Surgical resection,chemotherapy,and radiation are the standard therapeutic modalities for treating cancer.These approaches are intended to target the more mature and rapidly dividing cancer cells.However,they spare th...Surgical resection,chemotherapy,and radiation are the standard therapeutic modalities for treating cancer.These approaches are intended to target the more mature and rapidly dividing cancer cells.However,they spare the relatively quiescent and intrinsically resistant cancer stem cells(CSCs)subpopulation residing within the tumor tissue.Thus,a temporary eradication is achieved and the tumor bulk tends to revert supported by CSCs'resistant features.Based on their unique expression profile,the identification,isolation,and selective targeting of CSCs hold great promise for challenging treatment failure and reducing the risk of cancer recurrence.Yet,targeting CSCs is limited mainly by the irrelevance of the utilized cancer models.A new era of targeted and personalized anti-cancer therapies has been developed with cancer patient-derived organoids(PDOs)as a tool for establishing pre-clinical tumor models.Herein,we discuss the updated and presently available tissue-specific CSC markers in five highly occurring solid tumors.Additionally,we highlight the advantage and relevance of the threedimensional PDOs culture model as a platform for modeling cancer,evaluating the efficacy of CSC-based therapeutics,and predicting drug response in cancer patients.展开更多
Background Genome editing has been considered as powerful tool in agricultural fields.However,genome editing progress in cattle has not been fast as in other mammal species,for some disadvantages including long gestat...Background Genome editing has been considered as powerful tool in agricultural fields.However,genome editing progress in cattle has not been fast as in other mammal species,for some disadvantages including long gestational periods,single pregnancy,and high raising cost.Furthermore,technically demanding methods such as microinjection and somatic cell nuclear transfer(SCNT)are needed for gene editing in cattle.In this point of view,electroporation in embryos has been risen as an alternative.Results First,editing efficiency of our electroporation methods were tested for embryos.Presence of mutation on embryo was confirmed by T7E1 assay.With first combination,mutation rates for MSTN and PRNP were 57.6%±13.7%and 54.6%±13.5%,respectively.In case of MSTN/BLG,mutation rates were 83.9%±23.6%for MSTN,84.5%±18.0%for BLG.Afterwards,the double-KO embryos were transferred to surrogates and mutation rate was identified in resultant calves by targeted deep sequencing.Thirteen recipients were transferred for MSTN/PRNP,4 calves were delivered,and one calf underwent an induction for double KO.Ten surrogates were given double-KO embryos for MSTN/BLG,and four of the six calves that were born had mutations in both genes.Conclusions These data demonstrated that production of genome edited cattle via electroporation of RNP could be effectively applied.Finally,MSTN and PRNP from beef cattle and MSTN and BLG from dairy cattle have been born and they will be valuable resources for future precision breeding.展开更多
AIM:To investigate the role of transmembrane protein 206(TMEM206)in corneal edema in mice by knockout the TMEM206 gene using CRISPR/Cas9 editing technology.METHODS:TMEM206-knockout mice were generated using the CRISPR...AIM:To investigate the role of transmembrane protein 206(TMEM206)in corneal edema in mice by knockout the TMEM206 gene using CRISPR/Cas9 editing technology.METHODS:TMEM206-knockout mice were generated using the CRISPR-Cas9 system.Variations in ophthalmic pathology were observed using slit lamp microscope and optical coherence tomography(OCT),intraocular pressure(IOP)was measured using a TonoLab Rebound Tonometer,and the ultrastructure of the corneal was observed using a transmission electron microscope.RESULTS:Corneal opacity was observed in 4/18 homozygous TMEM206^(-/-)mice whereas a similar change was not observed in heterozygous TMEM206^(+/-)mice and wild-type littermates.OCT examination showed that the mean central cornea thickness was 125±5.4μm in 4 homozygous TMEM206^(-/-)mice developed corneal edema and 115±1.2μm in wild-type mice(t=3.468,P<0.05)at 43wk.The mean IOP was 12.08±0.07 mm Hg in four right eyes with corneal edema and 12.03±0.03 mm Hg in three normal left eyes(P>0.05).Transmission electron microscopy revealed a disruption in the organization of the collagen fibrils in the central part of the cornea in homozygous TMEM206^(-/-)mice.CONCLUSION:TMEM206 is associated with corneal edema which caused organizational disruption of collagen fibrils in corneas of mice.展开更多
Objective Cytokine responses to activation of innate immunity differ between individuals,yet the genomic and tissue-specific transcriptomic determinants of inflammatory responsiveness are not well understood. We hypot...Objective Cytokine responses to activation of innate immunity differ between individuals,yet the genomic and tissue-specific transcriptomic determinants of inflammatory responsiveness are not well understood. We hypothesized that tissue-specific mRNA and long intergenic non-coding RNA (lincRNA) induction differs between individuals with divergent evoked inflammatory responses.展开更多
