One of the main obstacles limiting the performance of protonic ceramic fuel cells(PCFCs) is the sluggish kinetics of the oxygen reduction reaction(ORR) at reduced temperatures.Here,the surface manipulation of a triple...One of the main obstacles limiting the performance of protonic ceramic fuel cells(PCFCs) is the sluggish kinetics of the oxygen reduction reaction(ORR) at reduced temperatures.Here,the surface manipulation of a triple-conducting cathode BaCe_(0.5)Pr_(0.3)Y_(0.2)O_(3-δ)(BCPY) by an efficient catalyst coating PrNi_(0.5)Co_(0.5)O_(3-δ)(PNC) to enhance the ORR activity and CO_(2) tolerance is reported.The developed PNC-coated BCPY cathode achieves the polarization resistance of 0.25 and 1.00 Ω cm^(2) at 600 and 500 ℃,respectively,approximately 1/5 of that for the pristine BCPY cathode(0.99 and 4.79 Ω cm^(2)),while maintaining an excellent CO_(2) tolerance.The single cell on a BaZr_(0.8)Yb_(0.2)O_(3-δ) electrolyte also exhibits a high peak power density of 0.79 W cm^(-2)at 700 ℃ and a stable operation for 200 h at 600 ℃.Such high ORR activity is mainly attributed to the synergistic effect of BCPY support and PNC nanoparticles.Namely,BCPY provides a tripleconducting path(mainly protons),and PNC nanoparticles facilitates surface oxygen exchange and steam adsorption/desorption processes due to the enriched surface oxygen vacancies.This study will provide a new design strategy for developing high-performance PCFCs cathode.展开更多
Ninety-four patients with lumbar intervertebral disc herniation were enrolled in this study. Of these, 48 were treated with Feng's Spinal Manipulation, hot fomentation, and bed rest (treatment group). The remaining...Ninety-four patients with lumbar intervertebral disc herniation were enrolled in this study. Of these, 48 were treated with Feng's Spinal Manipulation, hot fomentation, and bed rest (treatment group). The remaining 46 patients were treated with hot fomentation and bed rest only (control group). After 3 weeks of treatment, clinical parameters including the angle of straight-leg raising, visual analogue scale pain score, and Japanese Orthopaedic Association score for low back pain were improved. The treatment group had significantly better improvement in scores than the control group. Magnetic resonance myelography three-dimensional reconstruction imaging of the vertebral canal demonstrated that filling of the compressed nerve root sleeve with cerebrospinal fluid increased significantly in the treatment group. The diameter of the nerve root sleeve was significantly larger in the treatment group than in the control group. However, the sagittal diameter index of the herniated nucleus pulposus and the angle between the nerve root sleeve and the thecal sac did not change significantly in either the treatment or control groups. The effectiveness of Feng's Spinal Manipulation for the treatment of symptoms associated with lumbar intervertebral disc herniation may be attributable to the relief of nerve root compression, without affecting the herniated nucleus pulposus or changing the morphology or position of the nerve root.展开更多
BACKGROUND A patient with type Ⅲ Kummell’s disease had a ruptured posterior cortex of the fractured vertebral body, which caused spinal cord compression. An open surgery was considered the best choice of operation. ...BACKGROUND A patient with type Ⅲ Kummell’s disease had a ruptured posterior cortex of the fractured vertebral body, which caused spinal cord compression. An open surgery was considered the best choice of operation. However, the patient and her family refused open surgery and instead demanded a minimally invasive surgical treatment such as percutaneous vertebroplasty(PVP). After preoperative discussion, we finally adopted the novel therapy of traditional Chinese medicine manipulative reduction(TCMMR) combined with PVP.CASE SUMMARY A patient with type Ⅲ Kummell’s disease exhibiting bone block-induced spinal cord compression was admitted to our hospital. She suffered from a variety of medical disorders but refused open surgery, and instead asked for PVP surgery. TCMMR, in parallel with PVP, was used to restore the height of the compressed vertebral body and reduce the symptoms of spinal cord compression by the bone block in order to strengthen the vertebral body and prevent further collapse. The surgery was very successful. The height of the compressed vertebra was restored, and the symptom of spinal cord compression by bone block was reduced successfully via TCMMR. The fractured vertebra was solidified by the PVP. The pain visual analog score declined from preoperative 7 scores to postoperative 2 scores, and the Frankel spinal cord scale increased from preoperative D degree to postoperative E degree.CONCLUSION The new method has advantages in treating patients with type Ⅲ Kummell’s disease who cannot be treated with open surgery.展开更多
