期刊文献+
共找到232,066篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of Different Titanium Surface Treatments on the Adhesion Test Result:Dental Application
1
作者 Alireza Valanezhad Masayoshi Suzue +4 位作者 Sirus Safaee Mahdis Nesabi Mohammad Khodaei Shigeaki Abe Ikuya Watanabe 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期255-259,共5页
The aim of the study was to investigate the effect of different surface treatment of titanium(Ti)on the adhesion test results for dental application.Ti substrates roughened by 400 to 1500-grit SiC polish papers and al... The aim of the study was to investigate the effect of different surface treatment of titanium(Ti)on the adhesion test results for dental application.Ti substrates roughened by 400 to 1500-grit SiC polish papers and alumina blasting,alkali treated by 5 molar(M)NaOH and KOH solutions and heat treated at the temperature range of 400-800℃were used in this study.The treated samples were subjected to the adhesion test.According to the results of the adhesion test,the adhesive strength showed the highest value for the blasted titanium among all polished and blasted samples.The Ti samples heated at 650℃showed the highest adhesive strength among all heat-treated samples.Further,the adhesion test results indicated the higher adhesive strength of chemically treated samples treated by NaOH rather than that by KOH.The polished and heated Ti samples showed the highest adhesive strength among all samples. 展开更多
关键词 titanium implant surface treatment bonding strength ANATASE RUTILE
原文传递
Formation of Dental Plaque Biofilm on Different Titanium Surfaces and Evaluate Antimicrobial Effects of Mouthrinses on Dental Plaque Biofilm 被引量:1
2
作者 朱肖 WANG Zhejun 王贻宁 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第2期465-471,共7页
The aim of this study was to evaluate the effect of the morphology of titanium implant surfaces on dental plaque biofilm formation and the antimicrobial effects of mouthrinses on dental plaque biofilms regarding these... The aim of this study was to evaluate the effect of the morphology of titanium implant surfaces on dental plaque biofilm formation and the antimicrobial effects of mouthrinses on dental plaque biofilms regarding these titanium surfaces by using an open biofilm model. The average surface roughness(RA) of three types of titanium surfaces(Smooth, hydroxyapatite(HA), sandblast large grit and acid-etching(SLA)) were tested by atomic force microscope(AFM). Subgingival plaques were collected and cultured on titanium surfaces for 4 hours to 2 weeks. After treatment with mouthrinses, characterization of dental plaque biofilms was tested by field-emission SEM(FESEM) and confocal laser scanning microscopy(CLSM). The results of AFM and SEM showed that the surface roughness and biofilm thickness of HA and SLA surfaces were significantly higher than those of smooth surface. In addition, it was revealed that the mouthrinses were effective on the killing of young dental plaque biofilms, while the more mature biofilm(14-day-old) exhibited a stronger resistance to mouthrinses used in this study. In conclusion, the roughness of titanium surfaces can affect the dental plaque biofilm formation and Colgate Plax and Listerine COOL MINT are effective mouthrinses to kill dental plaques at the early stage of biofilm growth on the titanium implant surfaces. 展开更多
关键词 titanium IMPLANT HA SLA PLAQUE BIOFILM CLSM ANTIMICROBIAL periimplantitis MOUTHWASH
原文传递
Effect of a Hybrid Micro/Nano-integrated Titanium Surface on Behavior of Rat Osteoblasts 被引量:1
3
作者 王朝南 冯彦博 +4 位作者 WANG Dafeng ZHENG Yuanbo SU Zhongliang FU Jiaxing YANG Xianyan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第2期459-468,共10页
The objective of this study was to investigate the effect of a new combined micro/nanoscale implant surface feature on osteoblasts' behaviors including cell morphology, adhesion, proliferation, differentiation, an... The objective of this study was to investigate the effect of a new combined micro/nanoscale implant surface feature on osteoblasts' behaviors including cell morphology, adhesion, proliferation, differentiation, and mineralization in vitro. A new micro/nano-hybrid topography surface was fabricated on commercial pure titanium(Cp Ti) by a two-step sandblasted acid-etching and subsequent alkali-and heattreatment(SA-AH). The conventional sandblasted/acid-etching(SA) treatment and alkali and