Network traffic classification is essential in supporting network measurement and management.Many existing traffic classification approaches provide application-level results regardless of the network quality of servi...Network traffic classification is essential in supporting network measurement and management.Many existing traffic classification approaches provide application-level results regardless of the network quality of service(QoS)requirements.In practice,traffic flows from the same application may have irregular network behaviors that should be identified to various QoS classes for best network resource management.To address the issues,we propose to conduct traffic classification with two newly defined QoSaware features,i.e.,inter-APP similarity and intraAPP diversity.The inter-APP similarity represents the close QoS association between the traffic flows that originate from the different Internet applications.The intra-APP diversity describes the QoS variety of the traffic even among those originated from the same Internet application.The core of performing the QoS-aware feature extraction is a Long-Short Term Memory neural network based Autoencoder(LSTMAE).The QoS-aware features extracted by the encoder part of the LSTM-AE are then clustered into the corresponding QoS classes.Real-life data from multiple applications are collected to evaluate the proposed QoS-aware network traffic classification approach.The evaluation results demonstrate the efficacy of the extracted QoS-aware features in supporting the traffic classification,which can further contribute to future network measurement and management.展开更多
Traffic congestion is associated with increased environmental pollutions, as well as reduced socio-economic productivity due to significant delays in travel times. The consequences are worse in least developed countri...Traffic congestion is associated with increased environmental pollutions, as well as reduced socio-economic productivity due to significant delays in travel times. The consequences are worse in least developed countries where motorized road transport networks are often inefficiently managed in addition to being largely underdeveloped. Recent research on traffic congestion has mostly focused on infrastructural aspects of road networks, with little or no emphasis at all on motorists’ on-the-road behavior (MB). The current study thus aimed to bridge this knowledge gap by characterizing traffic jam incidents (TJI) observed over a period of 80 days in Uganda’s Capital City, Kampala. MB as well as road network infrastructural factors such as road blockage (RB), were captured for each of the observed TJI. A total of 483 peak-time TJI were recorded, and exploratory data analysis (EDA) subsequently performed on the TJI dataset. EDA involved Hierarchical clustering analysis (HCA) and K-means clustering of the TJI dataset, as well as a detailed descriptive statistical analysis of both the entire dataset and the emerging TJI clusters. A highlight finding of this study is that 48.2% of the observed TJIs were as a result of on-the-road motorist behavior. Furthermore, the intervention of traffic police officers in a bid to regulate traffic flow was equally responsible for 25.9% of the TJIs observed in this study. Overall, these results indicate that whereas road infrastructural improvement is warranted in order to improve traffic flow, introducing interventions to address inappropriate on-the-road motorists’ behavior could alone improve traffic flow in Kampala, by over 48%. Additionally, in-order to effectively regulate traffic flow in Kampala and other least developed cities with similar traffic congestion management practices, motorists’ on-the-road behavior ought to be factored into any data-driven mechanisms deployed to regulate traffic flow and thus potentially significantly curbing traffic congestion.展开更多
In accordance with the specific deployment way of infrastructure and data exchanging technology in the Internet of vehicles(IoV),the acquiring and calculating method for three basic traffic flow parameters in IoV scen...In accordance with the specific deployment way of infrastructure and data exchanging technology in the Internet of vehicles(IoV),the acquiring and calculating method for three basic traffic flow parameters in IoV scenarios,including traffic flow,speed and density,was researched.Considering the complexity of traffic flow and fuzziness of human thinking,fuzzy c-means clustering algorithm based on the genetic algorithm(GA-FCM) was adopted in soft classification of urban road traffic conditions.Genetic algorithm(GA) introduced into fuzzy clustering could avoid fuzzy c-means(FCM) algorithm converging to the local infinitesimal point,which made the cluster result more precise.By means of computer simulation,data exchanging environment in IoV was imitated,and then test data set was divided into four parts.The simulation indicates that the identification method is feasible and effective for urban road traffic conditions in IoV scenarios.展开更多
文摘Network traffic classification is essential in supporting network measurement and management.Many existing traffic classification approaches provide application-level results regardless of the network quality of service(QoS)requirements.In practice,traffic flows from the same application may have irregular network behaviors that should be identified to various QoS classes for best network resource management.To address the issues,we propose to conduct traffic classification with two newly defined QoSaware features,i.e.,inter-APP similarity and intraAPP diversity.The inter-APP similarity represents the close QoS association between the traffic flows that originate from the different Internet applications.The intra-APP diversity describes the QoS variety of the traffic even among those originated from the same Internet application.The core of performing the QoS-aware feature extraction is a Long-Short Term Memory neural network based Autoencoder(LSTMAE).The QoS-aware features extracted by the encoder part of the LSTM-AE are then clustered into the corresponding QoS classes.Real-life data from multiple applications are collected to evaluate the proposed QoS-aware network traffic classification approach.The evaluation results demonstrate the efficacy of the extracted QoS-aware features in supporting the traffic classification,which can further contribute to future network measurement and management.
文摘Traffic congestion is associated with increased environmental pollutions, as well as reduced socio-economic productivity due to significant delays in travel times. The consequences are worse in least developed countries where motorized road transport networks are often inefficiently managed in addition to being largely underdeveloped. Recent research on traffic congestion has mostly focused on infrastructural aspects of road networks, with little or no emphasis at all on motorists’ on-the-road behavior (MB). The current study thus aimed to bridge this knowledge gap by characterizing traffic jam incidents (TJI) observed over a period of 80 days in Uganda’s Capital City, Kampala. MB as well as road network infrastructural factors such as road blockage (RB), were captured for each of the observed TJI. A total of 483 peak-time TJI were recorded, and exploratory data analysis (EDA) subsequently performed on the TJI dataset. EDA involved Hierarchical clustering analysis (HCA) and K-means clustering of the TJI dataset, as well as a detailed descriptive statistical analysis of both the entire dataset and the emerging TJI clusters. A highlight finding of this study is that 48.2% of the observed TJIs were as a result of on-the-road motorist behavior. Furthermore, the intervention of traffic police officers in a bid to regulate traffic flow was equally responsible for 25.9% of the TJIs observed in this study. Overall, these results indicate that whereas road infrastructural improvement is warranted in order to improve traffic flow, introducing interventions to address inappropriate on-the-road motorists’ behavior could alone improve traffic flow in Kampala, by over 48%. Additionally, in-order to effectively regulate traffic flow in Kampala and other least developed cities with similar traffic congestion management practices, motorists’ on-the-road behavior ought to be factored into any data-driven mechanisms deployed to regulate traffic flow and thus potentially significantly curbing traffic congestion.
基金the Humanity and Social Science Youth Foundation of Ministry of Education in China(No.12YJC630200)Natural Science Foundations of Gansu Province in China(Nos.145RJZA190,1308RJYA042)the Social Science Planning Project of Gansu Province in China(No.13YD066)
文摘In accordance with the specific deployment way of infrastructure and data exchanging technology in the Internet of vehicles(IoV),the acquiring and calculating method for three basic traffic flow parameters in IoV scenarios,including traffic flow,speed and density,was researched.Considering the complexity of traffic flow and fuzziness of human thinking,fuzzy c-means clustering algorithm based on the genetic algorithm(GA-FCM) was adopted in soft classification of urban road traffic conditions.Genetic algorithm(GA) introduced into fuzzy clustering could avoid fuzzy c-means(FCM) algorithm converging to the local infinitesimal point,which made the cluster result more precise.By means of computer simulation,data exchanging environment in IoV was imitated,and then test data set was divided into four parts.The simulation indicates that the identification method is feasible and effective for urban road traffic conditions in IoV scenarios.