The electrocatalytic carbon dioxide reduction reaction(CO_(2) RR)producing HCOOH and CO is one of the most promising approaches for storing renewable electricity as chemical energy in fuels.SnO_(2) is a good catalyst ...The electrocatalytic carbon dioxide reduction reaction(CO_(2) RR)producing HCOOH and CO is one of the most promising approaches for storing renewable electricity as chemical energy in fuels.SnO_(2) is a good catalyst for CO_(2)-to-HCOOH or CO_(2)-to-CO conversion,with different crystal planes participating the catalytic process.Among them,(110)surface SnO_(2) is very stable and easy to synthesisze.By changing the ratio of Sn:O for SnO_(2)(110),we have two typical SnO_(2) thin films:fully oxidized(stoichiometric)and partially reduced.In this work,we are concerned with different metals(Fe,Co,Ni,Cu,Ru,Rh,Pd,Ag,Os,Ir,Pt,and Au)-doped SnO_(2)(110)with different activity and selectivity for CO_(2) RR.All these changes are manipulated by adjusting the ratio of Sn:O in(110)surface.The results show that stochiometric and reduced Cu/Ag doped SnO_(2)(110)have different selectivity for CO_(2) RR.More specifically,stochiometric Cu/Ag-doped SnO_(2)(110)tends to generate CO(g).Meanwhile,the reduced surface tends to generate HCOOH(g).Moreover,we also considered the competitive hydrogen evolution reaction(HER).The catalysts SnO_(2)(110)doped by Ru,Rh,Pd,Os,Ir,and Pt have high activity for HER,and others are good catalysts for CO_(2) RR.展开更多
目的:通过Meta分析,比较手法复位联合咬合板治疗颞下颌关节盘不可复性前移位患者疼痛与最大张口度疗效是否优于仅进行手法或仅进行咬合板治疗。方法:计算机检索Web of Science、PubMed、Cochrane Library、维普(VIP)、中国知网(CNKI)、...目的:通过Meta分析,比较手法复位联合咬合板治疗颞下颌关节盘不可复性前移位患者疼痛与最大张口度疗效是否优于仅进行手法或仅进行咬合板治疗。方法:计算机检索Web of Science、PubMed、Cochrane Library、维普(VIP)、中国知网(CNKI)、万方中手法复位联合咬合板治疗颞下颌关节盘不可复性前移位的随机对照试验(RCTs)文献,并参考Cochrane手册评估文献质量,运用RevMan5.4软件分析结局指标。结果:本研究纳入6个RCTs,患者共计393例。Meta分析结果显示,对于颞下颌关节盘不可复性前移位患者,观察组进行手法复位联合咬合板治疗,在降低疼痛评分[SMD=-0.34,95%CI(-0.54,-0.13),P=0.001]与改善最大张口度[SMD=0.51,95%CI(0.31,0.71),P<0.00001]方面疗效均比对照组较优,差异具有统计学意义(P<0.05)。结论:手法复位联合咬合板治疗改善颞下颌关节盘不可复性前移位患者疼痛和最大张口度疗效优于单独使用手法复位或单独佩戴咬合板。展开更多
基金partially based on results obtained from projects, Development of Ultra-High Efficiency Protonic Ceramic Fuel Cell Devices, WP1 Development of Innovative High-Performance Electrodes, JPNP20003, commissioned by the New Energy and Industrial Technology Development Organization (NEDO)supported by Grant-in-Aid for Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowships for Research in Japan (JP21F20736)。
文摘One of the main obstacles limiting the performance of protonic ceramic fuel cells(PCFCs) is the sluggish kinetics of the oxygen reduction reaction(ORR) at reduced temperatures.Here,the surface manipulation of a triple-conducting cathode BaCe_(0.5)Pr_(0.3)Y_(0.2)O_(3-δ)(BCPY) by an efficient catalyst coating PrNi_(0.5)Co_(0.5)O_(3-δ)(PNC) to enhance the ORR activity and CO_(2) tolerance is reported.The developed PNC-coated BCPY cathode achieves the polarization resistance of 0.25 and 1.00 Ω cm^(2) at 600 and 500 ℃,respectively,approximately 1/5 of that for the pristine BCPY cathode(0.99 and 4.79 Ω cm^(2)),while maintaining an excellent CO_(2) tolerance.The single cell on a BaZr_(0.8)Yb_(0.2)O_(3-δ) electrolyte also exhibits a high peak power density of 0.79 W cm^(-2)at 700 ℃ and a stable operation for 200 h at 600 ℃.Such high ORR activity is mainly attributed to the synergistic effect of BCPY support and PNC nanoparticles.Namely,BCPY provides a tripleconducting path(mainly protons),and PNC nanoparticles facilitates surface oxygen exchange and steam adsorption/desorption processes due to the enriched surface oxygen vacancies.This study will provide a new design strategy for developing high-performance PCFCs cathode.