heat(AH) treatment were also carried out on the Cp Ti as controls. Surface microstructures of the Ti disc samples were assessed by scanning electron microscopy(SEM). The neonatal rat calvaria-derived osteoblasts were seeded on these discs and the initial cell morphology was evaluated by SEM and immunofluorescence. Initial adhesion of the cells was then assayed by DAPI staining at 1, 2, and 4 h after seeding. The Cell Counting Kit-8(CCact K8) assay, gene expression of osteoblastic markers(ALP, Col 1, OCN, BSP, OSX, Cbfα1) and Alizarin Red S staining assays were monitored respectively for cell proliferations, differentiation and mineralization. The results show significant differences in osteoblast's behaviors on the four kinds of Ti surfaces. Compared with Cp Ti surface, the SA and AH treatment can significantly promote cell adhesion, differentiation and mineralization of osteoblasts. In particular, the combined SA and AH treatments exhibit synergistic effects in comparison with the treatment of SA and AH individually, and are more favorable for stimulating a series of osteogenous responses from cell adhesion to mineralization of osteoblasts. In summary, this study provides some new evidence that the integrated micro/nanostructure on the Cp Ti surface may promote bone osseointegration between the Ti implantbone interfaces in vitro. 展开更多
关键词 纳米复合 钛表面 行为 RAT 成骨细胞 扫描电子显微镜 混合 表面微观结构
原文传递
Early Stage of Oxidation on Titanium Surface by Reactive Molecular Dynamics Simulation
4
作者 Liang Yang Caizhuang Wang +2 位作者 Shiwei Lin Yang Cao Xiaoheng Liu 《Computers, Materials & Continua》 SCIE EI 2018年第4期177-188,共12页
Understanding of metal oxidation is very critical to corrosion control,catalysis synthesis,and advanced materials engineering.Metal oxidation is a very complex phenomenon,with many different processes which are couple... Understanding of metal oxidation is very critical to corrosion control,catalysis synthesis,and advanced materials engineering.Metal oxidation is a very complex phenomenon,with many different processes which are coupled and involved from the onset of reaction.In this work,the initial stage of oxidation on titanium surface was investigated in atomic scale by molecular dynamics(MD)simulations using a reactive force field(ReaxFF).We show that oxygen transport is the dominant process during the initial oxidation.Our simulation also demonstrate that a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Titanium(0001)surface and further prevented oxidation in the deeper layers.The mechanism of initial oxidation observed in this work can be also applicable to other self-limiting oxidation. 展开更多
关键词 Reactive force field metal oxidation self-limiting oxidation titanium(0001)surface molecular dynamics simulation compressive stress
下载PDF
Facile Conjugation of Heparin onto Titanium Surfaces via Dopamine Inspired Coatings for Improving Blood Compatibility 被引量:3
5
作者 李贵才 XIE Bing +3 位作者 PAN Changjiang 杨萍 DING Hongyan HUANG Nan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第4期832-840,共9页
Immobilization of heparin on biomaterials surface has been proven to be an effective strategy for preventing thrombus formation. However, the procedures of most immobilization methods(physical adsorption, covalent lin... Immobilization of heparin on biomaterials surface has been proven to be an effective strategy for preventing thrombus formation. However, the procedures of most immobilization methods(physical adsorption, covalent linkage, electrostatic interaction) are complicated and time-consuming. In the present study, heparin with various concentrations immobilized on a titanium(Ti) substrate via polydopamine layer for improving blood compatibility was investigated. Water contact angle measurement showed that the immobilization of heparin resulted in an increase of the hydrophilicity. X-ray photoelectron spectroscopy(XPS) and Toluidine Blue O(TBO) tests displayed that the heparin molecules were successfully immobilized on Ti surface. The evaluations of blood compatibility(hemolysis rate, APTT, platelet adhesion and activation, fibrinogen conformational change) showed that the immobilization of heparin decreased hemolysis rate, prolonged blood coagulation time, reduced platelets adhesion and activation, and induced less fibrinogen conformational change. Moreover, a significant inhibition of blood coagulation and platelet adhesion was obtained when the heparin concentration was higher than 5 mg/mL, indicating that only with a certain surface densities could heparin perform its anticoagulant properties well. The results suggest that the immobilization of heparin via polydopamine layer can confer excellent antithrombotic properties, and the heparin immobilization method via polydopamine layer provides an alternative approach for other biomolecules immobilization on biomaterials surface. Thus it is envisaged that this method will be potentially useful for the surface modifi cation of blood-contacting biomaterials. 展开更多
