-moment(SATM)and saddlepoint approximation and fourth-moment(SAFM)strategies model the cumulant generating function(CGF)by leveraging the initial random moments of the function.Although their optimal application domains diverge,each method consistently ensures superior relative precision,enhanced efficiency,and sustained stability.Every method elucidated is exemplified through pertinent RA or RBDO scenarios.By juxtaposing them against alternative strategies,the efficacy of these methods becomes evident.The outcomes proffered are subsequently employed as a foundation for contemplating prospective theoretical and practical research endeavors concerning SAMs.The main purpose and value of this article is to review the SAM and reliability-related issues,which can provide some reference and inspiration for future research scholars in this field.
基金Project supported by the National Natural Science Foundation of China(Nos.51275040 and 50905017)the Programme of Introducing Talents of Discipline to Universities(No.B12022)
文摘Reliability and optimization are two key elements for structural design. The reliability~ based topology optimization (RBTO) is a powerful and promising methodology for finding the optimum topologies with the uncertainties being explicitly considered, typically manifested by the use of reliability constraints. Generally, a direct integration of reliability concept and topol- ogy optimization may lead to computational difficulties. In view of this fact, three methodologies have been presented in this study, including the double-loop approach (the performance measure approach, PMA) and the decoupled approaches (the so-called Hybrid method and the sequential optimization and reliability assessment, SORA). For reliability analysis, the stochastic response surface method (SRSM) was applied, combining with the design of experiments generated by the sparse grid method, which has been proven as an effective and special discretization technique. The methodologies were investigated with three numerical examples considering the uncertainties including material properties and external loads. The optimal topologies obtained using the de- terministic, RBTOs were compared with one another; and useful conclusions regarding validity, accuracy and efficiency were drawn.