Dendrites play irreplaceable roles in the nerve conduction pathway and are vulnerable to various insults.Peripheral axotomy of motor neurons results in the retraction of dendritic arbors,and the dendritic arbor can be...Dendrites play irreplaceable roles in the nerve conduction pathway and are vulnerable to various insults.Peripheral axotomy of motor neurons results in the retraction of dendritic arbors,and the dendritic arbor can be re-expanded when reinnervation is allowed.RhoA is a target that regulates the cytoskeleton and promotes neuronal survival and axon regeneration.However,the role of RhoA in dendrite degeneration and regeneration is unknown.In this study,we explored the potential role of RhoA in dendrites.A line of motor neuronal conditional knockout mice was developed by crossbreeding HB9~(Cre+)mice with RhoA~(flox/flox)mice.We established two models for assaying dendrite degeneration and regeneration,in which the brachial plexus was transection or crush injured,respectively.We found that at 28 days after brachial plexus transection,the density,complexity,and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice were slightly decreased compared with that in Cre mice.Dendrites underwent degeneration at 7 and 14 days after brachial plexus transection and recovered at 28–56 days.The density,complexity,and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice recovered compared with results in Cre mice.These findings suggest that RhoA knockout in motor neurons attenuates dendrite degeneration and promotes dendrite regeneration after peripheral nerve injury.展开更多
Introduction:Although many studies have shown the vast potential of circulating tumor cells(CTCs)detection in cancer diagnosis and prognosis,our understanding of their clinical significance is still far from complete....Introduction:Although many studies have shown the vast potential of circulating tumor cells(CTCs)detection in cancer diagnosis and prognosis,our understanding of their clinical significance is still far from complete.A major obstacle arises from the lack of well-established tumor or tissue-specific markers to detect CTCs by immunocytochemical staining after immunomagnetic enrichment(IE).Methods:We have established the utility of cytokeratin 20(CK20),a gastrointestinal tract specific marker,for the specific detection and identification of colorectal cancer(CRC)CTCs.This breakthrough was successfully validated in spike-in experiments using CRC cell line models followed by a pilot study which recruited 32 metastatic CRC patients,25 benign colorectal diseases patients and 27 normal subjects.Results:CK20-positive CTCs were detected in 90%metastatic CRC patients but not in benign colorectal diseases patients and normal subjects using this refined assay.Conclusions:These impressive results have laid the foundation for further development of CK20-positive CTCs as a promising marker in diagnosis,prognostication and treatment monitoring of metastatic CRC.展开更多
Objective The protein interacting with C kinase 1(PICK1)plays a critical role in vesicle trafficking,and its deficiency in sperm cells results in abnormal vesicle trafficking from Golgi to acrosome,which eventually di...Objective The protein interacting with C kinase 1(PICK1)plays a critical role in vesicle trafficking,and its deficiency in sperm cells results in abnormal vesicle trafficking from Golgi to acrosome,which eventually disrupts acrosome formation and leads to male infertility.Methods An azoospermia sample was filtered,and the laboratory detection and clinical phenotype indicated typical azoospermia in the patient.We sequenced all of the exons in the PICK1 gene and found that there was a novel homozygous variant in the PICK1 gene,c.364delA(p.Lys122SerfsX8),and this protein structure truncating variant seriously affected the biological function.Then we constructed a PICK1 knockout mouse model using clustered regularly interspaced short palindromic repeat cutting technology(CRISPRc).Results The sperm from PICK1 knockout mice showed acrosome and nucleus abnormalities,as well as dysfunctional mitochondrial sheath formation.Both the total sperm and motility sperm counts were decreased in the PICK1 knockout mice compared to wild-type mice.Moreover,the mitochondrial dysfunction was verified in the mice.These defects in the male PICK1 knockout mice may have eventually led to complete infertility.Conclusion The c.364delA novel variant in the PICK1 gene associated with clinical infertility,and pathogenic variants in the PICK1 may cause azoospermia or asthenospermia by impairing mitochondrial function in both mice and humans.展开更多