关键词 血液相容性 多巴胺 钛表面 肝素 固定化方法 血小板粘附 X射线光电子能谱 纤维蛋白原
原文传递
Reducing bacterial adhesion to titanium surfaces using low intensity alternating electrical pulses
6
作者 Marti Bernaus Jordi Guillem-Marti +4 位作者 Adrian Bermúdez-Castel Jose Antonio Calero Diego Torres Margarita Veloso Lluís Font-Vizcarra 《World Journal of Orthopedics》 2022年第6期578-586,共9页
BACKGROUND Orthopedic implant-related infection remains one of the most serious complications after orthopedic surgery.In recent years,there has been an increased scientific interest to improve prevention and treatmen... BACKGROUND Orthopedic implant-related infection remains one of the most serious complications after orthopedic surgery.In recent years,there has been an increased scientific interest to improve prevention and treatment strategies.However,many of these strategies have focused on chemical measures.AIM To analyze the effect of alternating current electrical fields on bacterial adherence to titanium surfaces.METHODS Staphylococcus aureus(S.aureus)and Escherichia coli(E.coli)were exposed to 6.5 V electrical currents at different frequencies:0.5 Hz,0.1 Hz,and 0.05 Hz.After exposure,a bacterial count was then performed and compared to the control model.Other variables registered included the presence of electrocoagulation of the medium,electrode oxidation and/or corrosion,and changes in pH of the medium.RESULTS The most effective electrical model for reducing S.aureus adhesion was 6.5 V alternating current at 0.05 Hz achieving a 90%adhesion reduction rate.For E.coli,the 0.05 Hz frequency model also showed the most effective results with a 53%adhesion reduction rate,although these were significantly lower than S.aureus.Notable adhesion reduction rates were observed for S.aureus and E.coli in the studied conditions.However,the presence of electrode oxidation makes us presume these conditions are not optimal for in vivo use.CONCLUSION Although our findings suggest electrical currents may be useful in preventing bacterial adhesion to metal surfaces,further research using other electrical conditions must be examined to consider their use for in vivo trials. 展开更多
关键词 Electrical fields Bacterial adhesion Orthopedic infection titanium Metal surfaces
下载PDF
The Effects of Different Titanium Surfaces on the Behaviour of Osteoblast-Like Cells 被引量:1
7
作者 Fabiano Ribeiro Cirano Adriane Yaeko Togashi +2 位作者 Marcia Martins Marques Francisco Emílio Pustiglioni Luiz Antonio Pugliesi Alves Lima 《Journal of Biomedical Science and Engineering》 2015年第6期380-388,共9页
This study investigated the influence of different titanium surfaces on the differentiation of rat osteoblast-like cells (osteo-1). Osteo-1 cells were cultured on the following titanium surfaces: 1) pretreated, smooth... This study investigated the influence of different titanium surfaces on the differentiation of rat osteoblast-like cells (osteo-1). Osteo-1 cells were cultured on the following titanium surfaces: 1) pretreated, smooth surface (PT);2) sandblasted and acid etched surface (SLA);and 3) sandblasted and acid-etched surface rinsed under nitrogen protection to prevent exposure to air and preserved in isotonic saline solution (modSLA). Cell metabolism, total protein content, collagen content and alkaline phosphatase (AP) activity and the formation of calcified nodules were analyzed. The titanium surface did not influence cell metabolism, total protein content and collagen content. The SLA surface influenced cell differentiation, with the observation of a significant reduction of AP activity and formation of calcified nodules after 21 days compared to the PT surface. No difference was observed between the PT and modSLA surfaces. All titanium surfaces tested permitted the full expression of the osteoblast phenotype by osteo-1 cells, including matrix mineralization. 展开更多
关键词 titanium Dental Implants OSTEOBLASTS