基金supported by grants from the Key Topics of China Traditional Chinese Medicine Scientific Research Project,General Logistics Department of Chinese PLA,No.10ZYZ125the Army Medical Science and Technology the125Scientific Research Projects,Chinese PLA,No.AKJ11J004
文摘Ninety-four patients with lumbar intervertebral disc herniation were enrolled in this study. Of these, 48 were treated with Feng's Spinal Manipulation, hot fomentation, and bed rest (treatment group). The remaining 46 patients were treated with hot fomentation and bed rest only (control group). After 3 weeks of treatment, clinical parameters including the angle of straight-leg raising, visual analogue scale pain score, and Japanese Orthopaedic Association score for low back pain were improved. The treatment group had significantly better improvement in scores than the control group. Magnetic resonance myelography three-dimensional reconstruction imaging of the vertebral canal demonstrated that filling of the compressed nerve root sleeve with cerebrospinal fluid increased significantly in the treatment group. The diameter of the nerve root sleeve was significantly larger in the treatment group than in the control group. However, the sagittal diameter index of the herniated nucleus pulposus and the angle between the nerve root sleeve and the thecal sac did not change significantly in either the treatment or control groups. The effectiveness of Feng's Spinal Manipulation for the treatment of symptoms associated with lumbar intervertebral disc herniation may be attributable to the relief of nerve root compression, without affecting the herniated nucleus pulposus or changing the morphology or position of the nerve root.
文摘BACKGROUND A patient with type Ⅲ Kummell’s disease had a ruptured posterior cortex of the fractured vertebral body, which caused spinal cord compression. An open surgery was considered the best choice of operation. However, the patient and her family refused open surgery and instead demanded a minimally invasive surgical treatment such as percutaneous vertebroplasty(PVP). After preoperative discussion, we finally adopted the novel therapy of traditional Chinese medicine manipulative reduction(TCMMR) combined with PVP.CASE SUMMARY A patient with type Ⅲ Kummell’s disease exhibiting bone block-induced spinal cord compression was admitted to our hospital. She suffered from a variety of medical disorders but refused open surgery, and instead asked for PVP surgery. TCMMR, in parallel with PVP, was used to restore the height of the compressed vertebral body and reduce the symptoms of spinal cord compression by the bone block in order to strengthen the vertebral body and prevent further collapse. The surgery was very successful. The height of the compressed vertebra was restored, and the symptom of spinal cord compression by bone block was reduced successfully via TCMMR. The fractured vertebra was solidified by the PVP. The pain visual analog score declined from preoperative 7 scores to postoperative 2 scores, and the Frankel spinal cord scale increased from preoperative D degree to postoperative E degree.CONCLUSION The new method has advantages in treating patients with type Ⅲ Kummell’s disease who cannot be treated with open surgery.
基金supported by the Ministry of Science and Technology(No.2017YFA0204904,No.2016YFA0400900,and No.2016YFA0200600)the National Natural Science Foundation of China(No.21973086 and No.21633006)。
文摘The electrocatalytic carbon dioxide reduction reaction(CO_(2) RR)producing HCOOH and CO is one of the most promising approaches for storing renewable electricity as chemical energy in fuels.SnO_(2) is a good catalyst for CO_(2)-to-HCOOH or CO_(2)-to-CO conversion,with different crystal planes participating the catalytic process.Among them,(110)surface SnO_(2) is very stable and easy to synthesisze.By changing the ratio of Sn:O for SnO_(2)(110),we have two typical SnO_(2) thin films:fully oxidized(stoichiometric)and partially reduced.In this work,we are concerned with different metals(Fe,Co,Ni,Cu,Ru,Rh,Pd,Ag,Os,Ir,Pt,and Au)-doped SnO_(2)(110)with different activity and selectivity for CO_(2) RR.All these changes are manipulated by adjusting the ratio of Sn:O in(110)surface.The results show that stochiometric and reduced Cu/Ag doped SnO_(2)(110)have different selectivity for CO_(2) RR.More specifically,stochiometric Cu/Ag-doped SnO_(2)(110)tends to generate CO(g).Meanwhile,the reduced surface tends to generate HCOOH(g).Moreover,we also considered the competitive hydrogen evolution reaction(HER).The catalysts SnO_(2)(110)doped by Ru,Rh,Pd,Os,Ir,and Pt have high activity for HER,and others are good catalysts for CO_(2) RR.
文摘目的:通过Meta分析,比较手法复位联合咬合板治疗颞下颌关节盘不可复性前移位患者疼痛与最大张口度疗效是否优于仅进行手法或仅进行咬合板治疗。方法:计算机检索Web of Science、PubMed、Cochrane Library、维普(VIP)、中国知网(CNKI)、万方中手法复位联合咬合板治疗颞下颌关节盘不可复性前移位的随机对照试验(RCTs)文献,并参考Cochrane手册评估文献质量,运用RevMan5.4软件分析结局指标。结果:本研究纳入6个RCTs,患者共计393例。Meta分析结果显示,对于颞下颌关节盘不可复性前移位患者,观察组进行手法复位联合咬合板治疗,在降低疼痛评分[SMD=-0.34,95%CI(-0.54,-0.13),P=0.001]与改善最大张口度[SMD=0.51,95%CI(0.31,0.71),P<0.00001]方面疗效均比对照组较优,差异具有统计学意义(P<0.05)。结论:手法复位联合咬合板治疗改善颞下颌关节盘不可复性前移位患者疼痛和最大张口度疗效优于单独使用手法复位或单独佩戴咬合板。