Mitochondrial dysfunction is proposed to be substantially associated with ageing and ageing-related diseases like Alzheimer's disease(AD). However, it is unclear whether different mouse models with mitochondrialre...Mitochondrial dysfunction is proposed to be substantially associated with ageing and ageing-related diseases like Alzheimer's disease(AD). However, it is unclear whether different mouse models with mitochondrialrelated diseases have similar changes in mitochondrial morphology of the same tissues. Moreover, whether similarities in mitochondrial morphology can be a suitable marker for screening and/or discovering mitochondrial-protective substances remains unknown. Mitochondria morphology in different tissues of a novel mitochondrial outer membrane protein Slc25a46 knockout mouse and a traditional APP_(SWE)/PS1ΔE9 transgenic mouse were examined using transmission electron microscope(TEM). Both young Slc25a46 knockout mice and aged APP_(SWE)/PS1ΔE9 mice models showed similar mitochondrial damage in cerebellum tissues. The results indicated that different mitochondrial-related diseases shared similar alteration and defects in mitochondrial morphology. Furthermore, Lycium ruthenicum Murr. extract, a bioactive food substance with cognition-improving property, could effectively improve muscle strength and increase body weight in the Slc25a46 knockout mice. These findings suggest that mitochondrial morphology defects in mice models, particularly in the mitochondrial compartment, represent a unified and effective marker for screening and validating natural product-derived functional substances with mitochondrial protective properties. It also holds potential application in mitochondrial-impaired senile neurodegenerative diseases, especially in AD.展开更多
[Objective] The research aimed to construct the prokaryotic expression vector of VP5 protein of IBDV.The transmembrane region sequence of VP5 protein was knocked out.Moreover,the expression,separation and purification...[Objective] The research aimed to construct the prokaryotic expression vector of VP5 protein of IBDV.The transmembrane region sequence of VP5 protein was knocked out.Moreover,the expression,separation and purification of objective protein were carried out.[Method] PCR technology was used to respectively amplify the extracellular and intracellular fragments of VP5 gene of IBDV.Then,the two fragments were simultaneously linked to pET-28b(+),and it was the vector-intracellular fragment-extracellular fragment-vector.The recombinant expression plasmid pET-VP5-FC and the improved pET-VP5-SC of VP5 whose transmembrane region gene fragment was knocked out were constructed.Then,the expression plasmid was transformed into BL21(DE3).After IPTG induction,the recombinant protein was purified by Ni affinity chromatography and the gel filtration chromatography.[Result] The soluble expressed VP5 of IBDV was obtained.[Conclusion] The research laid the foundation for further studying the structure and function of VP5 protein.展开更多
文摘Surgical resection,chemotherapy,and radiation are the standard therapeutic modalities for treating cancer.These approaches are intended to target the more mature and rapidly dividing cancer cells.However,they spare the relatively quiescent and intrinsically resistant cancer stem cells(CSCs)subpopulation residing within the tumor tissue.Thus,a temporary eradication is achieved and the tumor bulk tends to revert supported by CSCs'resistant features.Based on their unique expression profile,the identification,isolation,and selective targeting of CSCs hold great promise for challenging treatment failure and reducing the risk of cancer recurrence.Yet,targeting CSCs is limited mainly by the irrelevance of the utilized cancer models.A new era of targeted and personalized anti-cancer therapies has been developed with cancer patient-derived organoids(PDOs)as a tool for establishing pre-clinical tumor models.Herein,we discuss the updated and presently available tissue-specific CSC markers in five highly occurring solid tumors.Additionally,we highlight the advantage and relevance of the threedimensional PDOs culture model as a platform for modeling cancer,evaluating the efficacy of CSC-based therapeutics,and predicting drug response in cancer patients.
基金financially supported by the National Research Foundation of Korea(NRF-2021R1A5A1033157 for SRC program:382 Comparative medicine Disease Research Center,NRF-2021R1F1A105195313)the Research Institute of Veterinary Science,the BK21 Four for Future Veterinary Medicine Leading Education and Research Center,and a Seoul National University(SNU)grant(#550e2020005)。
文摘Background Genome editing has been considered as powerful tool in agricultural fields.However,genome editing progress in cattle has not been fast as in other mammal species,for some disadvantages including long gestational periods,single pregnancy,and high raising cost.Furthermore,technically demanding methods such as microinjection and somatic cell nuclear transfer(SCNT)are needed for gene editing in cattle.In this point of view,electroporation in embryos has been risen as an alternative.Results First,editing efficiency of our electroporation methods were tested for embryos.Presence of mutation on embryo was confirmed by T7E1 assay.With first combination,mutation rates for MSTN and PRNP were 57.6%±13.7%and 54.6%±13.5%,respectively.In case of MSTN/BLG,mutation rates were 83.9%±23.6%for MSTN,84.5%±18.0%for BLG.Afterwards,the double-KO embryos were transferred to surrogates and mutation rate was identified in resultant calves by targeted deep sequencing.Thirteen recipients were transferred for MSTN/PRNP,4 calves were delivered,and one calf underwent an induction for double KO.Ten surrogates were given double-KO embryos for MSTN/BLG,and four of the six calves that were born had mutations in both genes.Conclusions These data demonstrated that production of genome edited cattle via electroporation of RNP could be effectively applied.Finally,MSTN and PRNP from beef cattle and MSTN and BLG from dairy cattle have been born and they will be valuable resources for future precision breeding.