下载PDF
Grafting Carbon Nanotubes on Titanium Surface for Osteoblast Cell Adhesion and Growth
8
作者 Chang-Jiang Pan Yu-Xiao Dong Klaus D. Jandt 《Journal of Biomaterials and Nanobiotechnology》 2012年第3期353-361,共9页
Poly(ethylene glycol) (PEG) functionalized single-walled carbon nanotubes (SWCNTs) were covalently grafted on the titanium surface with the aim to provide a new platform for human osteoblast cells (HOCs) attachment. W... Poly(ethylene glycol) (PEG) functionalized single-walled carbon nanotubes (SWCNTs) were covalently grafted on the titanium surface with the aim to provide a new platform for human osteoblast cells (HOCs) attachment. Water contact angle, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) results revealed that the PEG-functionalized SWCNTs were successfully grafted onto titanium surfaces. Cell viability and proliferation showed that the number of viable cells in culture medium increased with the incubation time for both titanium and SWCNT-modified titanium samples, although the SWCNT-modified titanium presented lower cell viability compared to titanium. Cell adhesion experiments suggested that there were no obvious differences in the number of cells adhered on the titanium and PEG-SWCNT-modified titanium, and the number of adhered cells increased with the culture time. To our best knowledge, for the first time the PEG functionalized SWCNTs were grafted on the titanium surface for human osteoblast cell adhesion and growth. The strategy introduced in the present study provides a new idea for the matrix preparation based on CNTs and titanium for the biological application and the new SWCNT-titanium platform has potential applications in implantable materials and bone tissue engineering. 展开更多
关键词 Carbon NANOTUBE titanium OSTEOBLAST
下载PDF
A Study on HA Titanium Surface with Atomic Force Microscope (AFM)
9
作者 杨晓喻 刘长虹 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第B12期242-245,共4页
Three kinds of titanium surface especially the HA surface are analyzed. Titanium was treated by 3 kinds of methods that were acid & alkali, calcic solution and apatite solution. Samples were observed by optic micr... Three kinds of titanium surface especially the HA surface are analyzed. Titanium was treated by 3 kinds of methods that were acid & alkali, calcic solution and apatite solution. Samples were observed by optic microscope and atomic force microscope (AFM). The typical surface morphology of the acid and alkali group is little holes, and on the two HA surface the tiny protuberances is typical. The surface treated by apatite solution was smoother than the two formers. The rough surface treated with acid and alkali was propitious to Ca+, P- and proteins’ adhesion, and the relatively smooth HA surface was of benefit to the cell adhesion. 展开更多
关键词 羟磷灰石 表面形态 原子力显微镜 生物材料 骨骼
下载PDF
Preparation of CTS Coatings Containing Calcium and Phosphorus on Titanium Surface by the Cathode Liquid Phase Plasma Technology
10
作者 叶文婷 吴迪 +3 位作者 潘欣 陈亚芍 憨勇 宋忠孝 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第5期614-618,共5页
Chitosan (CTS) coatings contained calcium (Ca) and phosphorus (P) on titanium(Ti) surface are prepared by the cathode liquid phase plasma technology (CLPT), in a certainconcentration electrolyte solution with selectiv... Chitosan (CTS) coatings contained calcium (Ca) and phosphorus (P) on titanium(Ti) surface are prepared by the cathode liquid phase plasma technology (CLPT), in a certainconcentration electrolyte solution with selective additions of ammonium dihydrogen phosphateand calcium nitrate. It is indicated that the parameters for a stable discharge are voltage of400 V, frequency of 100 Hz, duty cycle of 30% based on a large amount of experiment data. Themorphology, structure and composition of the coated samples are studied by SEM, FTIR, XRD,XPS. The results demonstrate that the composite coatings are uniform, and some solid particles ofinorganic salt containing calcium and phosphorus dispersed on the coatings. CA tests show thatthe samples treated by the liquid plasma became less hydrophilic. The variation of hydrophilicityon the CLPT treated titanium is attributed to the change of the function groups on the samplesurface. Meanwhile, a possible formation mechanism of the composite coatings is discussed. 展开更多
关键词 磷酸二氢铵 涂层表面 硝酸钙 等离子体技术 液相 阴极 制备
下载PDF
Ultrastructural Characterization of the Titanium Surface Degree IV in Dental Implant Aluminum Free (Acid Attack)
11
作者 Igor da Silva Brum Marco Antônio Alencar De Carvalho +3 位作者 Paulo Gonçalo Pinto Dos Santos Renan Lana Devita Jorge Luiz da Silva Pires Jorge José de Carvalho 《Journal of Biomaterials and Nanobiotechnology》 2020年第3期151-160,共10页
Following the worldwide trend of developing heavy metal free materials, dental implants aren’t out of this tendency. Over the years, a number of techniques to condition the surface of dental implants have been design... Following the worldwide trend of developing heavy metal free materials, dental implants aren’t out of this tendency. Over the years, a number of techniques to condition the surface of dental implants have been designed and used such as oxide blasting, however the scientific medical community has been concerned about the use of these heavy metals which leads us to investigate and develop new conditioning techniques. The aim of the study was the analysis of the Systhex<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"><sup>&#174;</sup></span></span> implant surface in automatic system for the treatment of the surface with acid, where we can identify the surfaces purity level, pore size, deepness and especially the roughness proportionated by the technology of acid conditioning on the titanium surfaces of degree IV dental implants. We conclude that the automatic conditioning of acid attack promoted cleanliness, homogeneity and ideal roughness for the osseointegration process. 展开更多
关键词 Dental Implant Implant Stability Nanotechnology surface
下载PDF
Characterization of Pectin Nanocoatings at Polystyrene and Titanium Surfaces
12
作者 Katarzyna Gurzawska Kai Dirscherl +6 位作者 Yu Yihua Inge Byg Bodil Jorgensen Rikke Svava Martin W.Nielsen Niklas R.Jorgensen Klaus Gotfredsen 《Journal of Surface Engineered Materials and Advanced Technology》 2013年第4期20-28,共9页
The titanium implant surface plays a crucial role for implant incorporation into bone. A new strategy to improve implant integration in a bone is to develop surface nanocoatings with plant-derived polysaccharides able... The titanium implant surface plays a crucial role for implant incorporation into bone. A new strategy to improve implant integration in a bone is to develop surface nanocoatings with plant-derived polysaccharides able to increase adhesion of bone cells to the implant surface. The aim of the present study was to physically characterize and compare polystyrene and titanium surfaces nanocoated with different Rhamnogalacturonan-Is (RG-I) and to visualize RG-I nanocoatings. RG-Is from potato and apple were coated on aminated surfaces of polystyrene, titianium discs and titanium implants. To characterize, compare and visualize the surface nanocoatings measurements of contact angle measurements and surface roughness with atomic force microscopy, scanning electron microscopy, and confocal microscopy was performed. We found that, both unmodified and enzymatic modified RG-Is influenced surface wettability, without any major effect on surface roughness (Sa, Sdr). Furthermore, we demonstrated that it is possible to visualize the pectin RG-Is molecules and even the nanocoatings on titanium surfaces, which have not been presented before. The comparison between polystyrene and titanium surface showed that the used material affected the physical properties of non-coated and coated surfaces. RG-Is should be considered as a candidate for new materials as organic nanocoatings for biomaterials in order to improve bone healing. 展开更多
关键词 surface Properties titanium POLYSTYRENE Rhamnogalacturonan-I OSSEOINTEGRATION
下载PDF
Osteoblast Behavior on Hierarchical Micro-/Nano-Structured Titanium Surface 被引量:7
13
作者 Weiyan Meng Yanmin Zhou Yanjing Zhang Qing Cai Liming Yang Jinghui Zhao Chunyan Li 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第3期234-241,共8页
关键词 细胞行为 成骨细胞 钛表面 细胞培养 早期阶段 SLA 电解腐蚀 表面地形
下载PDF
Modification of Titanium Surfaces via Surface-initiated Atom Transfer Radical Polymerization to Graft PEG-RGD Polymer Brushes to Inhibit Bacterial Adhesion and Promote Osteoblast Cell Attachment
14
作者 陈琦 LIU Di +2 位作者 GONG Yuejiao XIAO Qun 李志安 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期1225-1231,共7页