基金Supported by National Natural Science Foundation of China(No.31571294).
文摘AIM:To investigate the role of transmembrane protein 206(TMEM206)in corneal edema in mice by knockout the TMEM206 gene using CRISPR/Cas9 editing technology.METHODS:TMEM206-knockout mice were generated using the CRISPR-Cas9 system.Variations in ophthalmic pathology were observed using slit lamp microscope and optical coherence tomography(OCT),intraocular pressure(IOP)was measured using a TonoLab Rebound Tonometer,and the ultrastructure of the corneal was observed using a transmission electron microscope.RESULTS:Corneal opacity was observed in 4/18 homozygous TMEM206^(-/-)mice whereas a similar change was not observed in heterozygous TMEM206^(+/-)mice and wild-type littermates.OCT examination showed that the mean central cornea thickness was 125±5.4μm in 4 homozygous TMEM206^(-/-)mice developed corneal edema and 115±1.2μm in wild-type mice(t=3.468,P<0.05)at 43wk.The mean IOP was 12.08±0.07 mm Hg in four right eyes with corneal edema and 12.03±0.03 mm Hg in three normal left eyes(P>0.05).Transmission electron microscopy revealed a disruption in the organization of the collagen fibrils in the central part of the cornea in homozygous TMEM206^(-/-)mice.CONCLUSION:TMEM206 is associated with corneal edema which caused organizational disruption of collagen fibrils in corneas of mice.
文摘Objective Cytokine responses to activation of innate immunity differ between individuals,yet the genomic and tissue-specific transcriptomic determinants of inflammatory responsiveness are not well understood. We hypothesized that tissue-specific mRNA and long intergenic non-coding RNA (lincRNA) induction differs between individuals with divergent evoked inflammatory responses.
基金the Ministry of Science and Technology China Brain Initiative Grant,No.2022ZD0204701the National Natural Science Foundation of China,Nos.82071386&81870982(all to JG)。
文摘Dendrites play irreplaceable roles in the nerve conduction pathway and are vulnerable to various insults.Peripheral axotomy of motor neurons results in the retraction of dendritic arbors,and the dendritic arbor can be re-expanded when reinnervation is allowed.RhoA is a target that regulates the cytoskeleton and promotes neuronal survival and axon regeneration.However,the role of RhoA in dendrite degeneration and regeneration is unknown.In this study,we explored the potential role of RhoA in dendrites.A line of motor neuronal conditional knockout mice was developed by crossbreeding HB9~(Cre+)mice with RhoA~(flox/flox)mice.We established two models for assaying dendrite degeneration and regeneration,in which the brachial plexus was transection or crush injured,respectively.We found that at 28 days after brachial plexus transection,the density,complexity,and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice were slightly decreased compared with that in Cre mice.Dendrites underwent degeneration at 7 and 14 days after brachial plexus transection and recovered at 28–56 days.The density,complexity,and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice recovered compared with results in Cre mice.These findings suggest that RhoA knockout in motor neurons attenuates dendrite degeneration and promotes dendrite regeneration after peripheral nerve injury.
文摘Introduction:Although many studies have shown the vast potential of circulating tumor cells(CTCs)detection in cancer diagnosis and prognosis,our understanding of their clinical significance is still far from complete.A major obstacle arises from the lack of well-established tumor or tissue-specific markers to detect CTCs by immunocytochemical staining after immunomagnetic enrichment(IE).Methods:We have established the utility of cytokeratin 20(CK20),a gastrointestinal tract specific marker,for the specific detection and identification of colorectal cancer(CRC)CTCs.This breakthrough was successfully validated in spike-in experiments using CRC cell line models followed by a pilot study which recruited 32 metastatic CRC patients,25 benign colorectal diseases patients and 27 normal subjects.Results:CK20-positive CTCs were detected in 90%metastatic CRC patients but not in benign colorectal diseases patients and normal subjects using this refined assay.Conclusions:These impressive results have laid the foundation for further development of CK20-positive CTCs as a promising marker in diagnosis,prognostication and treatment monitoring of metastatic CRC.