Implant-related infection is one of the key concerns in clinical medicine, so the modification of titanium to inhibit bacterial adhesion and support osteoblast cell attachment is important. In this article, two strate... Implant-related infection is one of the key concerns in clinical medicine, so the modification of titanium to inhibit bacterial adhesion and support osteoblast cell attachment is important. In this article, two strategies were used to examine the above effects. First, modification of titanium via surface-initiated atom transfer radical polymerization(ATRP) was performed. The surface of the titanium was activated initially by a silane coupling agent. Well-defined polymer brushes of poly(ethylene glycol) methacrylate were successfully tethered on the silane-coupled titanium surface to form hydration shell to examine the anti-fouling effect. Second, functionalization of the Ti-PEG surface with RGD was performed to examine the anti-bacterial adhesion and osteoblast cell attachment ability. The chemical composition of modified titanium surfaces was characterized by X-ray photoelectron spectroscopy(XPS). Changes in surface hydrophilicity and hydrophobicity were characterized by static water contact angle measurements. Results indicated that PEG-RGD brushes were successfully tethered on the titanium surface. And anti-bacterial adhesion ability and osteoblast cell attachment ability were confirmed by fluorescence microscopy and scanning electron microscopy. Results indicated that PEG can inhibit both bacterial adhesion and osteoblast cell attachment, while PEG-RGD brushes can not only inhibit bacterial adhesion but also promote osteoblast cell attachment. 展开更多
关键词 原子转移自由基聚合 附着能力 成骨细胞 聚合改性 细菌粘附 钛表面 聚合物刷 引发
原文传递
Effect of Titanium Dioxide Nanoparticles on Growth and Biomass Accumulation in Lettuce (Lactuca sativa)
15
作者 Channa B. Rajashekar Brenden Armstrong 《American Journal of Plant Sciences》 CAS 2024年第1期1-13,共13页
The use of titanium dioxide nanoparticles (nTiO<sub>2</sub>) is gaining interest in agriculture because of their impact on many aspects of plant growth. The present study examines the effects of nTiO<su... The use of titanium dioxide nanoparticles (nTiO<sub>2</sub>) is gaining interest in agriculture because of their impact on many aspects of plant growth. The present study examines the effects of nTiO<sub>2</sub> (5 nm and 10 nm) applied to seeds and the seedlings as a foliar application on various aspects of growth characteristics and biomass accumulation in lettuce (Lactuca sativa, cv. Grand Rapids). Application of 10 nm nTiO<sub>2</sub> to seeds through imbibition resulted in a significant reduction in shoot biomass accumulation while 5 nm nTiO<sub>2</sub> did not affect the biomass accumulation in lettuce. The application of 10 nm nTiO<sub>2</sub> reduced the fresh shoot biomass accumulation by about 18% compared to the control plants. Other growth characteristics such as shoot dry biomass, root fresh and dry biomass, plant height, and leaf area were not affected by the application of both 5 nm and 10 nm nTiO<sub>2</sub>. In addition, foliar application of these nanoparticles to the lettuce seedlings did not have a significant effect on most of the growth parameters examined, and the increasing concentration ranging from 5 nm/L to 400 mg/L did not produce a consistent response in lettuce. Thus, nTiO<sub>2</sub> application to lettuce seeds had a notable negative impact on shoot growth while foliar application did not have a significant effect on many plant growth characteristics. However, foliar applications produced some symptoms of toxicity to the foliage in the form of necrotic or chlorotic patches on the leaves, which were more pronounced with increasing concentrations of both 5 nm and 10 nm nTiO<sub>2</sub>. However, these symptoms were apparent at a concentration as low as 50 mg/L of nTiO<sub>2</sub>. Thus, foliar application of nTiO<sub>2</sub> may not have a significant impact on many of the growth characteristics in lettuce, but it can result in foliar toxicity. 展开更多
关键词 Growth Characteristics LETTUCE NANOPARTICLES titanium Dioxide TOXICITY
下载PDF
Effect of titanium on the sticking of pellets based on hydrogen metallurgy shaft furnace:Behavior analysis and mechanism evolution
16
作者 Jinge Feng Jue Tang +4 位作者 Zichuan Zhao Mansheng Chu Aijun Zheng Xiaobing Li Xiao’ai Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期282-291,共10页