基金supported by grants from Zhejiang Provincial Natural Science Foundation of China(No.LQ21H200007)National Natural Science Foundation of China(No.82202605,No.81772664 and No.82172363)+1 种基金Zhejiang Provincial People’s Hospital Excellent Scientific Research Start-up Fundation of China(No.ZRY2019C008)Hangzhou Medical College Fundamental Scientific Research Project of China(No.KYQN202116).
文摘Objective The protein interacting with C kinase 1(PICK1)plays a critical role in vesicle trafficking,and its deficiency in sperm cells results in abnormal vesicle trafficking from Golgi to acrosome,which eventually disrupts acrosome formation and leads to male infertility.Methods An azoospermia sample was filtered,and the laboratory detection and clinical phenotype indicated typical azoospermia in the patient.We sequenced all of the exons in the PICK1 gene and found that there was a novel homozygous variant in the PICK1 gene,c.364delA(p.Lys122SerfsX8),and this protein structure truncating variant seriously affected the biological function.Then we constructed a PICK1 knockout mouse model using clustered regularly interspaced short palindromic repeat cutting technology(CRISPRc).Results The sperm from PICK1 knockout mice showed acrosome and nucleus abnormalities,as well as dysfunctional mitochondrial sheath formation.Both the total sperm and motility sperm counts were decreased in the PICK1 knockout mice compared to wild-type mice.Moreover,the mitochondrial dysfunction was verified in the mice.These defects in the male PICK1 knockout mice may have eventually led to complete infertility.Conclusion The c.364delA novel variant in the PICK1 gene associated with clinical infertility,and pathogenic variants in the PICK1 may cause azoospermia or asthenospermia by impairing mitochondrial function in both mice and humans.
基金supported by National Key R&D Program of China (2018YFD0901101)the Natural Science Foundation of Guangdong Province Research (2019A1515012230)+1 种基金Development Program in Key Areas of Guangdong Province (2019B020210002)the Fundamental Research Funds for the Central Universities (2019KZ01)。
文摘Mitochondrial dysfunction is proposed to be substantially associated with ageing and ageing-related diseases like Alzheimer's disease(AD). However, it is unclear whether different mouse models with mitochondrialrelated diseases have similar changes in mitochondrial morphology of the same tissues. Moreover, whether similarities in mitochondrial morphology can be a suitable marker for screening and/or discovering mitochondrial-protective substances remains unknown. Mitochondria morphology in different tissues of a novel mitochondrial outer membrane protein Slc25a46 knockout mouse and a traditional APP_(SWE)/PS1ΔE9 transgenic mouse were examined using transmission electron microscope(TEM). Both young Slc25a46 knockout mice and aged APP_(SWE)/PS1ΔE9 mice models showed similar mitochondrial damage in cerebellum tissues. The results indicated that different mitochondrial-related diseases shared similar alteration and defects in mitochondrial morphology. Furthermore, Lycium ruthenicum Murr. extract, a bioactive food substance with cognition-improving property, could effectively improve muscle strength and increase body weight in the Slc25a46 knockout mice. These findings suggest that mitochondrial morphology defects in mice models, particularly in the mitochondrial compartment, represent a unified and effective marker for screening and validating natural product-derived functional substances with mitochondrial protective properties. It also holds potential application in mitochondrial-impaired senile neurodegenerative diseases, especially in AD.
基金Supported by the National Natural Science Fundation Item of China(30970578,31070651)"Excellent Talent Support Plan in NewCentury"of Ministry of Education(NECT-08-0731)~~
文摘[Objective] The research aimed to construct the prokaryotic expression vector of VP5 protein of IBDV.The transmembrane region sequence of VP5 protein was knocked out.Moreover,the expression,separation and purification of objective protein were carried out.[Method] PCR technology was used to respectively amplify the extracellular and intracellular fragments of VP5 gene of IBDV.Then,the two fragments were simultaneously linked to pET-28b(+),and it was the vector-intracellular fragment-extracellular fragment-vector.The recombinant expression plasmid pET-VP5-FC and the improved pET-VP5-SC of VP5 whose transmembrane region gene fragment was knocked out were constructed.Then,the expression plasmid was transformed into BL21(DE3).After IPTG induction,the recombinant protein was purified by Ni affinity chromatography and the gel filtration chromatography.[Result] The soluble expressed VP5 of IBDV was obtained.[Conclusion] The research laid the foundation for further studying the structure and function of VP5 protein.