Direct reduction based on hydrogen metallurgical gas-based shaft furnace is a promising technology for the efficient and low-carbon smelting of vanadium-titanium magnetite.However,in this process,the sticking of pelle... Direct reduction based on hydrogen metallurgical gas-based shaft furnace is a promising technology for the efficient and low-carbon smelting of vanadium-titanium magnetite.However,in this process,the sticking of pellets occurs due to the aggregation of metal-lic iron between the contact surfaces of adjacent pellets and has a serious negative effect on the continuous operation.This paper presents a detailed experimental study of the effect of TiO2 on the sticking behavior of pellets during direct reduction under different conditions.Results showed that the sticking index(SI)decreased linearly with the increasing TiO2 addition.This phenomenon can be attributed to the increase in unreduced FeTiO3 during reduction,leading to a decrease in the number and strength of metallic iron interconnections at the sticking interface.When the TiO2 addition amount was raised from 0 to 15wt%at 1100°C,the SI also increased from 0.71%to 59.91%.The connection of the slag phase could be attributed to the sticking at a low reduction temperature,corresponding to the low sticking strength.Moreover,the interconnection of metallic iron became the dominant factor,and the SI increased sharply with the increase in re-duction temperature.TiO2 had a greater effect on SI at a high reduction temperature than at a low reduction temperature. 展开更多
关键词 titanium sticking index hydrogen metallurgy direct reduction PELLETS
下载PDF
Integrated high-performance and accurate shaping technology of low-cost powder metallurgy titanium alloys: A comprehensive review
17
作者 Xuemeng Gan Shaofu Li +1 位作者 Shunyuan Xiao Yafeng Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期413-426,共14页
The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressure-less sintering are impeded by poor sintering densification, embrittlement caused by excessive O ... The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressure-less sintering are impeded by poor sintering densification, embrittlement caused by excessive O impurities, and severe sintering deforma-tion resulting from the use of heterogeneous powder mixtures. This review presents a summary of our previous work on addressing the above challenges. Initially, we proposed a novel strategy using reaction-induced liquid phases to enhance sintering densification. Near- complete density (relative density exceeding 99%) was achieved by applying the above strategy and newly developed sintering aids. By focusing on the O-induced embrittlement issue, we determined the onset dissolution temperature of oxide films in the Ti matrix. On the basis of this finding, we established a design criterion for effective O scavengers that require reaction with oxide films before their dissol-ution. Consequently, a ductile PM Ti alloy was successfully obtained by introducing 0.3wt% NdB6 as the O scavenger. Lastly, a powder- coating strategy was adopted to address the sintering deformation issue. The ultrafine size and shell-like distribution characteristics of coating particles ensured rapid dissolution and homogeneity in the Ti matrix, thereby facilitating linear shrinkage during sintering. As a result, geometrically complex Ti alloy parts with high dimensional accuracy were fabricated by using the coated powder. Our fundament-al findings and related technical achievements enabled the development of an integrated production technology for the high-performance and accurate shaping of low-cost PM Ti alloys. Additionally, the primary engineering applications and progress in the industrialization practice of our developed technology are introduced in this review. 展开更多
关键词 powder metallurgy titanium sintering densification oxygen scavenging accurate shaping
下载PDF
Acoustic Bilayer Gradient Metasurfaces for Perfect and Asymmetric Beam Splitting
18
作者 权家琪 孙宝印 +2 位作者 伏洋洋 高雷 徐亚东 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第1期39-50,共12页
We experimentally and theoretically present a paradigm for the accurate bilayer design of gradient metasurfaces for wave beam manipulation,producing an extremely asymmetric splitting effect by simply tailoring the int... We experimentally and theoretically present a paradigm for the accurate bilayer design of gradient metasurfaces for wave beam manipulation,producing an extremely asymmetric splitting effect by simply tailoring the interlayer size.This concept arises from anomalous diffraction in phase gradient metasurfaces and the precise combination of the phase gradient in bilayer metasurfaces.Ensured by different diffraction routes in momentum space for incident beams from opposite directions,extremely asymmetric acoustic beam splitting can be generated in a robust way,as demonstrated in experiments through a designed bilayer system.Our work provides a novel approach and feasible platform for designing tunable devices to control wave propagation. 展开更多
关键词 surfaceS SPLITTING ASYMMETRIC
原文传递
Neutral and metallic vs.charged and semiconducting surface layer in acceptor doped CeO_(2)
19
作者 Ilan Riess 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期795-802,共8页
The monomolecular surface layer of acceptor doped CeO_(2)may become neutral and metallic or charged and semiconducting.This is revealed in the theoretical analysis of the oxygen pressure dependence of the surface defe... The monomolecular surface layer of acceptor doped CeO_(2)may become neutral and metallic or charged and semiconducting.This is revealed in the theoretical analysis of the oxygen pressure dependence of the surface defects concentration in acceptor doped ceria with two different dopant types and operated under different oxygen pressures.Recently published experimental data for highly reduced Sm0.2Ce0.8O1.9-x(SDC)containing a fixed valence dopant Sm3+are very different from those published for Pr0.1Ce0.9O_(2)-x(PCO)with the variable valence dopant Pr4+/Pr3+being reduced under milder conditions.The theoretical analysis of these experimental results fits very well the experimental results of SDC and PCO.It leads to the following predictions:the highly reduced surface of SDC is metallic and neutral,the metallic surface electron density of state is gs=0.9×10^(38)J-1·m^(-2)(1.4×1015eV^(-1)·cm^(-2)),the electron effective mass is meff,s=3.3me,and the phase diagram of the reduced surface has theα(fcc)structure as in the bulk.In PCO a double layer is predicted to be formed between the surface and the bulk with the surface being negatively charged and semiconducting.The surface of PCO maintains high Pr3+defect concentration as well as relative high oxygen vacancy concentration at oxygen pressures higher than in the bulk.The reasons for the difference between a metallic and semiconducting surface layer of acceptor doped CeO_(2)are reviewed,as well as the key theoretical considerations applied in coping with this problem.For that we make use of the experimental data and theoretical analysis available for acceptor doped ceria. 展开更多
关键词 CEO2 surface defects metallic surface oxide reduction Sm doped CeO2 Pr doped CeO2
下载PDF
Comparison of electrochemical behaviors of Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe and Ti-6Al-4V titanium alloys in NaNO_(3)solution
20
作者 Jia Liu Shuanglu Duan +1 位作者 Xiaokang Yue Ningsong Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期750-763,共14页
The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an effici... The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an efficient and low-cost technology for manufacturing theβ-CEZ alloy.In ECM,the machining parameter selection and tool design are based on the electrochemical dissolution behavior of the materials.In this study,the electrochemical dissolution behaviors of theβ-CEZ and Ti-6Al-4V(TC4)alloys in NaNO3solution are discussed.The open circuit potential(OCP),Tafel polarization,potentiodynamic polarization,electrochemical impedance spectroscopy(EIS),and current efficiency curves of theβ-CEZ and TC4 alloys are analyzed.The results show that,compared to the TC4 alloy,the passivation film structure is denser and the charge transfer resistance in the dissolution process is greater for theβ-CEZ alloy.Moreover,the dissolved surface morphology of the two titanium-based alloys under different current densities are analyzed.Under low current densities,theβ-CEZ alloy surface comprises dissolution pits and dissolved products,while the TC4 alloy surface comprises a porous honeycomb structure.Under high current densities,the surface waviness of both the alloys improves and the TC4 alloy surface is flatter and smoother than theβ-CEZ alloy surface.Finally,the electrochemical dissolution models ofβ-CEZ and TC4 alloys are proposed. 展开更多
关键词 electrochemical machining dissolution behavior β-CEZ titanium alloy polarization curve current efficiency
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部